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Abstract The parameter estimation methods for the
nonlinear exponential autoregressive (ExpAR) model
are investigated in this work. Combining the hierar-
chical identification principle with the negative gradi-
ent search, we derive a hierarchical stochastic gradi-
ent algorithm. Inspired by the multi-innovation identi-
fication theory, we develop a hierarchical-based multi-
innovation identification algorithm for the ExpAR
model. Introducing two forgetting factors, a variant
of the hierarchical-based multi-innovation identifica-
tion algorithm is proposed. Moreover, to compare and
demonstrate the serviceability of these algorithms, a
nonlinear ExpAR process is taken as an example in the
simulation.
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1 Introduction

Nonlinear time series models can reveal nonlinear fea-
tures of many practical processes, and they are widely
used in finance, ecology and some other fields [1]. The
exponential autoregressive (ExpAR) model [2] is a sig-
nificant kind of nonlinear time series models. In the
early days, the ExpAR model is applied to the sta-
tistical analysis of the Canadian lynx data [3,4], and
then it shows the appropriateness in describing certain
nonlinear behaviors, such as amplitude-dependent fre-
quency, jump phenomena and limit cycle, and in con-
ducting accurate multistep-ahead predictions [5]. In
recent years, a good deal of publications are devoted
to studying the stationarity, estimation and applica-
tion of the ExpAR model. For example, Chen et al.
discussed the stationary conditions of several general-
ized ExpAR models, developed a variable projection
based estimation algorithm, and adopted the general-
ized ExpAR models to model and predict the monthly
mean thickness ozone column [6].

Analyzing and controlling a nonlinear time series
process relies on an appropriate dynamical model. Sys-
tem identification is a common tool to construct the
mathematical models of dynamical systems, parameter
estimation is generating the unknown system parame-
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ters via a set of observations. System identification and
parameter estimation are widely used in many areas
[7-9]. Many identification methods such as the max-
imum likelihood [10], the genetic algorithm [11], the
blind identification [12] and the subspace identification
[13] have been developed for decades. The gradient-
based methods are a class of fundamental system iden-
tification methods. Combining with recursive and itera-
tive techniques, the gradient-based methods can be pro-
vided for identifying many kinds of systems. However,
the gradient-based methods have poor parameter esti-
mation accuracies. By introducing the forgetting fac-
tor, some variants of the gradient-based identification
algorithms are derived, which have improved parame-
ter estimation accuracies. For instance, Chen and Jiang
developed a gradient-based identification method with
several forgetting factors for nonlinear two-variable
difference systems [14].

In the area of system identification, many tech-
niques have been exploited to improve the identifica-
tion results. For example, the hierarchical identification
has been developed as a significant branch of system
identification [15]. Recently, a hierarchical gradient-
based iterative algorithm was used to simultaneously
estimate the unknown amplitudes and angular frequen-
cies of multi-frequency signals [16]. In addition, the
multi-innovation identification has shown the effective-
ness in nonlinear system identification [17]. By expand-
ing a scalar innovation into a multi-dimensional vec-
tor, a multi-innovation stochastic gradient (SG) algo-
rithm was derived for Wiener—-Hammerstein systems
with backlash [18]; a multi-innovation fractional order
SG algorithm was developed for Hammerstein non-
linear ARMAX systems [19]. However, there is few
research on the nonlinear time series model identifica-
tion using these novel identification techniques.

This communique investigates the recursive identi-
fication algorithms for the ExpAR model. Applying the
hierarchical identification principle, the ExpAR model
is decomposed into two sub-identification (Sub-ID)
models, one of which contains the unknown parameter
vector of the linear subsystem, and the other contains
the unknown parameter of the nonlinear part. With the
negative gradient search, two unknown parameter sets
are estimated interactively. In order to make the most
of the information, the scalar innovations are expanded
into innovation vectors. Moreover, two forgetting fac-
tors are introduced into the multi-innovation algorithm,
so that we can present a new recursive identification
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algorithm with improved parameter estimation accu-
racy. In brief, we list the following contributions pro-
vided in this paper.

e Considering the difficulty of the nonlinear optimal
problem arising in identifying the ExpAR model,
we combine the hierarchical identification principle
with the negative gradient search so as to derive a
hierarchical stochastic gradient (H-SG) algorithm
for the ExpAR model.

e Using the multi-innovation identification theory,
a hierarchical multi-innovation stochastic gradient
(H-MISG) algorithm is presented for the ExpAR
model. Introducing two forgetting factors, we
obtain a modified H-MISG algorithm.

e Comparing the parameter estimation accuracies of
the proposed hierarchical algorithms, we find that
the modified version of the H-MISG algorithm has
improved parameter estimation accuracy and can
be effectively used to identify the ExpAR model.

2 Problem description

Some notations used throughout this paper are first
introduced in Table 1.

Given a time series {Xx, Xx—1, Xk—2, - - .}, an EXxpAR
model can be expressed as

xp = (061 + ,3167“’%—'>Xk—1
+ (az + ﬁze_sxszl) Xk—2 + -
2
+ (an + ﬁne_gxk”) Xk—n + &k, (1)

where ¢, is a white noise with zero mean, n denotes the
system degree, «;, B; and & are the model parameters
to be estimated.

When the parameters §; = 0,1 = 1,2,...,n,
Eq. (1) reduces to an autoregressive (AR) model which
has no nonlinear dynamics.

The form in (1) is the classic ExpAR model, some
modified versions have been presented. For instance,
in order to give a more sophisticated specification of
the dynamics of the characteristic roots of AR models,
Ozaki derived a variant of the ExpAR model in [3]
using the Hermite type polynomials:

m;

Xk = 2": [Oti + (ﬁio +y :Bijx]{—l)eiéxlg_l]xk—i + &k

i=1 j=1
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Table 1 The notations used

throughout this paper Item Notations Descriptions
1 xr € R Measurement data
2 & €R Stochastic white noise
3 acR, BeR", @ cR¥ £cR Parameters to be estimated
4 op € R", B r € R, @k e R, ék eR Parameter estimates at time k
5 X € R, ¢(&, k) € R* Information vectors
6 v(B) e R Information item
7 xikeR Intermediate variable
8 @' (£, k) e R¥ Derivative of ¢ (£, k)
9 e1x €R, e € R Innovations
10 mikeR por el Step-sizes
11 rnireR nrek Reciprocals of the step-sizes
12 E(() eR, Ex() e R Innovation vectors
13 X() eR! Stacked information vector
14 (1, &) e ROV Stacked information matrix
15 &'(l, E_y) € R@x! Derivative of @ (/, &_1)

Introducing a time-delay d and a scalar parameter ¢,
Terdsvirta developed a different variant of the ExpAR
model in [4]:

X = [ao + ﬁoeff(xk—dff)z:l

n
+ Z [Oti + ﬂie_g(x"_d_oz] Xk—i + &k.

i=1
Some other generalized ExpAR models were sum-
marized in [6]. After parametrization, we can derive
the corresponding identification models, which have
different parameter and information vectors, for the
ExpAR family. This paper copes with the recursive
identification for the classic ExpAR model. The pro-
posed hierarchical algorithms are also appropriate for
other ExpAR models.

Assume that the degree n is known, the data x is
measurable. The initial values are taken as x; = 0 and
g =0fort <O.

It is obvious that x; is linear with respect to the
parameters «; and B;, and is nonlinear with respect to
the parameter &. Define the parameter vectors of the
linear subsystem

o =[ar, e, ..., a,)" € R",

B:=I[B1, B2 ..., Bul" €R",

and the information vector

. T
Xy o= [xp—1, Xk—2, ..., Xk—nl" € R".

Then, Eq. (1) can be transformed into
n ) n
Xe= Y aixp e Y B it e
i=1 i=1
= XTo + e 51 XTB + & )

Furthermore, define the following vectors:

0 = [T, 7T e R?",
d(E k) = [XT, e E51xTT e R,

Then, Eq. (2) can be equivalently transformed into the
identification model

e =@ (E, kO + & 3)

Since the unknown parameter of the nonlinear sub-
system & exists in ¢(&, k), the identification problem
becomes a complex nonlinear optimization problem
and the least-squares method cannot be used for param-
eter estimation. The previous work aims to explore
new recursive identification methods for the ExpAR
model.

3 The hierarchical stochastic gradient algorithm

Hierarchical identification is the decomposition based
identification. The key idea is to decompose the
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Fig. 1 The hierarchical

Total identification model

structure of the
identification models for the
ExpAR model

2
zp =X+ e 5%k—1 XIB+eg

Sub-ID jmodel 1

Sub-1D

model 2

T, =@ (&,k)O + ¢y

e
e 5%k—1 4 g

Tk = P(B)

identification model into several subsystems, such that
the scale of the optimization problem becomes small
[20]. In this section, by the hierarchical identification
principle, the ExpAR model is decomposed into two
subsystems, one of which contains @, and the other
contains &, both these two parameter sets are to be
estimated. In addition, the negative gradient search is
widely adopted to deal with some optimization prob-
lems and to determine the extreme point of the objec-
tive function. Applying the negative gradient search, an
H-SG algorithm is proposed for the ExpAR model.

Define the information item v () and the interme-
diate variable xj x as

Vv(B) = X BeR,

X1k = Xk — Xzoc e R.

From (2), we can see that the ExpAR model is decom-
posed into these two Sub-ID models:

Si:xe =9 (£, KO + g, 4)
Sy xix = (e E%1 + . )

The parameter sets @ and & in Sub-ID models (4)
and (5) contain all the parameters to be estimated. The
parameter £ in ¢(&, k) and the parameter vector § in
¥ (B) are the associate terms between these two Sub-
ID models. Decomposing the identification model in
(2) or (3) into the above fictitious subsystems, we can
obtain a hierarchical structure which is demonstrated
in Fig. 1.
Define two criterion functions

1 T 2
11(@) == Slu — ¢ (6. OO, (6)

1
1) = Sl =y (e Extp2, 7
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Computing the gradients of J; (@) and J> (), we have

grad[J1 ()] = 3’;;@) = —$(&. blx — 9. DO,
erad[ (6] = a’;?
= xl%—l'ﬁ(ﬂ)e_éx’g*] [x1.x — v (Be 1]
— Xy (Be [y — X
—y(Bre ]
= -0 ¢ ¢ ) — XFa — yr(Bye 5%1]
=0T & blx — 9" (€. O],
where
AP(E, k
L
=[0], —x? e i XTI e R2".

Let® r and ék signify the estimates of @ and £ attime k,
1.k and wo  represent the step-sizes to be given later.
Employing the negative gradient search, we have:

O, = 6, 1—M1kgrad[11(@k D]

= O 1 + 11k E O — ¢"E O], (8)
E =& 1 — poxgrad[Jr (& 1)]

= &1 + 12407 Eim1 D —9T k1, b O

€))

The following finds the optimal step-sizes 1 and
H2.k. One method is to apply the one-dimensional
search, that is, to solve the optimization problems

Mmm JUO_1 — i rgrad[J1 (O]},
1.k=

umm JalEi—1 — poxerad[Ja (G-}
2,k

Remark 1 The one-dimensional search method is a
fundamental method of finding the optimal step-size in
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the minimization problem. The key idea is to determine
the negative gradient direction (i.e., the direction where
the criterion function descends fastest) and to compute
the step-size, which makes the criterion function min-
imal, by the one-dimensional search of the negative
gradient direction.

For the sake of convenience, we define the innova-
tions ey x and e x as

erpi=xx — @1 (E Op_| €R, (10)
e i=xx — ¢ (E—1, O e R. (11)

Substituting @ = O, into (6) gives

1
gl ] =10k = xk — T (£, 0O

1 R
=5ln - T (E O[Ot + 1k, Ker 11

1 “
=5lw - O (E Okt — w1 kllPE, K)IPer 1)

1
=5 lerk = 1kl ol%er )

1 2
== niloE. B et ;.

In order to make J; [é x] minimum, we take the optimal
step-size (i k as

1

. 12
o, k)2 (12)

M1k =

To avoid the denominator being zero, the above equa-
tion can be modified to

1

L+ llpE OII> (1

M1k =

Substituting (12) or (13) into (8), we obtain the gain
vector II;S((;,’kk))IIZ or g +|‘|’3(;2/2)||2.‘Neither of these two
gain vectors approaches zero with increasing k. From
(8), we can see that when ék_l is close to @, the large
gain vector 1 k@ (&, k) will make 2) r deviate from @.
To address this problem, we let the step-size 11 x tend

to zero with increasing k. Therefore, (i1 x is taken as

1

Kk =",
1k

rig =rig—1 + 19E b2 (14)

Similarly, substituting & = ék into (7) gives

olparl = hl&] = —[X1,k - 1/f(f3)e_§"x’%*‘]2
%[xk — XJo — y (B)e -1
1
=5l - o & O

Plugging the first-order Taylor expansion of ¢ (&, k) at
& = &,_ into the above equation, we have

1 ~
gluail =2 — (@7 (&1, k)

+1¢' Gt 1T E — & 1)
+ o0& — &-11O)?

1 ~
= S - [T (€1, k)

10 Gro1, 1 12O Er—1, k)ea s ]
+ o0& — &-1)10)?

1 s
= 5l - ¢ (-1, 0O

¢ E—1, )1 (1124 OT P (Er_1, k)er 1 1O
+ o — &)

1 Tt 2

= 5leak = P2,k 1© @ (Ek—1, k) ["e2 i
+0(§k —&_ )P

= —[1 — 2k 01 Gr-1. D713
+olé — &)

The optimal @y can be obtained by minimizing
g2[u2 k], i.e., by solving the equation

1 — woxl@T¢ Ei, O = 0.

Thus, the step-size p2 x can be chosen as

1
10T Ex—1, k)12

M2,k =

Similarly, considering the stability of the identification
algorithm, the above equation can be modified to

1
M2k = —,
.k
rok = rop—1 + 10T E—1, )% (15)

@ Springer
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Plugging (10), (14) into (8), and (11), (15) into (9), we
obtain the following recursive relations:

~ ~ 1

Or=0;_1+ EM, kel k, (16)
ek =xk — ¢ KOy, (17)
rix = ris1 + |9E )% (18)
~ ~ 1 ~

& =&+ EQTW(Sk—l, k)es k., 19)
ek =xk — ¢ (Ek_1,5)O, (20)
rok = rog—1 + 10T E—1, b)|I>. (21)

Here, a difficulty arises. Since the parameter sets @
and &, existing in the right-hand sides of (16)—(21), are
to be estimated later, the algorithm in (16)—(21) can-
not be realized. Inspired by the hierarchical identifica-
tion principle, we replace the unknown parameters & in
(16)—(18) and O in (19)—(21) with the estimates ék_l
and é:)k. It follows that

O =01+ iqﬁ(ékl, ket i, (22)
etk =xc— ¢ E1. 0O, (23)
ik =rie—1 + loE—1. b7, (24)
¢ 1,k = [X], e S xTT, (25)
Xi= [Xk—1s Xk—2, - s Xkon] (26)
O =&}, B, 1", 27)
Beo=E1 + éézw(ék_l,k)ez,k, (28)
2 = xe — T Em1, 0O, (29)
Fax = rai + 108 E 1, I, (30)
¢ E 1 k) =07, —x2_ e St xTIT, (31)

The above computational process forms the H-SG algo-
rithm for the ExpAR model.

The process of computing Oy and & by the H-SG
algorithm is exhibited in the following list.

1. Toinitialize, letk = 1,00 = [&2, By 1T = 12u/po.
é’() = 1/po, po = 10°, ri,0 = 1land rpo =1, give
an error tolerance n > 0.

2. Collect the measurement data xi, form the informa-
tion vectors X and ¢(§k,1 , k) by (26) and (25).

3. Compute the reciprocal of the step-size r1 x by (24)
and the innovation ej ; by (23).

4. Update the parameter estimation vector o by (22),
and read out &z and ﬁ ¢ from 2) ¢ in (27).
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5. Form the derivative of qS(ék_], k) with respect to
&1 by 31).

6. Compute the reciprocal of the step-size r; i by (30)
and the innovation e i by (29).

7. Update the parameter estimate Ex by (28).

8. Compare {O, &} with {@)_1, &1 }: if |O) —
ék_1|| + ||§k — é‘k_1|| > 7§, increase k by 1 and
return to Step 2; otherwise, terminate this compu-
tational process.

The H-SG algorithm in (22)-(31) estimates the
parameter sets @ and £ in an interactive way. The inno-
vations e x and e x in (23) and (29) are scalars. In order
to make the most of the information, we derive an inter-
active multi-innovation parameter estimation method
in the next section.

4 The hierarchical multi-innovation stochastic
gradient algorithm

The innovation is the useful information which can
improve the parameter and state estimation accu-
racy. The multi-innovation identification is the innova-
tion expansion based identification [21]. Applying the
multi-innovation identification theory, we expand the
scalar innovations e ; and ez x in (23) and (29), and
develop an H-MISG algorithm for the ExpAR model
in this section.

Let/ denote the innovation length. Expand the scalar
innovations in (23) and (29) into the /-dimensional vec-
tors:

Xk _¢T(A§k—17k)ék—Al
X1 — T Er1. k= DO 1
E () = . e R,
| i1 — T Er k= 1+ DO
i Xk — ¢T(A§k71,k)ék .
-1 = ¢ 1.k = DO l
Ex(l) == . eR.
| kg1 — @ G k— 1+ 1Oy

Define the following stacked vector and matrix:

Xk

Xk—1 .
X() = _ eR,

Xk—1+1
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¢ (&1, k)

. ¢ G k— 1)
D, &) = ) e RGXI

¢ E1, k—1+1)

Then, the innovation vectors can be equivalently trans-
formed into

Ei)=X(1)— 71, &0,
Ex() = X(I) — 071, &-1)6.

Since Ei(1) = ey, P, &—1) = ¢(E—1,k) and
X () = x¢ forl = 1, Eq. (22) can be written as

A A 1 ~

O =0 + Eq’(l, E—1)E1(D).
Similarly, Eq. (28) can be transformed into
A " I ~T_, &

&k = &1 + E@k¢ (, &) Ex(D),

where

d'(, ék_l) = [¢/(§k—l, k), ¢/(§k—1, k—1).
""¢/(ék71,k — [+ 1)] e ROV

In summary, the H-MISG algorithm for the ExpAR
model can be derived as follows:

~ ~ 1 ~

O1 =01 +-— (& DEID), (32)
Ei()=X(1)— @ (1,5 101, (33)
rix = ris—1 + l6E—1, b (34)

X(I) = [Xk—15 Xk—2s -+ -, Xp—g 4117, (35)
S E ) =[¢pE1.h), dE_1.k—1),

e @G k= 1+ D], (36)
$E 1, k) = [XT, e S XTI, (37)
Xp=[xtk—1),x(k—=2),....,xtk —m]", (38)
O =&, B, (39)
Bo=F i+ ééffb’(l, E 1) Ea (D), (40)
Ex()=X(1) — ®7(1. &1 Oy, (1)
Fak = ra 1 + 10, E 1, 012, 42)
¢ 1, k) = [0F, —x7_ e Sk xTT, 3)
@' (1, &) = [¢' (k1. b). ¢/ k-1, k — 1),

e @' G, k= 1+ D1 (44)

When [ = 1, the H-MISG degenerates into the H-SG
algorithm.

The H-MISG algorithm in (32)—(44) can be imple-
mented by the following steps.

1. Set the innovation length / and initialize: letk = 1,

0, = (4], ﬁg]T = 12,/ po. & = 1/po, po = 10°,
ri,0 = 1 and rp o = 1, give an error tolerance n >
0.

2. Collect the measurement data x, form the stacked
information vector X (/) by (35), the information
vectors X and qS(é‘k_l, k) by (38) and (37), and
@ (1, &) by (36).

3. Compute the reciprocal of the step-size r; i by (34)
and the innovation vector E (/) by (33).

4. Update the parameter estimation vector 2) by (32),
and read out a; and [9 « from (39).

5. Form Athe derivative of ¢(§k,1 ,k) by (43), and
@'(l, & 1) by (44).

6. Compute the reciprocal of the step-size r; by (42)
and the innovation vector E» (/) by (41).

7. Update the parameter estimate & by (40).

8. Compare {O, &} with {@_1, &_1}: if @) —
Oi_1]l + ll& — &—1]| > n, increase k by 1 and
return to Step 2; otherwise, stop this computational
process.

Remark 2 In order to obtain more accurate parameter
estimates but not increase the computational cost of the
H-MISG algorithm, we introduce the forgetting factors
(FF) A1 and A; into (34) and (42):

Fix=Mrie—1 + 19E—1, DI>, 0<i <1, 45)

~T N
Fok = Arak—1 + 10, Gt D)7, 0 < < 1.
(46)

Replacing (34) and (42) in the H-MISG algorithm with
(45) and (46), we obtain the variant of the H-MISG,
i.e., the FF-H-MISG algorithm for the ExpAR model.
When A; = 1and A» = 1, the FF-H-MISG degenerates
into the H-MISG algorithm.

Remark 3 Before using the proposed algorithms to
identify the ExpAR model, we need to determine the
order from input-output data by using the order estima-
tion methods, such as the orthogonalization procedure
and the correlation analysis in [22].

At each recursion, the H-SG algorithm involves the
current measurement data and innovation, the H-MISG

@ Springer
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Table 2 The H-SG estimates and errors (o2 = 0.20%)

k o o Bi B2 & 8 (%)
100 0.23837 0.24173 0.23671 0.23995 —0.00786 92.65856
200 0.24113 0.24281 0.23950 0.24102 —0.00885 92.60908
500 0.24379 0.24329 0.24217 0.24145 —0.00850 92.54419
1000 0.24513 0.24309 0.24350 0.24120 —0.00738 92.49927
2000 0.24640 0.24283 0.24477 0.24090 —0.00610 92.45321
3000 0.24725 0.24263 0.24562 0.24068 —0.00538 92.42506
True values 1.25000 —0.28000 2.00000 1.85000 2.30000

Table 3 The H-MISG estimates and errors (62 = 0.20%, [ = 5)

k o o Bi B2 3 8 (%)
100 0.48056 0.44219 1.12466 1.13314 1.54026 45.49540
200 0.51411 0.45249 1.12335 1.13063 1.54783 45.17986
500 0.52195 0.43228 1.12051 1.12670 1.58769 44.49311
1000 0.53864 0.42754 1.11815 1.12327 1.63957 43.76030
2000 0.54514 0.41393 1.11625 1.12065 1.72130 4277483
3000 0.55058 0.40671 1.11540 1.11946 1.76471 4226100
True values 1.25000 —0.28000 2.00000 1.85000 2.30000

or the FF-H-MISG algorithm applies all the current and
the preceding (I — 1) measurement data and innova-
tions, which makes the latter has a higher parameter
estimation accuracy.

rithm with [ = 5, A; = 0.91 and A, = 1.00 to iden-
tify this ExpAR model, respectively, the parameter esti-
mates and their errors are shown in Tables 2, 3 and 4,
the parameter estimation errors § := ||1§k — 3/l x
100% versus k are shown in Figure 2.

To illustrate the advantage of the proposed multi-
innovation identification algorithms, we fix the noise
variance o2 = 0.202, the forgetting factors A; = 0.91
and A, = 1.00, and adopt the FF-H-MISG algorithm to
identify this ExpAR model with the innovation length
I =5,1 =6and! = 7. The corresponding results are
demonstrated in Table 5 and Fig. 3.

To demonstrate how the performance of the pro-
posed FF-H-MISG algorithm depends on the forgetting
factors, we fix the noise variance o2 = 0.202, the inno-
vation length [ = 7, the forgetting factor 1, = 1.00,
and adopt the FF-H-MISG algorithm to identify this
ExpAR model with the forgetting factor A; = 0.91,
A1 = 0.97 and A1 = 0.99. The corresponding results
are exhibited in Table 6 and Fig. 4.

5 Example

Consider the following ExpAR time series
Xk = (O‘l + ﬂle_sxﬁl) Xk—1+ (0‘2 + ﬂze_gx’il) Xk—2
+-- 4+ (oen + ﬂne—éx,f,l) Xi—n + &k
= (125 + 20072301 )
+(-0.28+ 1857201 )y s 4

The parameters to be identified are

O = [ay, a2, B1, fo1"
= [1.25, —0.28, 2.00, 1.85]T, & =2.30.

In simulation, the variance of the white noise {&;} is
set to be o2, the measurement data length is taken as
L, = 3000. For simplicity, we define # := o7, E]T.

Taking o2 = 0.20? and using the H-SG algorithm,
H-MISG algorithm with / = 5 and FF-H-MISG algo-
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To show the influence of the noise level on the
proposed FF-H-MISG algorithm, we fix the innova-
tion length I = 7, the forgetting factors A1 = 0.91,
Az = 1.00, and adopt the FF-H-MISG algorithm to
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Table 4 The FE-H-MISG estimates and errors (02 = 0.20%,1 = 5, 41 = 0.91, A, = 1.00)
k o o Bi B2 & 3 (%)
100 0.49534 0.27397 1.13043 1.13351 1.53723 43.59349
200 0.69813 0.22973 1.13034 1.12075 1.53837 41.16763
500 0.99277 0.03144 1.12374 1.09265 1.53952 38.09418
1000 1.16897 —0.17448 1.13851 1.08685 1.52340 36.81494
2000 1.28966 —0.33550 1.20027 1.14395 1.48566 35.47039
3000 1.31692 —0.39613 1.26166 1.20153 1.45519 34.38786
True values 1.25000 —0.28000 2.00000 1.85000 2.30000
Fig. 2 The H-SG, H-MISG 1F i i i i i b
and FF-H-MISG estimation H-SG
errors 8 versus k 09k j
0.8 i
0.7 -
(2=}
06 i
05 -
H-MISG, /=5
04 't__FF—H—MISG, I=5,% =091,%,=100 T
—*\M
03 1 1 1 1 1
0 500 1000 1500 2000 2500 3000
k

identify this ExpAR model with the noise variance
02 =0.20%, 02 = 0.23% and 0> = 0.26%. The results
are shown in Table 7 and Fig. 5.

From Tables 2, 3, 4, 5, 6 and 7 and Figs. 2, 3, 4 and
5, we draw the following conclusions.

e The parameter estimation errors decrease as the
data length k increases for all the algorithms pro-
posed in this paper. The FF-H-MISG algorithm has
the highest parameter estimation accuracy among
these three algorithms—see Tables 2, 3, 4 and
Fig. 2.

e The parameter estimation accuracy becomes higher
with the innovation length [/ increasing and the
forgetting factor decreasing for the FF-H-MISG
algorithm—see Tables 5, 6 and Figs. 3, 4.

e The estimation errors of the FF-H-MISG algorithm
tend to zero with the decreasing of noise levels—
see Table 7 and Fig. 5.

e The proposed FF-H-MISG algorithm with appro-
priate innovation length and forgetting factors is
effective toidentify the nonlinear ExpAR process—
see Tables 5, 6 and Figs. 3, 4.

For the model validation, we use L, = 200 observa-
tions fromk = L.+ 1tok = L.+ L, and the predicted
model by the FF-H-MISG algorithm with A; = 0.91,
A2 = 1.00 and I = 7. The predicted data X and the
measurement data x; are plotted in Fig. 6. To evaluate
the prediction performance, we define and compute the
mean square error (MSE)

1/2

= 0.19635.

1 Le+Ly
o § s 2
MSE = L_r (Xk )Ck)
k=L,+1

From Fig. 6, we can see that the predicted data is close
to the measurement data, which means the predicted
model can reveal the dynamics of this ExpAR process.
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Table 5 The FE-H-MISG estimates and errors (02 = 0.20%, A; = 0.91, 1, = 1.00)
l k o a B B2 H 8 (%)
5 100 0.49534 0.27397 1.13043 1.13351 1.53723 43.59349
200 0.69813 0.22973 1.13034 1.12075 1.53837 41.16763
500 0.99277 0.03144 1.12374 1.09265 1.53952 38.09418
1000 1.16897 —0.17448 1.13851 1.08685 1.52340 36.81494
2000 1.28966 —0.33550 1.20027 1.14395 1.48566 35.47039
3000 1.31692 —0.39613 1.26166 1.20153 1.45519 34.38786
6 100 0.53946 0.26806 1.36935 1.36071 1.92855 33.18161
200 0.73563 0.20753 1.37115 1.35494 1.92911 29.86680
500 1.02242 0.02122 1.37425 1.34767 1.92839 25.37927
1000 1.16564 —0.15212 1.39993 1.36572 1.91305 23.12858
2000 1.23194 —0.27820 1.48535 1.45777 1.87609 20.42404
3000 1.24631 —0.31193 1.57122 1.54571 1.84419 18.38652
7 100 0.54603 0.29172 1.60914 1.61667 236236 26.83406
200 0.73972 0.20569 1.61202 1.61533 236188 22.17354
500 1.03169 0.02289 1.62143 1.62111 2.35862 15.35780
1000 1.14722 —0.12360 1.65573 1.65741 2.34266 11.57955
2000 1.18572 —0.20994 1.75055 1.76906 230523 7.36433
3000 1.18065 —0.23155 1.84794 1.87601 227055 4.70866
True values 1.25000 —0.28000 2.00000 1.85000 2.30000
Fig. 3 The FE-H-MISG 0.6F ' ' ' 7
estimation errors § versus k
(02 =0.20%, 1 =091, osl 1

A2 = 1.00)

1000

1500

k

2500

3000

6 Conclusions
Applying the hierarchical identification principle and

the multi-innovation identification theory, this paper
derives an H-SG algorithm and an H-MISG algorithm

@ Springer

for the ExpAR model. For the sake of the improved esti-
mation accuracy, two forgetting factors are introduced
into the H-MISG, and a variant of the H-MISG, i.e., the
FF-H-MISG algorithm is presented in this work. The
simulation results demonstrate that the FF-H-MISG
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Table 6 The FE-H-MISG estimates and errors (o2 = 0.202, [ = 7, Ao = 1.00)

A k o a Bi B2 & 3 (%)
091 100 0.54603 0.29172 1.60914 1.61667 2.36236 26.83406
200 0.73972 0.20569 1.61202 1.61533 2.36188 22.17354
500 1.03169 0.02289 1.62143 1.62111 2.35862 15.35780
1000 1.14722 —0.12360 1.65573 1.65741 2.34266 11.57955
2000 1.18572 —0.20994 1.75055 1.76906 2.30523 7.36433
3000 1.18065 —0.23155 1.84794 1.87601 2.27055 4.70866
0.97 100 0.50182 0.39921 1.60333 1.61150 2.35988 29.37939
200 0.59836 0.37113 1.60352 1.60999 2.35995 27.26498
500 0.75346 0.24373 1.60370 1.60784 2.35917 22.70653
1000 0.91250 0.07740 1.60520 1.60535 2.35349 17.90619
2000 1.08223 —0.08715 1.62537 1.62689 2.32268 13.35437
3000 1.15777 —0.18392 1.65491 1.65908 2.28378 10.99554
0.99 100 0.49891 0.44383 1.60125 1.60958 2.35939 30.19217
200 0.54791 0.43635 1.60106 1.60860 2.36015 29.23940
500 0.59940 0.36804 1.60001 1.60648 2.36314 27.25883
1000 0.68393 0.28638 1.59785 1.60200 2.36847 24.60749
2000 0.81932 0.17078 1.59786 1.60014 2.36203 20.72777
3000 0.93413 0.05726 1.60147 1.60275 2.34243 17.41429
True values 1.25000 —0.28000 2.00000 1.85000 2.30000
Fig. 4 The FF-H-MISG 0.35F i i i i i B

estimation errors § versus k
(62=020%1=1,

A2 = 1.00) 03

0.25

0.05

0 500 1000 1500 2000 2500 3000
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Table 7 The FF-H-MISG estimates and errors (I = 7, .1 = 0.91, A, = 1.00)

o? k o o Bi B2 § 3 (%)
0.20? 100 0.54603 0.29172 1.60914 1.61667 2.36236 26.83406
200 0.73972 0.20569 1.61202 1.61533 2.36188 22.17354
500 1.03169 0.02289 1.62143 1.62111 2.35862 15.35780
1000 1.14722 —0.12360 1.65573 1.65741 2.34266 11.57955
2000 1.18572 —0.20994 1.75055 1.76906 2.30523 7.36433
3000 1.18065 —0.23155 1.84794 1.87601 2.27055 4.70866
0.232 100 0.56746 0.24224 1.59956 1.60044 1.97636 27.25173
200 0.80713 0.13856 1.59557 1.58461 1.97839 22.22129
500 1.13045 —0.08102 1.58406 1.55834 1.98164 16.96918
1000 1.22336 —0.21425 1.59756 1.56192 1.97465 15.74527
2000 1.26659 —0.29252 1.66707 1.63962 1.95573 13.81780
3000 1.25020 —0.30111 1.73947 1.71097 1.94113 12.27984
0.262 100 0.59214 0.19257 1.58259 1.57361 1.67381 30.08145
200 0.87582 0.07124 1.56283 1.52826 1.67857 25.64775
500 1.21452 —0.17371 1.51219 1.44412 1.68690 23.47748
1000 1.27296 —0.28121 1.49179 1.40197 1.68458 24.16677
2000 1.31721 —0.34485 1.51491 1.42746 1.67419 23.81738
3000 1.28663 —0.33779 1.54898 1.45054 1.66876 23.10347
True values 1.25000 —0.28000 2.00000 1.85000 2.30000
Fig. 5 The FF-H-MISG 0.4 ! ! ! ! ! R
estimation errors § versus k
(=17, =091, 0.35
Ay = 1.00)
0.3
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w
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algorithm with appropriate innovation length and for- 6. Chen, G.Y., Gan, M., Chen, G.L.: Generalized exponential
getting factors is effective to identify the ExpAR model. autoregressive models for nonlinear time series: stationarity,
Jointing other methods [23] such as the neural network estimation and applications. Inf. Sci. 438, 46-57 (2018)

g . 7. Zhou, Z.P., Liu, X.F.: State and fault estimation of sandwich
[24,25] and the kernel collocation [26,27], the algo- systems with hysteresis. Int. J. Robust Nonlinear Control
rithms proposed in this paper can be exploited to study 28(13), 3974-3986 (2018)
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