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Abstract The cooperative leader-following tracking
for a group of heterogeneous mechanical systems with
nonlinear hybrid order dynamics is studied. The con-
trolled systems are considered to be composed of fol-
lowers (agents) with hybrid first- and second-order
time-varying dynamics. The leader is an unknown
nonautonomous nonlinear system and can only give
the state information of position and velocity to its
neighboring followers. The followers are linked by
the directed graph with fixed communication topol-
ogy. And, not all of them have the information path
to the leader directly. The directed information topol-
ogy graph is required to have at least one spanning
tree for position and velocity, respectively. Distributed
cooperative adaptive control protocols are developed
for all followers with first- or second-order dynamics
to achieve the ultimate synchronization to the leader.
The control protocols are designed based on the neu-
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ral networks and the adaptive estimation algorithm for
unknown time-varying functions and control coeffi-
cients. The convergence and boundedness of the syn-
chronization error is proved by the Lyapunov theory.
The simulation example verifies the correctness of the
developed distributed control protocols.

Keywords Control synchronization · Consensus
tracking · Neural networks · Heterogeneous multi-
agent systems · Unknown nonlinear dynamics

1 Introduction

Research of the multi-agent systems (MAS) derives
from the cooperativemovement characteristics of some
animals in nature, such as the swimming of fish cluster
and the troops of ants [1]. For the past recent decades,
cooperative control of MAS has got a lot of attention
and many significant results has been achieved in the
practical applications such as artificial satellite, space-
craft, unmanned underwater vehicles, robots, etc.

The main research directions of MAS contain con-
sensus, formation, estimation, and optimization [2].
The problem of consensus refers to a kind of group
behavior that all followers reach some agreements
under certain distributed control protocols. Generally,
the consensus ofMAS includes two categories, cooper-
ative consensus regulation, and cooperative consensus
tracking [3]. For the former one, distributed consen-
sus controllers are developed to drive the agents to an
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unprescribed consensus equilibrium which has a rela-
tionship with the agents’ initial states [4]. This problem
is also called leaderless consensus. For the latter one,
the real or virtual leader acts as the command refer-
ence for all followers. Not all of the followers have
the direct information path to the leader in this situ-
ation, and all followers try to track the trajectory of
the leader by the information from their neighbors.
This problem can also be known as leader-following
consensus or pinning control [5]. Many achieve-
ments on these two problems have been published
including papers [4–13], surveys [2,14] and books
[1,15–17].

In the previous studies of consensus control, the lin-
ear or nonlinear controlled objects are mostly consid-
ered to be MAS with the agents having homogeneous
order such as first-, second- or higher-order. On this
basis, the states which need to be synchronized are
identical for each agent. In practice, however, the types
of the agents to be controlled may be distinct. That is,
the orders for different agents may be nonidentical. To
our best knowledge, only few works have referred to
the consensus tracking problem of MAS with hybrid-
order dynamics, and the agents are generally defined by
the models of simple linear single or double integrator
[18–23], which is the main motivation of this paper.

In this study, we mainly consider the cooperative
tracking problem of nonlinear heterogeneous mechani-
cal systems. The agents in the systems are considered to
bewith hybrid first- or second-order dynamics and have
unknown nonlinear time-varying control coefficients.
The objective of control design is to achieve the ulti-
mate synchronization of all agents to the leader. Here,
the ultimate synchronization means that the positions
of all agents synchronize to the leader’s position and
the velocities of the second-order agents synchronize to
the leader’s velocity, respectively. The distributed con-
sensus control protocols based on neural networks and
adaptive parameter estimation schemes are proposed
for all agents with hybrid-order dynamics to achieve
the ultimate synchronization. The neural networks and
adaptive schemes are used mainly for estimating the
unknown time-varying nonlinear functions and control
parameters. Comparedwith the previousworks, the fol-
lowing points need to be emphasized.
1. In the actual multi-agent mechanical systems, the

agents may have different order dynamics. Differ-
ent from the papers [3,7–13,24,25] in which the
dynamics orders for all agents are considered to be

same, in this study, the cooperative control proto-
col is developed for the agents with hybrid first- or
second-order dynamics.

2. Unlike [18–23] where the dynamics of agents with
hybrid first- or second-order are considered to be
known linear single or double integrator, in this
study, we consider the dynamics of all agents to be
unknown and nonlinear which is more applicable.

3. In practical mechanical systems, due to actuator
dynamics, load fluctuation, power flow rate and
drive mechanism, the coefficient of control item
is generally time-varying and almost impossible
to be one. Unlike the papers [3,12,24,25] where
the coefficient is considered as one, in this study,
the agents with unknown heterogeneous dynamics
are considered to have time-varying control coeffi-
cients which will be approximated by a singularity-
avoided adaptive scheme.

The paper is structured as follows. In Sect. 2, basic
algebraic graph theory is introduced. The consensus
tracking of nonlinear multi-agent mechanical systems
with hybrid orders is formulated in Sect. 3. Control
protocol design and stability analysis are detailed in
Sect. 4. Simulation case is presented in Sect. 5. And,
some conclusions are given in Sect. 6.

2 Basic algebraic graph theory

In MAS, each agent (node) can communicate with
its neighbors. Define a graph G = (V, E) where
V = {V1, . . . ,Vn} is a nonempty set and edge set
E ⊆ V × V . (Vi ,V j

) ∈ E denotes the edge from Vi

to V j . The graph is assumed to be simple and there is
no multiple edge or (Vi ,Vi ) /∈ E . Define a weighted
digraph (directed graph) G by adjacency matrix A =[
ai j
] ∈ Rn×n where ai j > 0 if

(V j ,Vi
) ∈ E and

otherwise ai j = 0. The neighbor of node i is rep-
resented by Ni = {

j | (V j ,Vi
) ∈ E}, which means

that i can get information from the nodes defined in
set Ni , but not vice versa. Define in-degree matrix as
D = diag {di } ∈ Rn×n withdi = ∑N

j=1 ai j . Define the
Laplacianmatrix for the graph as L = D−A. Different
from the conventional definitions that the spanning tree
has to be defined based on the agent, here we consider
the more general case that the agent may have first- or
second-order dynamics and discuss the spanning tree
for some specific state instead of the agent. Therefore,
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a spanning tree for j th-order state means that there is
a direct or indirect path from the leader to every agent
containing j th-order state. The topology is assumed to
be fixed and L , D and A are all time-invariant.

Here, some notations are given as follows. tr{·} is
the trace of a matrix. | · | is the absolute value, || · ||
denotes the Euclidean norm, || · ||F denotes the Frobe-
nius norm. Matrix Q > 0 means it is positive definite.
In is the identity matrix in Rn×n , 0n×m denotes the
zero matrix in Rn×m , 1n is the unit column vector in
Rn . σ(·) denotes the set of singular values. σ̄ (·) and
σ(·) are the maximum and minimum singular values,
respectively. Set N = {1, 2, . . . , n}.

3 Cooperative consensus tracking problem
formulation

Consider a n(n ≥ 2) agents mechanical system where
m agents have second-order nonlinear dynamics
{
ẋ p,i = xv,i

ẋv,i = fi (x̄i )+gi (x̄i , t)ui +wi

x̄i =[xp,i , xv,i ]T, i ∈ l2 ={1, 2, . . . ,m}

(1)

and other n − m agents have first-order dynamics

ẋ p,i = fi (x̄i ) + gi (x̄i , t)ui + wi , x̄i = [xp,i , 0]T,

i ∈ l1 = {m + 1,m + 2, . . . , n} (2)

where xp,i and xv,i represent position and velocity
states of i th agent, respectively, x̄i denotes the state
vector, ui denotes the control input, fi (·) and gi (·)
denote the state-dependent time-varying unknownnon-
linear functions and are locally Lipschitz, wi denotes
the unknown bounded external disturbance. Without
loss of generality, we assume

gi (x̄i , t) ≥ g
i

(3)

where g
i
> 0 is the known lower bound.

The second-order agents in (1) can be globally
defined by
{
ẋ l2p = xv

ẋv = f l2(x̄ l2) + gl2ul2 + wl2
(4)

and the first-order agents in (2) can be globally defined
by

ẋ l1p = f l1(x̄ l1) + gl1ul1 + wl1 (5)

where (·)l1 =
[
0m 0
0 In−m

]
(·), (·)l2 =

[
Im 0
0 0n−m

]

(·), xp = [
xp,1, . . . , xp,n

]T is the global position vec-

tor, xv = [
xv,1, . . . , xv,m, 01×(n−m)

]T ∈ Rn denotes

the global velocity vector, u = [u1, u2, . . . , un]T,
f (x̄) = [ f1(x̄1), f2(x̄2), . . . , fn(x̄n)]T, x̄ = [

x̄1, x̄2,

. . . , x̄n
]T, g = diag {gi (x̄i , t)} ∈ Rn×n , w =

[w1, w2, . . . , wn]T.
Define the leader (node 0) as

{
ẋ p,0 = xv,0

ẋv,0 = f0(x0, t)
(6)

where xp,0 and xv,0 denote position and velocity,
respectively. f0(·) is the unknown nonlinear function
and locally Lipschitz, x0 = [xp,0, xv,0]T is the state
vector. Here, the leader is considered as a genera-
tor of command or reference trajectory and can have
unknown time-varying nonlinear dynamics.

Remark 1 In this paper, the aim of the cooperative
tracking control design is to make all following agents
with the dynamics given by (1) and (2) in graph G syn-
chronize to the leader described by (6), i.e., xp,i (t) →
xp,0(t), i ∈ N and xv,i (t) → xv,0(t), i ∈ l2.

The tracking error of i th agent is defined by

δp,i = xp,i − xp,0, i ∈ N
δv,i = xv,i − xv,0, i ∈ l2

(7)

Then, the global position and velocity errors are δp =
xp − 1xp,0, δv = xv − 1l2xv,0, 1 = [1 , . . . , 1]T ∈
Rn . In this study, the cooperative control protocols
are developed for all following agents with first- and
second-order dynamics to guarantee that δp and δv con-
verge to zero. The notions of uniform ultimate bound-
edness [26] can be extended to the MAS control sys-
tems by the following definition.

Definition 1 Error δk (k = p, v) is cooperatively uni-
formly ultimately bounded (CUUB) if there exists a
compact set Ωk ⊂ Rn , so that for ∀δk(t0) ∈ Ωk there
exists a bound Bk > 0 and time Tk(Bk, δp(t0), δv(t0)),
such that‖δk(t)‖ ≤ Bk,∀t ≥ t0+Tk [3]. If δk isCUUB,
the state xk,i is bounded within the neighborhood of
xk,0, and the agents can achieve the synchronization
within limited time.

Remark 2 According to (7) and the graph theory, we
have that not all agents can get the state information
from the leader. That is, some agents may have only
the information of their neighbors. The information of
xp,0 and xv,0 maynot be accessible for them.Therefore,
we can not use δp,i and δv,i in the distributed control
protocols design, but for stability analysis purpose.
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The agents can only get the information from their
neighbors. The local neighborhood synchronization
error can be defined by [27]

ep,i =
∑

j∈Ni

ai j (xp, j − xp,i )

+ bi (xp,0 − xp,i ), i ∈ N

ev,i =
∑

j∈N 2
i

ai j (xv, j − xv,i )

+ bi (xv,0 − xv,i ), i ∈ l2 (8)

where set N 2
i denotes the second-order neighbors of

agent i , bi represents the weight between leader and
node i . Since there is no need for the leader to receive
the information from the following agents, bi is non-
negative. It should be noted that bi > 0 if and only if
there is a communication edge from the leader to node
i in the graph. Also, there is at least one agent whose
bi > 0, which means at least one agent in the graph
can receive the leader’s command.

Define the global synchronization error as

ep = −(L + B)(xp − 1xp,0)
ev = −(L + B)(xv − 1l2xv,0)

(9)

where ep = [
ep,1, . . . , ep,n

]T, ev = [
ev,1, . . . , ev,m,

01×(n−m)

]T ∈ Rn , B = diag {bi } ∈ Rn×n .

Since xp = xl1p + xl2p , differentiating (9) we have

ėp = −(L + B)(ẋ l1p + xv − 1xv,0)

= −(L + B)(ẋ l1p − 1l1xv,0) + ev

ėv = −(L + B)
(
ẋv − 1l2 f0(x0, t)

)
(10)

Define the sliding-mode error for node i as

ri =
{
ep,i , i ∈ l1
ev,i + λi ep,i , i ∈ l2

(11)

where λi > 0.
Then, the error r can be given by

r = rn1 + rn2 (12)

where rn1 = el1p , rn2 = ev + �el2p and � =
diag (λ1, . . . , λm, 0, . . . , 0) ∈ Rn×n .

Differentiating (12), we have

ṙ = ṙn1 + ṙn2

ṙn1 = ėl1p = −(L + B)(ẋ l1p − 1l1xv,0)

= −(L + B)
(
f l1(x̄ l1)

+ gl1ul1 + wl1 − 1l1xv,0

)

ṙn2 = ėv + �ev

= −(L + B)(ẋv − 1l2 f0(x0, t)) + �ev

= −(L + B)
(
f l2(x̄ l2) + gl2ul2

+wl2 − 1l2 f0(x0, t)
)

+ �ev (13)

Remark 3 Define Ḡ = (V̄, Ē) as the augmented com-
munication graph including leader node 0, where V̄ =
{V0, . . . ,Vn} and Ē ⊆ V̄ × V̄ . Consider that Ḡ con-
tains at least a spanning tree for position and velocity,
respectively. That means there is at least a path of the
position or velocity state from the leader to each agent.
And, L + B is nonsingular M-matrix [17,28].

Lemma 1 Let Ḡ contain at least a spanning tree for
position and velocity, respectively. Then, B 
= 0 and
L + B is nonsingular. According to (7) and (9), we
have

‖δk‖ =
∥∥∥(L + B)−1ek

∥∥∥

≤ ‖ek‖ /σ(L + B), k = p, v (14)

4 Distributed cooperative adaptive control
protocol design

In this part, the cooperative controller is developed for
the multi-agent mechanical system (1) and (2) to real-
ize the ultimate synchronization of all followers to the
leader.

4.1 Neural networks approximation

Here, the neural networks are used to estimate the
unknown time-varying function fi (x̄i ). According to
the techniques of neural networks approximation in
[26], assume that fi (x̄i ) can be expressed by

fi (x̄i ) = WT
i φi (x̄i ) + εi , i ∈ N (15)

where φi (x̄i ) ∈ Rvi denotes the basis function, vi
denotes the number of neurons for i th node, Wi ∈ Rvi

denotes the ideal weight, εi represents the estimation
error.

Remark 4 The neural networks in (15) is linear in
parameter. There exist a large enough positive v∗

i and
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Distributed cooperative adaptive tracking control 2135

a compact set Ω , such that for any vi > v∗
i , we can

always find ideal Wi and φi (·), which makes (15) sat-
isfy that maxx̄i∈Ω |εi | is small enough [29].

By the neural networks, each nodewill keep approx-
imating the nonlinear function fi (x̄i ) locally.Define the
approximation of fi (x̄i ) as

f̂i (x̄i ) = Ŵ T
i φi (x̄i ), i ∈ N (16)

where f̂i (x̄i ) denotes the estimate of fi (x̄i ), Ŵi ∈ Rvi

is the estimate of weight Wi .
And, f (x̄) can be globally described by

f (x̄) = WTφ(x̄) + ε (17)

where W = diag {Wi } ∈ Rn×n , φ(x̄) = [
φT
1 (x̄1), φT

2

(x̄2), . . . , φT
n (x̄n)

]T, ε = [ε1, ε2, . . . , εn]T.

Then, the approximation f̂ (x) is given by

f̂ (x̄) = ŴTφ(x̄) (18)

where f̂ (x̄) =
[
f̂1(x̄1), f̂2(x̄2), . . . , f̂n(x̄n)

]T
, Ŵ =

diag
{
Ŵi

}
∈ Rn×n, i ∈ N .

Remark 5 Define φiM = maxx̄i∈Ω ‖φi (x̄i )‖, WiM =
‖Wi‖ and εiM = ‖εi‖. Then, there exist some upper
bounds φM > 0, WM > 0 and εM > 0 about the
neural networks estimations, such that ‖φ(x̄)‖ ≤ φM ,
‖W‖F ≤ WM and ‖ε‖ ≤ εM .

4.2 Distributed adaptive control protocols design

In this part, the local control protocols and adap-
tive updating laws will be presented for multi-agent
mechanical system (1) and (2) to achieve the synchro-
nization to the leader. Before proceeding further, the
following assumptions about the bounds are required.

Assumption 1 Unknown disturbancew is bounded by
wM > 0. Unknown nonlinear function f0(x0, t) is
bounded by fM > 0. The state of the leader is bounded,
such that ‖x0‖ ≤ x0M . There exists finite gM > 0, such
that ‖g‖F ≤ gM . The control input u is bounded by
‖u‖ ≤ uM , uM > 0.

Remark 6 Note that the boundsmentioned inRemark 5
and Assumption 1 are not necessary to be known and
will not be used in the control protocols design but in
the process of stability analysis.

Lemma 2 [17]. Consider that Ḡ contains at least a
spanning tree for position and velocity, respectively.
That means bi > 0 for at least one agent and L + B is
nonsingular. Define

q = (L + B)−11 = [q1, q2, . . . , qn]
T

P = diag {pi } = diag {1/qi } , i ∈ N

Q = (L + B)TP + P(L + B)

(19)

Then, P and Q are positive definite.

The distributed cooperative control protocols are
designed as

ui = 1

ĝi

(
cri − f̂i (x̄i )

)

= 1

ĝi

(
cri − Ŵ T

i φi (x̄i )
)
, i ∈ l1

ui = 1

ĝi

(
cri − f̂i (x̄i ) + 1

di + bi
λi ev,i

)

= 1

ĝi

[
cri − Ŵ T

i φi (x̄i ) + 1

di + bi
λi ev,i

]
, i ∈ l2

(20)

or globally

ĝl1ul1 = crn1 −
(
Ŵ l1

)T
φl1(x̄ l1)

ĝl2ul2 = crn2 −
(
Ŵ l2

)T
φl2(x̄ l2) + (D + B)−1 �ev

(21)

where ĝi is the estimate of gi (t), ĝ = diag
{
ĝi
} ∈

Rn×n , c is the control gain.
The gain c satisfies

cσ(Q) > 2

(
χ2

θ
+ ϑ2

σ(�)
+

ς2

κ
+ψ

)
(22)

with ϑ = − 1
2 − σ̄

(
�2
)
σ̄
(
Pl2
)
σ̄ (A)

2σ(D+B)
, ψ = σ̄ (�)σ̄ (A)σ̄

(
Pl2
)

σ(D+B)
,

ς = − 1
2φM σ̄ (P) σ̄ (A)and χ = − 1

2uM σ̄ (P) σ̄ (A),
where κ is defined in (24) and θ is defined in (25).

Design the local adaptive tuning laws for Ŵi as

˙̂Wi = −Fi
[
φi (x̄i )ri pi (di + bi ) + κŴi

]
, i ∈ N (23)

or globally

˙̂W = −F
[
φ(x̄)rTP(D + B) + κŴ

]
(24)

where Fi > 0 and κ > 0, F = diag {Fi } ∈ Rn×n, i ∈
N .
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To avoid singularity, the updating law of control
coefficient ĝ is designed as

˙̂g = −ηθ ĝ − diag (�1, �2, . . . , �n)

�i =
⎧
⎪⎨

⎪⎩

ηi ui ri pi (di + bi ), if ĝi > g
i
, i ∈ N

ηi ui ri pi (di + bi ), if ĝi = g
i
and ui ri pi (di + bi ) < 0, i ∈ N

0, if ĝi = g
i
and ui ri pi (di + bi ) ≥ 0, i ∈ N

(25)

where θ is a positive scalar gain, η = diag {ηi } ∈ Rn×n

and ηi > 0 , i ∈ N .

4.3 Stability analysis

To make the notations simple, denote f l1(x̄ l1) as f l1 ,
f l2(x̄ l2) as f l2 , f0(x0, t) as f0, φl1(x̄ l1) as φl1 , φl2(x̄ l2)
as φl2 and φ(x̄) as φ. Using (4), (5), (17) and (21), (13)
becomes

ṙn1 = −(L + B)
(
f l1 + gl1ul1 + wl1 − 1l1 xv,0

+ ĝl1ul1 − ĝl1ul1
)

= −(L + B)

((
Wl1

)T
φl1 + εl1 + g̃l1ul1

+ crn1 −
(
Ŵ l1

)T
φl1 + wl1 − 1l1 xv,0

)

= −(L + B)

((
W̃ l1

)T
φl1 + εl1 + g̃l1ul1

+ crn1 + wl1 − 1l1 xv,0

)

ṙn2 = −(L + B)
(
f l2 + gl2ul2 + wl2 − 1l2 f0

+ ĝl2ul2 − ĝl2ul2
)

+ �ev

= −(L + B)

((
Wl2

)T
φl2 + εl2 + g̃l2ul2

+ crn2 −
(
Ŵ l2

)T
φl2 + (D + B)−1 �ev

+ wl2 − 1l2 f0
)

+ �ev

= −(L + B)

((
W̃ l2

)T
φl2 + εl2 + g̃l2ul2 + crn2

+ (D + B)−1 �ev + wl2 − 1l2 f0
)

+ �ev

= −(L + B)

((
W̃ l2

)T
φl2 + εl2

+ crn2 + g̃l2ul2 + wl2 − 1l2 f0
)

+ A (D + B)−1 �ev

(26)

Theorem 1 Consider the leader (6) and the networked
mechanical system (1) and (2) under Assumption 1.
Ḡ has at least a spanning tree with the leader being
node 0 for position and velocity, respectively. Using
the protocol (20) and the adaptive tuning laws (24)
and (25), we have the results

1. There exists a v̄i > 0, such that forvi > v̄i ,∀i ∈ N,
the tracking error δp and δv are CUUB. All nodes
in G can synchronize to node 0.

2. For ∀t ≥ t0, states xp,i , i ∈ N andxv,i , i ∈ l2 are
bounded.

Proof See “Appendix.” �
Remark 7 The fact that Fi is arbitrary positive design
gain implies Fi pi (di + bi ) and Fiκ can be chosen as
arbitrary positive parameters. This means that we can
arbitrarily design positive gains Fi pi (di +bi ) and Fiκi
for adaptive tuning law in (23). Similarly, ηi pi (di +bi )
and ηiθ can also be arbitrarily designed in (25).

5 Simulation example

In this part, the simulation is conducted to verify the
correctness of the proposed control protocols and adap-
tive updating laws. Consider the mechanical system
with one leader and five followers, in which nodes
0, 1, 2 , 5 are second-order and nodes 3, 4 are first-
order. The dynamics of the first-order following nodes
are

ẋ p,i = fi (x̄i ) + gi (x̄i , t)ui + wi cos(t), i ∈ 3, 4

and the dynamics of the second-order following nodes
are
{
ẋ p,i = xv,i

ẋv,i = fi (x̄i ) + gi (x̄i , t)ui + wi cos(t)
, i ∈ 1, 2, 5

where wi is the random disturbance between 0 and
0.1, fi (x̄i ) = cos(i x p,i ) + sin(i x p,i ) is the nonlinear
function of the states, gi (x̄i , t) = i

(
1 + 0.5 sin(t x p,i )

)

is the time-varying control coefficient.
The dynamics of the leader is

{
ẋ p,0 = xv,0

ẋv,0 = − sin(t)

with the initial value
[
xp,0(0), xv,0(0)

]
= [1, 1].

The communication topology is a fixed digraph as
shown in Fig. 1. Node 0 is the leader and nodes 1, 2,
3, 4 and 5 are the following agents. It is obvious that
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Fig. 1 Topology of digraph Ḡ

Fig. 2 Position tracking errors δp,i

there is a spanning tree of position or velocity for each
following agent. And, all agents can receive the cor-
responding state information from the leader directly
or from their neighbors indirectly. The edge weights of
the communication topology in Fig. 1 are all chosen as
1 and the sampling period is chosen as 0.001s.

In simulation, the disturbances wi and the nonlin-
ear dynamics fi (x̄i ) of the nodes are all assumed to
be unknown and time-varying. The control coefficient
gi (t) is also considered to be time-varying and nonlin-
ear. Five neurons are used for the neural networks of
each node. The weights of neural networks are initial-
ized as Ŵi (0) = [0, . . . , 0]T ∈ R5. Hyperbolic tangent
is used as the basis function of neural networks. Choose
the known lower bound of the control coefficient for all
agents as g

i
= 0.5.

The developed control law (20), adaptive laws (23)
and (25) are absolutely distributed. The design param-
eters are chosen as vi = 5, c = 100, Fi = 5000,
κ = 0.001, ηi = 1, θ = 0.001, λi = 5. Based
on the designed control protocols (20), (23) and (25),
the simulation is performed on the given mechani-
cal system and the leader under the communication
digraph shown in Fig. 1. Despite the hybrid order non-
linear dynamics and external disturbances included
in the controlled mechanical system, the simulation

Fig. 3 Position tracking profiles xp,i

Fig. 4 Velocity tracking errors δv,i

results show promising control performance. The posi-
tion tracking error δp,i of the followers are compared
in Fig. 2 and the position tracking profiles xp,i for all
nodes are presented in Fig. 3. We can see that the over-
all synchronization errors of position converge to zero
rapidly in about 2 s. Only agent 1 can receive the infor-
mation from node 0 directly and all other agents have
to follow agent 1 according to the topology digraph.
Agents 3 and 4 can only get the position information
from nodes 2 and 5, and their position trajectories are
more affected by agent 2 from the beginning. Agent 5
can only receive the information from agent 1 and is
not influenced by other agents.

The velocity tracking error δv,i of agents 1, 2 and
5 are given in Fig. 4 and the velocity tracking pro-
files xv,i for the nodes with second-order dynamics are
compared in Fig. 5. Under the effect of initial veloc-
ity synchronization errors, there are some fluctuations
of the velocity tracking for agents 1, 2 and 5. Agent
1’s velocity fluctuation is smallest and agent 5 has
the largest about 9m/s. Despite some fluctuations, the
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Fig. 5 Velocity tracking profiles xv,i

Fig. 6 Control inputs ui

velocity tracking of all second-order agents is rapid
and the tracking errors converge to approximate zero in
1.5 s. The tracking results show that the velocity fluctu-
ations have no great impact on the position tracking for
second-order agents 1, 2 and 5. The profiles of the con-
trol inputs for all following nodes are shown in Fig. 6.
From these figures, it can be seen that the first- and
second-order states of all followers synchronize to the
trajectory of the leader accurately and rapidly. Under
the developed control protocols and adaptive updating
laws, the simulated nonlinear multi-agent mechanical
control system with unknown, hybrid order dynamics
and time-varying control coefficient is demonstrated to
be stable, and the effectiveness of the proposed dis-
tributed cooperative control protocols is verified.

6 Conclusion

This paper studied the problem of cooperative track-
ing control of multi-agent mechanical systems with

hybrid first- and second-order dynamics. The agents
have unknown nonidentical nonlinear dynamics. The
coefficients of the control input item are nonlinear and
time-varying. The distributed neural adaptive control
protocols were proposed to achieve the synchroniza-
tion of position and velocity to the leader. The proto-
cols are completely distributed and can be calculated
locally for all agents with only the neighbors’ infor-
mation. Simulation example verifies the effectiveness
of the proposed control protocols, and the results show
that each agent can synchronize to the leader accurately
and quickly. The future work will be concentrated on
the time-varying actuator faults of hybrid order multi-
agent mechanical systems.
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Appendix: Proof of Theorem 1

Define the Lyapunov function as

V = Vr + VW + Vg + Ve (27)

where Vr = 1
2r

TPr , VW = 1
2 W̃

TF−1W̃ , Vg =
1
2 g̃

Tη−1g̃, Ve = 1
2

(
el2p
)T

el2p .

According to (26), by differentiating Vr , we have

V̇r = rTPṙ = rTn1P
l1 ṙn1 + rTn2P

l2 ṙn2

= −rTn1P
l1(L + B)

((
W̃ l1

)T
φl1 + εl1 + g̃l1ul1

+ crn1 + wl1 − 1l1xv,0

)

− rTn2P
l2(L + B)

((
W̃ l2

)T
φl2 + εl2 + crn2

+ g̃l2ul2 + wl2 − 1l2 f0
)

+ rTn2P
l2 A (D + B)−1 �ev

= −rTP(L + B)
[
W̃Tφ + cr + g̃u

]

− rTn1P
l1(L + B)

[
wl1 + εl1 − 1l1xv,0

]

− rTn2P
l2(L + B)

[
wl2 + εl2 − 1l2 f0

]

+ rTn2P
l2 A (D + B)−1 �ev

= −rTP(D + B)W̃Tφ + rTPAW̃Tφ

− rTP(L + B)cr − rTP(D + B)g̃u
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+rTPAg̃u

− rTn1P
l1(L + B)

[
wl1 + εl1 − 1l1xv,0

]

− rTn2P
l2(L + B)

[
wl2 + εl2 − 1l2 f0

]

+ rTn2P
l2 A (D + B)−1 �ev (28)

Considering the fact that xTy = tr
{
yxT

}
, we have

V̇r = −tr
{
W̃TφrTP(D + B)

}

+ rTPAW̃Tφ − rTP(L + B)cr

− tr
{
g̃TurT P(D + B)

}
+ rTPAg̃u

− rTn1P
l1(L + B)

[
wl1 + εl1 − 1l1xv,0

]

− rTn2P
l2(L + B)

[
wl2 + εl2 − 1l2 f0

]

+ rTn2P
l2 A (D + B)−1 �ev (29)

Differentiating VW , Vg and Ve, we have

V̇W + V̇g + V̇e = tr
{
W̃TF−1 ˙̃W

}

+ tr
{
g̃Tη−1 ˙̃g

}
+
(
el2p
)T

ev

= − tr
{
W̃TF−1 ˙̂W

}
− tr

{
g̃Tη−1 ˙̂g

}

+
(
el2p
)T

ev (30)

Combining (29) and (30), we have

V̇ = V̇r + V̇W + V̇g + V̇e

= −tr
{
W̃TφrTP(D + B)

}

+ rTPAW̃Tφ − rTP(L + B)cr

− tr
{
g̃TurT P(D + B)

}
+ rTPAg̃u

− rTn1P
l1 (L + B)

[
wl1 + εl1 − 1l1 xv,0

]

− rTn2P
l2 (L + B)

[
wl2 + εl2 − 1l2 f0

]

+ rTn2P
l2 A (D + B)−1 �ev

− tr
{
W̃TF−1 ˙̂W

}
− tr

{
g̃Tη−1 ˙̂g

}
+
(
el2p
)T

ev

= −tr
{
W̃T

[
F−1 ˙̂W + φrTP(D + B)

]}

+ rTPAW̃Tφ − rTP(L + B)cr

− tr
{
g̃T
[
η−1 ˙̂g + urTP(D + B)

]}

+ rTPAg̃u − rTn1P
l1 (L + B)

[
wl1 + εl1 − 1l1 xv,0

]

− rTn2P
l2 (L + B)

[
wl2 + εl2 − 1l2 f0

]

+ rTn2P
l2 A (D + B)−1 �ev +

(
el2p
)T

ev (31)

The error g̃i = gi − g
i
≥ 0 if ĝi = g

i
. Then, substi-

tuting (24) and (25) into (31), we have

V̇ = tr
{
W̃TκŴ

}
+ rTPAW̃Tφ − rTP(L + B)cr

+ rTPAg̃u − rTn1P
l1 (L + B)

[
wl1 + εl1 − 1l1 xv,0

]

− rTn2P
l2 (L + B)

[
wl2 + εl2 − 1l2 f0

]

+ rTn2P
l2 A (D + B)−1 �ev +

(
el2p
)T

ev

+ tr
{
g̃Tθ ĝ

}

−

⎧
⎪⎨

⎪⎩

0, if ĝi >g
i

0, if ĝi =g
i
and ui ri pi (di +bi )<0

tr {diag {g̃i ui ri pi (di +bi )}} , if ĝi =g
i
and ui ri pi (di +bi )≥0

≤ tr
{
W̃TκŴ

}

+ rTPAW̃Tφ − rTP(L + B)cr

+ tr
{
g̃Tθ ĝ

}+ rTPAg̃u

− rTn1P
l1 (L + B)

[
wl1 + εl1 − 1l1 xv,0

]

− rTn2P
l2 (L + B)

[
wl2 + εl2 − 1l2 f0

]

+ rTn2P
l2 A (D + B)−1 �ev +

(
el2p
)T

ev (32)

Then, according to Lemma 2, we have

V̇ ≤ −1

2
crTQr + tr

{
W̃Tκ(W − W̃ )

}

+ rTPAW̃Tφ + tr
{
g̃Tθ(g − g̃)

}
+ rTPAg̃u

− rTn1P
l1(L + B)

[
wl1 + εl1 − 1l1xv,0

]

− rTn2P
l2(L + B)

[
wl2 + εl2 − 1l2 f0

]

+
[(

el2p
)T + rTn2P

l2 A (D + B)−1 �

]

(
rn2 − �el2p

)
(33)

Taking norm on (33), we have

V̇ ≤ −1

2
cσ (Q) ‖r‖2 + κWM

∥∥
∥W̃

∥∥
∥
F

− κ

∥∥
∥W̃

∥∥
∥
2

F

+ φM σ̄ (P) σ̄ (A) ‖r‖
∥
∥
∥W̃

∥
∥
∥
F

+ θgM ‖g̃‖F − θ ‖g̃‖2F + uM σ̄ (P) σ̄ (A) ‖r‖ ‖g̃‖F
+ σ̄ (P) σ̄ (L + B)BM ‖r‖ − σ (�)

∥
∥
∥el2p

∥
∥
∥
2

+
σ̄ (�) σ̄

(
Pl2
)

σ̄ (A)

σ (D + B)
‖r‖2

+
⎡

⎣1 +
σ̄
(
�2
)

σ̄
(
Pl2
)

σ̄ (A)

σ (D + B)

⎤

⎦
∥
∥
∥el2p

∥
∥
∥ ‖r‖ (34)

where BM = εM + wM + fM + x0M .
Write (34) as

V̇ ≤ −zTSz + KTz = −Vz(z) (35)
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where z =
[
‖r‖

∥∥∥W̃
∥∥∥
F

∥∥∥el2p
∥∥∥ ‖g̃‖F

]T
, K =

[
σ̄ (P) σ̄ (L + B)BM κWM 0 θgM

]T
,

S =

⎡

⎢
⎢
⎣

1
2cσ (Q) − ψ ς ϑ χ

ς κ 0 0
ϑ 0 σ (�) 0
χ 0 0 θ

⎤

⎥
⎥
⎦ .

Then, Vz(z) is positive definite if S > 0 and ‖z‖ >
‖K‖
σ(S)

.

With Sylvester’s criterion, S > 0 if

1

2
cσ (Q) − ψ > 0

κ

(
1

2
cσ (Q) − ψ

)
− ς2 > 0

σ (�)

[
κ

(
1

2
cσ (Q) − ψ

)
− ς2

]
− κϑ2 > 0

θ

{
σ (�)

[
κ

(
1

2
cσ (Q) − ψ

)
− ς2

]
− κϑ2

}

−κχ2σ (�) > 0 (36)

Solve the above inequalities, we can get the condition
(22).

Define Bd as

Bd = ‖K‖1
σ(S)

= BM σ̄ (P)σ̄ (L + B) + κWM + θgM
σ(S)

(37)

Then, if z ≥ Bd , ‖z‖ >
‖K‖1
σ(S)

>
‖K‖
σ(S)

holds. Under

condition (22), we have V̇ ≤ −Vz(z) with Vz(z) being
positive definite.

By [3], we have

σ(�) ‖z‖2 ≤ V ≤ σ̄ (ϕ) ‖z‖2 (38)

where � = diag
(

σ(P)

2 , 1
2σ̄ (F)

, 1
2 , 1

2σ̄ (η)

)
and ϕ =

diag
(

σ̄ (P)
2 , 1

2σ(F)
, 1
2 ,

1
2σ(η)

)
.

According to Theorem4.18 in [30], we can conclude
that for any z(t0) there exists a T0 such that

‖z(t)‖ ≤
√

σ̄ (ϕ)

σ (�)
Bd ,∀t ≥ t0 + T0 (39)

Define d = min‖z‖≥Bd Vz(z), then according to [30]

T0 = V (t0) − σ̄ (φ)B2
d

d
(40)

With z, (39) implies that the synchronization error r
is ultimately bounded. Then, according to Lemma 1,

δp and δv are CUUB and all nodes in G achieve the
synchronization to the leader.

For part (2) of Theorem 1, the state xp,i , i ∈ N
andxv,i , i ∈ l2 are bounded ∀t ≥ t0. From (35), we
have

V̇ ≤ −σ(S) ‖z‖2 + ‖K‖ ‖z‖ (41)

According to (38) and (41), we have
d

dt
(
√
V ) ≤ − σ(S)

2σ̄ (ϕ)

√
V + ‖K‖

2
√

σ(�)
(42)

Then, we can conclude that V (t) is bounded for t ≥ t0
under Corollary 1.1 in [31]. Since (27) implies ‖r‖2 ≤
2V (t)
σ (P)

, r(t) is bounded. And, x0 is bounded by x0M in
Assumption 1. xp,i , i ∈ N andxv,i , i ∈ l2 are bounded
∀t ≥ t0. The proof is done. �
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