
Nonlinear Dyn (2019) 95:2079–2092
https://doi.org/10.1007/s11071-018-4677-0

ORIGINAL PAPER

Modeling a nonlinear process using the exponential
autoregressive time series model

Huan Xu · Feng Ding · Erfu Yang

Received: 24 June 2018 / Accepted: 21 November 2018 / Published online: 6 December 2018
© Springer Nature B.V. 2018

Abstract The parameter estimation methods for the
nonlinear exponential autoregressive (ExpAR) model
are investigated in this work. Combining the hierar-
chical identification principle with the negative gradi-
ent search, we derive a hierarchical stochastic gradi-
ent algorithm. Inspired by the multi-innovation identi-
fication theory, we develop a hierarchical-based multi-
innovation identification algorithm for the ExpAR
model. Introducing two forgetting factors, a variant
of the hierarchical-based multi-innovation identifica-
tion algorithm is proposed. Moreover, to compare and
demonstrate the serviceability of these algorithms, a
nonlinear ExpAR process is taken as an example in the
simulation.
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1 Introduction

Nonlinear time series models can reveal nonlinear fea-
tures of many practical processes, and they are widely
used in finance, ecology and some other fields [1]. The
exponential autoregressive (ExpAR)model [2] is a sig-
nificant kind of nonlinear time series models. In the
early days, the ExpAR model is applied to the sta-
tistical analysis of the Canadian lynx data [3,4], and
then it shows the appropriateness in describing certain
nonlinear behaviors, such as amplitude-dependent fre-
quency, jump phenomena and limit cycle, and in con-
ducting accurate multistep-ahead predictions [5]. In
recent years, a good deal of publications are devoted
to studying the stationarity, estimation and applica-
tion of the ExpAR model. For example, Chen et al.
discussed the stationary conditions of several general-
ized ExpAR models, developed a variable projection
based estimation algorithm, and adopted the general-
ized ExpAR models to model and predict the monthly
mean thickness ozone column [6].

Analyzing and controlling a nonlinear time series
process relies on an appropriate dynamical model. Sys-
tem identification is a common tool to construct the
mathematical models of dynamical systems, parameter
estimation is generating the unknown system parame-
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ters via a set of observations. System identification and
parameter estimation are widely used in many areas
[7–9]. Many identification methods such as the max-
imum likelihood [10], the genetic algorithm [11], the
blind identification [12] and the subspace identification
[13] have been developed for decades. The gradient-
based methods are a class of fundamental system iden-
tificationmethods. Combiningwith recursive and itera-
tive techniques, the gradient-basedmethods can be pro-
vided for identifying many kinds of systems. However,
the gradient-based methods have poor parameter esti-
mation accuracies. By introducing the forgetting fac-
tor, some variants of the gradient-based identification
algorithms are derived, which have improved parame-
ter estimation accuracies. For instance, Chen and Jiang
developed a gradient-based identification method with
several forgetting factors for nonlinear two-variable
difference systems [14].

In the area of system identification, many tech-
niques have been exploited to improve the identifica-
tion results. For example, the hierarchical identification
has been developed as a significant branch of system
identification [15]. Recently, a hierarchical gradient-
based iterative algorithm was used to simultaneously
estimate the unknown amplitudes and angular frequen-
cies of multi-frequency signals [16]. In addition, the
multi-innovation identification has shown the effective-
ness in nonlinear system identification [17].By expand-
ing a scalar innovation into a multi-dimensional vec-
tor, a multi-innovation stochastic gradient (SG) algo-
rithm was derived for Wiener–Hammerstein systems
with backlash [18]; a multi-innovation fractional order
SG algorithm was developed for Hammerstein non-
linear ARMAX systems [19]. However, there is few
research on the nonlinear time series model identifica-
tion using these novel identification techniques.

This communique investigates the recursive identi-
fication algorithms for the ExpARmodel. Applying the
hierarchical identification principle, the ExpAR model
is decomposed into two sub-identification (Sub-ID)
models, one of which contains the unknown parameter
vector of the linear subsystem, and the other contains
the unknown parameter of the nonlinear part. With the
negative gradient search, two unknown parameter sets
are estimated interactively. In order to make the most
of the information, the scalar innovations are expanded
into innovation vectors. Moreover, two forgetting fac-
tors are introduced into themulti-innovation algorithm,
so that we can present a new recursive identification

algorithm with improved parameter estimation accu-
racy. In brief, we list the following contributions pro-
vided in this paper.

• Considering the difficulty of the nonlinear optimal
problem arising in identifying the ExpAR model,
we combine the hierarchical identification principle
with the negative gradient search so as to derive a
hierarchical stochastic gradient (H-SG) algorithm
for the ExpAR model.

• Using the multi-innovation identification theory,
a hierarchical multi-innovation stochastic gradient
(H-MISG) algorithm is presented for the ExpAR
model. Introducing two forgetting factors, we
obtain a modified H-MISG algorithm.

• Comparing the parameter estimation accuracies of
the proposed hierarchical algorithms, we find that
the modified version of the H-MISG algorithm has
improved parameter estimation accuracy and can
be effectively used to identify the ExpAR model.

2 Problem description

Some notations used throughout this paper are first
introduced in Table 1.

Given a time series {xk, xk−1, xk−2, . . .}, an ExpAR
model can be expressed as

xk =
(
α1 + β1e

−ξ x2k−1

)
xk−1

+
(
α2 + β2e

−ξ x2k−1

)
xk−2 + · · ·

+
(
αn + βne

−ξ x2k−1

)
xk−n + εk, (1)

where εk is a white noise with zero mean, n denotes the
system degree, αi , βi and ξ are the model parameters
to be estimated.

When the parameters βi = 0, i = 1, 2, . . . , n,
Eq. (1) reduces to an autoregressive (AR) model which
has no nonlinear dynamics.

The form in (1) is the classic ExpAR model, some
modified versions have been presented. For instance,
in order to give a more sophisticated specification of
the dynamics of the characteristic roots of AR models,
Ozaki derived a variant of the ExpAR model in [3]
using the Hermite type polynomials:

xk =
n∑

i=1

[
αi +

(
βi0 +

mi∑
j=1

βi j x
j
k−1

)
e−ξ x2k−1

]
xk−i + εk .
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Table 1 The notations used
throughout this paper

Item Notations Descriptions

1 xk ∈ R Measurement data

2 εk ∈ R Stochastic white noise

3 α ∈ R
n , β ∈ R

n , Θ ∈ R
2n , ξ ∈ R Parameters to be estimated

4 α̂k ∈ R
n , β̂k ∈ R

n , Θ̂k ∈ R
2n , ξ̂k ∈ R Parameter estimates at time k

5 Xk ∈ R
n , φ(ξ, k) ∈ R

2n Information vectors

6 ψ(β) ∈ R Information item

7 x1,k ∈ R Intermediate variable

8 φ′(ξ, k) ∈ R
2n Derivative of φ(ξ, k)

9 e1,k ∈ R, e2,k ∈ R Innovations

10 μ1,k ∈ R, μ2,k ∈ R Step-sizes

11 r1,k ∈ R, r2,k ∈ R Reciprocals of the step-sizes

12 E1(l) ∈ R
l , E2(l) ∈ R

l Innovation vectors

13 X(l) ∈ R
l Stacked information vector

14 Φ(l, ξ̂k−1) ∈ R
(2n)×l Stacked information matrix

15 Φ ′(l, ξ̂k−1) ∈ R
(2n)×l Derivative of Φ(l, ξ̂k−1)

Introducing a time-delay d and a scalar parameter ζ ,
Teräsvirta developed a different variant of the ExpAR
model in [4]:

xk =
[
α0 + β0e

−ξ(xk−d−ζ )2
]

+
n∑

i=1

[
αi + βie

−ξ(xk−d−ζ )2
]
xk−i + εk .

Some other generalized ExpAR models were sum-
marized in [6]. After parametrization, we can derive
the corresponding identification models, which have
different parameter and information vectors, for the
ExpAR family. This paper copes with the recursive
identification for the classic ExpAR model. The pro-
posed hierarchical algorithms are also appropriate for
other ExpAR models.

Assume that the degree n is known, the data xk is
measurable. The initial values are taken as xk = 0 and
εk = 0 for t ≤ 0.

It is obvious that xk is linear with respect to the
parameters αi and βi , and is nonlinear with respect to
the parameter ξ . Define the parameter vectors of the
linear subsystem

α := [α1, α2, . . . , αn]T ∈ R
n,

β := [β1, β2, . . . , βn]T ∈ R
n,

and the information vector

Xk := [xk−1, xk−2, . . . , xk−n]T ∈ R
n .

Then, Eq. (1) can be transformed into

xk =
n∑

i=1

αi xk−i + e−ξ x2k−1

n∑
i=1

βi xk−i + εk

= XT
k α + e−ξ x2k−1XT

k β + εk . (2)

Furthermore, define the following vectors:

Θ := [αT,βT]T ∈ R
2n,

φ(ξ, k) := [XT
k , e−ξ x2k−1XT

k ]T ∈ R
2n .

Then, Eq. (2) can be equivalently transformed into the
identification model

xk = φT(ξ, k)Θ + εk . (3)

Since the unknown parameter of the nonlinear sub-
system ξ exists in φ(ξ, k), the identification problem
becomes a complex nonlinear optimization problem
and the least-squaresmethod cannot be used for param-
eter estimation. The previous work aims to explore
new recursive identification methods for the ExpAR
model.

3 The hierarchical stochastic gradient algorithm

Hierarchical identification is the decomposition based
identification. The key idea is to decompose the
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Fig. 1 The hierarchical
structure of the
identification models for the
ExpAR model

identification model into several subsystems, such that
the scale of the optimization problem becomes small
[20]. In this section, by the hierarchical identification
principle, the ExpAR model is decomposed into two
subsystems, one of which contains Θ , and the other
contains ξ , both these two parameter sets are to be
estimated. In addition, the negative gradient search is
widely adopted to deal with some optimization prob-
lems and to determine the extreme point of the objec-
tive function. Applying the negative gradient search, an
H-SG algorithm is proposed for the ExpAR model.

Define the information item ψ(β) and the interme-
diate variable x1,k as

ψ(β) := XT
k β ∈ R,

x1,k := xk − XT
k α ∈ R.

From (2), we can see that the ExpAR model is decom-
posed into these two Sub-ID models:

S1 : xk = φT(ξ, k)Θ + εk, (4)

S2 : x1,k = ψ(β)e−ξ x2k−1 + εk . (5)

The parameter sets Θ and ξ in Sub-ID models (4)
and (5) contain all the parameters to be estimated. The
parameter ξ in φ(ξ, k) and the parameter vector β in
ψ(β) are the associate terms between these two Sub-
ID models. Decomposing the identification model in
(2) or (3) into the above fictitious subsystems, we can
obtain a hierarchical structure which is demonstrated
in Fig. 1.

Define two criterion functions

J1(Θ) := 1

2
[xk − φT(ξ, k)Θ]2, (6)

J2(ξ) := 1

2
[x1,k − ψ(β)e−ξ x2k−1]2. (7)

Computing the gradients of J1(Θ) and J2(ξ), we have

grad[J1(Θ)] = ∂ J1(Θ)

∂Θ
= −φ(ξ, k)[xk − φT(ξ, k)Θ],

grad[J2(ξ)] = ∂ J2(ξ)

∂ξ

= x2k−1ψ(β)e−ξ x2k−1 [x1,k − ψ(β)e−ξ x2k−1 ]
= x2k−1ψ(β)e−ξ x2k−1 [xk − XT

k α

−ψ(β)e−ξ x2k−1 ]
= −ΘTφ′(ξ, k)[xk − XT

k α − ψ(β)e−ξ x2k−1 ]
= −ΘTφ′(ξ, k)[xk − φT(ξ, k)Θ],

where

φ′(ξ, k) := ∂φ(ξ, k)

∂ξ

=[0Tn ,−x2k−1e
−ξ x2k−1XT

k ]T ∈ R
2n .

Let Θ̂k and ξ̂k signify the estimates ofΘ and ξ at time k,
μ1,k and μ2,k represent the step-sizes to be given later.
Employing the negative gradient search, we have:

Θ̂k = Θ̂k−1 − μ1,kgrad[J1(Θ̂k−1)]
= Θ̂k−1 + μ1,kφ(ξ, k)[xk − φT(ξ, k)Θ̂k−1], (8)

ξ̂k = ξ̂k−1 − μ2,kgrad[J2(ξ̂k−1)]
= ξ̂k−1 + μ2,kΘ

Tφ′(ξ̂k−1, k)[xk−φT(ξ̂k−1, k)Θ].
(9)

The following finds the optimal step-sizes μ1,k and
μ2,k . One method is to apply the one-dimensional
search, that is, to solve the optimization problems

min
μ1,k≥0

J1{Θ̂k−1 − μ1,kgrad[J1(Θ̂k−1)]},

min
μ2,k≥0

J2{ξ̂k−1 − μ2,kgrad[J2(ξ̂k−1)]}.

Remark 1 The one-dimensional search method is a
fundamental method of finding the optimal step-size in
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theminimization problem. The key idea is to determine
the negative gradient direction (i.e., the directionwhere
the criterion function descends fastest) and to compute
the step-size, which makes the criterion function min-
imal, by the one-dimensional search of the negative
gradient direction.

For the sake of convenience, we define the innova-
tions e1,k and e2,k as

e1,k := xk − φT(ξ, k)Θ̂k−1 ∈ R, (10)

e2,k := xk − φT(ξ̂k−1, k)Θ ∈ R. (11)

Substituting Θ = Θ̂k into (6) gives

g1[μ1,k ] := J1[Θ̂k ] = 1

2
[xk − φT(ξ, k)Θ̂k ]2

= 1

2
{xk − φT(ξ, k)[Θ̂k−1 + μ1,kφ(ξ, k)e1,k ]}2

= 1

2
{xk − φT(ξ, k)Θ̂k−1 − μ1,k‖φ(ξ, k)‖2e1,k}2

= 1

2
{e1,k − μ1,k‖φ(ξ, k)‖2e1,k}2

= 1

2
{1 − μ1,k‖φ(ξ, k)‖2}2e21,k .

In order tomake J1[Θ̂k]minimum,we take the optimal
step-size μ1,k as

μ1,k = 1

‖φ(ξ, k)‖2 . (12)

To avoid the denominator being zero, the above equa-
tion can be modified to

μ1,k = 1

1 + ‖φ(ξ, k)‖2 . (13)

Substituting (12) or (13) into (8), we obtain the gain
vector φ(ξ,k)

‖φ(ξ,k)‖2 or φ(ξ,k)
1+‖φ(ξ,k)‖2 . Neither of these two

gain vectors approaches zero with increasing k. From
(8), we can see that when Θ̂k−1 is close toΘ , the large
gain vector μ1,kφ(ξ, k) will make Θ̂k deviate from Θ .
To address this problem, we let the step-size μ1,k tend
to zero with increasing k. Therefore, μ1,k is taken as

μ1,k := 1

r1,k
,

r1,k = r1,k−1 + ‖φ(ξ, k)‖2. (14)

Similarly, substituting ξ = ξ̂k into (7) gives

g2[μ2,k] := J2[ξ̂k] = 1

2
[x1,k − ψ(β)e−ξ̂k x2k−1 ]2

= 1

2
[xk − XT

k α − ψ(β)e−ξ̂k x2k−1]2

= 1

2
[xk − φT(ξ̂k, k)Θ]2.

Plugging the first-order Taylor expansion of φ(ξ, k) at
ξ = ξ̂k−1 into the above equation, we have

g2[μ2,k] = 1

2
{xk − [φT(ξ̂k−1, k)

+[φ′(ξ̂k−1, k)]T(ξ̂k − ξ̂k−1)

+ o(ξ̂k − ξ̂k−1)]Θ}2

= 1

2
{xk − [φT(ξ̂k−1, k)

+[φ′(ξ̂k−1, k)]T[μ2,kΘ
Tφ′(ξ̂k−1, k)e2,k]

+ o(ξ̂k − ξ̂k−1)]Θ}2

= 1

2
[xk − φT(ξ̂k−1, k)Θ

−[φ′(ξ̂k−1, k)]T[μ2,kΘ
Tφ′(ξ̂k−1, k)e2,k]Θ

+ o(ξ̂k − ξ̂k−1)]2

= 1

2
[e2,k − μ2,k‖ΘTφ′(ξ̂k−1, k)‖2e2,k

+ o(ξ̂k − ξ̂k−1)]2

= 1

2
[1 − μ2,k‖ΘTφ′(ξ̂k−1, k)‖2]2e22,k

+ o(ξ̂k − ξ̂k−1)
2.

The optimal μ2,k can be obtained by minimizing
g2[μ2,k], i.e., by solving the equation

1 − μ2,k‖ΘTφ′(ξ̂k−1, k)‖2 = 0.

Thus, the step-size μ2,k can be chosen as

μ2,k = 1

‖ΘTφ′(ξ̂k−1, k)‖2
.

Similarly, considering the stability of the identification
algorithm, the above equation can be modified to

μ2,k := 1

r2,k
,

r2,k = r2,k−1 + ‖ΘTφ′(ξ̂k−1, k)‖2. (15)
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Plugging (10), (14) into (8), and (11), (15) into (9), we
obtain the following recursive relations:

Θ̂k = Θ̂k−1 + 1

r1,k
φ(ξ, k)e1,k, (16)

e1,k = xk − φT(ξ, k)Θ̂k−1, (17)

r1,k = r1,k−1 + ‖φ(ξ, k)‖2, (18)

ξ̂k = ξ̂k−1 + 1

r2,k
ΘTφ′(ξ̂k−1, k)e2,k, (19)

e2,k = xk − φT(ξ̂k−1, k)Θ, (20)

r2,k = r2,k−1 + ‖ΘTφ′(ξ̂k−1, k)‖2. (21)

Here, a difficulty arises. Since the parameter sets Θ

and ξ , existing in the right-hand sides of (16)–(21), are
to be estimated later, the algorithm in (16)–(21) can-
not be realized. Inspired by the hierarchical identifica-
tion principle, we replace the unknown parameters ξ in
(16)–(18) and Θ in (19)–(21) with the estimates ξ̂k−1

and Θ̂k . It follows that

Θ̂k = Θ̂k−1 + 1

r1,k
φ(ξ̂k−1, k)e1,k, (22)

e1,k = xk − φT(ξ̂k−1, k)Θ̂k−1, (23)

r1,k = r1,k−1 + ‖φ(ξ̂k−1, k)‖2, (24)

φ(ξ̂k−1, k) = [XT
k , e−ξ̂k−1x2k−1XT

k ]T, (25)

Xk = [xk−1, xk−2, . . . , xk−n]T, (26)

Θ̂k = [α̂T
k , β̂

T
k ]T, (27)

ξ̂k = ξ̂k−1 + 1

r2,k
Θ̂

T
k φ′(ξ̂k−1, k)e2,k, (28)

e2,k = xk − φT(ξ̂k−1, k)Θ̂k, (29)

r2,k = r2,k−1 + ‖Θ̂T
k φ′(ξ̂k−1, k)‖2, (30)

φ′(ξ̂k−1, k) = [0Tn ,−x2k−1e
−ξ̂k−1x2k−1XT

k ]T. (31)

The above computational process forms theH-SGalgo-
rithm for the ExpAR model.

The process of computing Θ̂k and ξ̂k by the H-SG
algorithm is exhibited in the following list.

1. To initialize, let k = 1, Θ̂0 = [α̂T
0 , β̂

T
0 ]T = 12n/p0,

ξ̂0 = 1/p0, p0 = 106, r1,0 = 1 and r2,0 = 1, give
an error tolerance η > 0.

2. Collect themeasurement data xk , form the informa-
tion vectors Xk and φ(ξ̂k−1, k) by (26) and (25).

3. Compute the reciprocal of the step-size r1,k by (24)
and the innovation e1,k by (23).

4. Update the parameter estimation vector Θ̂k by (22),
and read out α̂k and β̂k from Θ̂k in (27).

5. Form the derivative of φ(ξ̂k−1, k) with respect to
ξ̂k−1 by (31).

6. Compute the reciprocal of the step-size r2,k by (30)
and the innovation e2,k by (29).

7. Update the parameter estimate ξ̂k by (28).
8. Compare {Θ̂k, ξ̂k} with {Θ̂k−1, ξ̂k−1}: if ‖Θ̂k −

Θ̂k−1‖ + ‖ξ̂k − ξ̂k−1‖ > η, increase k by 1 and
return to Step 2; otherwise, terminate this compu-
tational process.

The H-SG algorithm in (22)–(31) estimates the
parameter setsΘ and ξ in an interactive way. The inno-
vations e1,k and e2,k in (23) and (29) are scalars. In order
tomake themost of the information, we derive an inter-
active multi-innovation parameter estimation method
in the next section.

4 The hierarchical multi-innovation stochastic
gradient algorithm

The innovation is the useful information which can
improve the parameter and state estimation accu-
racy. The multi-innovation identification is the innova-
tion expansion based identification [21]. Applying the
multi-innovation identification theory, we expand the
scalar innovations e1,k and e2,k in (23) and (29), and
develop an H-MISG algorithm for the ExpAR model
in this section.

Let l denote the innovation length. Expand the scalar
innovations in (23) and (29) into the l-dimensional vec-
tors:

E1(l) :=

⎡
⎢⎢⎢⎢⎣

xk − φT(ξ̂k−1, k)Θ̂k−1
xk−1 − φT(ξ̂k−1, k − 1)Θ̂k−1

...

xk−l+1 − φT(ξ̂k−1, k − l + 1)Θ̂k−1

⎤
⎥⎥⎥⎥⎦

∈ R
l ,

E2(l) :=

⎡
⎢⎢⎢⎢⎣

xk − φT(ξ̂k−1, k)Θ̂k
xk−1 − φT(ξ̂k−1, k − 1)Θ̂k

...

xk−l+1 − φT(ξ̂k−1, k − l + 1)Θ̂k

⎤
⎥⎥⎥⎥⎦

∈ R
l .

Define the following stacked vector and matrix:

X(l) :=

⎡
⎢⎢⎢⎣

xk
xk−1

...

xk−l+1

⎤
⎥⎥⎥⎦ ∈ R

l ,
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Φ(l, ξ̂k−1) :=

⎡
⎢⎢⎢⎣

φT(ξ̂k−1, k)
φT(ξ̂k−1, k − 1)

...

φT(ξ̂k−1, k − l + 1)

⎤
⎥⎥⎥⎦

T

∈ R
(2n)×l .

Then, the innovation vectors can be equivalently trans-
formed into

E1(l) = X(l) − ΦT(l, ξ̂k−1)Θ̂k−1,

E2(l) = X(l) − ΦT(l, ξ̂k−1)Θ̂k .

Since E1(l) = e1,k , Φ(l, ξ̂k−1) = φ(ξ̂k−1, k) and
X(l) = xk for l = 1, Eq. (22) can be written as

Θ̂k = Θ̂k−1 + 1

r1,k
Φ(l, ξ̂k−1)E1(l).

Similarly, Eq. (28) can be transformed into

ξ̂k = ξ̂k−1 + 1

r2,k
Θ̂

T
k Φ ′(l, ξ̂k−1)E2(l),

where

Φ ′(l, ξ̂k−1) := [φ′(ξ̂k−1, k),φ
′(ξ̂k−1, k − 1),

. . . ,φ′(ξ̂k−1, k − l + 1)] ∈ R
(2n)×l .

In summary, the H-MISG algorithm for the ExpAR
model can be derived as follows:

Θ̂k = Θ̂k−1 + 1

r1,k
Φ(l, ξ̂k−1)E1(l), (32)

E1(l) = X(l) − ΦT(l, ξ̂k−1)Θ̂k−1, (33)

r1,k = r1,k−1 + ‖φ(ξ̂k−1, k)‖2, (34)

X(l) = [xk−1, xk−2, . . . , xk−l+1]T, (35)

Φ(l, ξ̂k−1) = [φ(ξ̂k−1, k),φ(ξ̂k−1, k − 1),

. . . ,φ(ξ̂k−1, k − l + 1)], (36)

φ(ξ̂k−1, k) = [XT
k , e−ξ̂k−1x2k−1XT

k ]T, (37)

Xk = [x(k − 1), x(k − 2), . . . , x(k − n)]T, (38)

Θ̂k = [α̂T
k , β̂

T
k ]T, (39)

ξ̂k = ξ̂k−1 + 1

r2,k
Θ̂

T
k Φ ′(l, ξ̂k−1)E2(l), (40)

E2(l) = X(l) − ΦT(l, ξ̂k−1)Θ̂k, (41)

r2,k = r2,k−1 + ‖Θ̂T
k φ′(ξ̂k−1, k)‖2, (42)

φ′(ξ̂k−1, k) = [0Tn ,−x2k−1e
−ξ̂k−1x2k−1XT

k ]T, (43)

Φ ′(l, ξ̂k−1) = [φ′(ξ̂k−1, k),φ
′(ξ̂k−1, k − 1),

. . . ,φ′(ξ̂k−1, k − l + 1)]. (44)

When l = 1, the H-MISG degenerates into the H-SG
algorithm.

The H-MISG algorithm in (32)–(44) can be imple-
mented by the following steps.

1. Set the innovation length l and initialize: let k = 1,

Θ̂0 = [α̂T
0 , β̂

T
0 ]T = 12n/p0, ξ̂0 = 1/p0, p0 = 106,

r1,0 = 1 and r2,0 = 1, give an error tolerance η >

0.
2. Collect the measurement data xk , form the stacked

information vector X(l) by (35), the information
vectors Xk and φ(ξ̂k−1, k) by (38) and (37), and
Φ(l, ξ̂k−1) by (36).

3. Compute the reciprocal of the step-size r1,k by (34)
and the innovation vector E1(l) by (33).

4. Update the parameter estimation vector Θ̂k by (32),
and read out α̂k and β̂k from (39).

5. Form the derivative of φ(ξ̂k−1, k) by (43), and
Φ ′(l, ξ̂k−1) by (44).

6. Compute the reciprocal of the step-size r2,k by (42)
and the innovation vector E2(l) by (41).

7. Update the parameter estimate ξ̂k by (40).
8. Compare {Θ̂k, ξ̂k} with {Θ̂k−1, ξ̂k−1}: if ‖Θ̂k −

Θ̂k−1‖ + ‖ξ̂k − ξ̂k−1‖ > η, increase k by 1 and
return to Step 2; otherwise, stop this computational
process.

Remark 2 In order to obtain more accurate parameter
estimates but not increase the computational cost of the
H-MISG algorithm, we introduce the forgetting factors
(FF) λ1 and λ2 into (34) and (42):

r1,k = λ1r1,k−1 + ‖φ(ξ̂k−1, k)‖2, 0 ≤ λ1 < 1, (45)

r2,k = λ2r2,k−1 + ‖Θ̂T
k φ′(ξ̂k−1, k)‖2, 0 ≤ λ2 < 1.

(46)

Replacing (34) and (42) in the H-MISG algorithmwith
(45) and (46), we obtain the variant of the H-MISG,
i.e., the FF-H-MISG algorithm for the ExpAR model.
When λ1 = 1 andλ2 = 1, the FF-H-MISGdegenerates
into the H-MISG algorithm.

Remark 3 Before using the proposed algorithms to
identify the ExpAR model, we need to determine the
order from input-output data by using the order estima-
tion methods, such as the orthogonalization procedure
and the correlation analysis in [22].

At each recursion, the H-SG algorithm involves the
current measurement data and innovation, the H-MISG
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Table 2 The H-SG estimates and errors (σ 2 = 0.202)

k α1 α2 β1 β2 ξ δ (%)

100 0.23837 0.24173 0.23671 0.23995 − 0.00786 92.65856

200 0.24113 0.24281 0.23950 0.24102 − 0.00885 92.60908

500 0.24379 0.24329 0.24217 0.24145 − 0.00850 92.54419

1000 0.24513 0.24309 0.24350 0.24120 − 0.00738 92.49927

2000 0.24640 0.24283 0.24477 0.24090 − 0.00610 92.45321

3000 0.24725 0.24263 0.24562 0.24068 − 0.00538 92.42506

True values 1.25000 − 0.28000 2.00000 1.85000 2.30000

Table 3 The H-MISG estimates and errors (σ 2 = 0.202, l = 5)

k α1 α2 β1 β2 ξ δ (%)

100 0.48056 0.44219 1.12466 1.13314 1.54026 45.49540

200 0.51411 0.45249 1.12335 1.13063 1.54783 45.17986

500 0.52195 0.43228 1.12051 1.12670 1.58769 44.49311

1000 0.53864 0.42754 1.11815 1.12327 1.63957 43.76030

2000 0.54514 0.41393 1.11625 1.12065 1.72130 42.77483

3000 0.55058 0.40671 1.11540 1.11946 1.76471 42.26100

True values 1.25000 − 0.28000 2.00000 1.85000 2.30000

or the FF-H-MISG algorithm applies all the current and
the preceding (l − 1) measurement data and innova-
tions, which makes the latter has a higher parameter
estimation accuracy.

5 Example

Consider the following ExpAR time series

xk =
(
α1 + β1e

−ξ x2k−1

)
xk−1 +

(
α2 + β2e

−ξ x2k−1

)
xk−2

+ · · · +
(
αn + βne

−ξ x2k−1

)
xk−n + εk

=
(
1.25 + 2.00e−2.30x2k−1

)
xk−1

+
(
−0.28 + 1.85e−2.30x2k−1

)
xk−2 + εk .

The parameters to be identified are

Θ = [α1, α2, β1, β2]T
= [1.25,−0.28, 2.00, 1.85]T, ξ = 2.30.

In simulation, the variance of the white noise {εk} is
set to be σ 2, the measurement data length is taken as
Le = 3000. For simplicity, we define ϑ := [ΘT, ξ ]T.

Taking σ 2 = 0.202 and using the H-SG algorithm,
H-MISG algorithm with l = 5 and FF-H-MISG algo-

rithm with l = 5, λ1 = 0.91 and λ2 = 1.00 to iden-
tify this ExpARmodel, respectively, the parameter esti-
mates and their errors are shown in Tables 2, 3 and 4,
the parameter estimation errors δ := ‖ϑ̂k −ϑ‖/‖ϑ‖×
100% versus k are shown in Figure 2.

To illustrate the advantage of the proposed multi-
innovation identification algorithms, we fix the noise
variance σ 2 = 0.202, the forgetting factors λ1 = 0.91
and λ2 = 1.00, and adopt the FF-H-MISG algorithm to
identify this ExpAR model with the innovation length
l = 5, l = 6 and l = 7. The corresponding results are
demonstrated in Table 5 and Fig. 3.

To demonstrate how the performance of the pro-
posed FF-H-MISG algorithmdepends on the forgetting
factors, we fix the noise variance σ 2 = 0.202, the inno-
vation length l = 7, the forgetting factor λ2 = 1.00,
and adopt the FF-H-MISG algorithm to identify this
ExpAR model with the forgetting factor λ1 = 0.91,
λ1 = 0.97 and λ1 = 0.99. The corresponding results
are exhibited in Table 6 and Fig. 4.

To show the influence of the noise level on the
proposed FF-H-MISG algorithm, we fix the innova-
tion length l = 7, the forgetting factors λ1 = 0.91,
λ2 = 1.00, and adopt the FF-H-MISG algorithm to
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Table 4 The FF-H-MISG estimates and errors (σ 2 = 0.202, l = 5, λ1 = 0.91, λ2 = 1.00)

k α1 α2 β1 β2 ξ δ (%)

100 0.49534 0.27397 1.13043 1.13351 1.53723 43.59349

200 0.69813 0.22973 1.13034 1.12075 1.53837 41.16763

500 0.99277 0.03144 1.12374 1.09265 1.53952 38.09418

1000 1.16897 − 0.17448 1.13851 1.08685 1.52340 36.81494

2000 1.28966 − 0.33550 1.20027 1.14395 1.48566 35.47039

3000 1.31692 − 0.39613 1.26166 1.20153 1.45519 34.38786

True values 1.25000 − 0.28000 2.00000 1.85000 2.30000

Fig. 2 The H-SG, H-MISG
and FF-H-MISG estimation
errors δ versus k

identify this ExpAR model with the noise variance
σ 2 = 0.202, σ 2 = 0.232 and σ 2 = 0.262. The results
are shown in Table 7 and Fig. 5.

From Tables 2, 3, 4, 5, 6 and 7 and Figs. 2, 3, 4 and
5, we draw the following conclusions.

• The parameter estimation errors decrease as the
data length k increases for all the algorithms pro-
posed in this paper. The FF-H-MISG algorithm has
the highest parameter estimation accuracy among
these three algorithms—see Tables 2, 3, 4 and
Fig. 2.

• The parameter estimation accuracy becomes higher
with the innovation length l increasing and the
forgetting factor decreasing for the FF-H-MISG
algorithm—see Tables 5, 6 and Figs. 3, 4.

• The estimation errors of the FF-H-MISG algorithm
tend to zero with the decreasing of noise levels—
see Table 7 and Fig. 5.

• The proposed FF-H-MISG algorithm with appro-
priate innovation length and forgetting factors is
effective to identify thenonlinearExpARprocess—
see Tables 5, 6 and Figs. 3, 4.

For the model validation, we use Lr = 200 observa-
tions from k = Le+1 to k = Le+Lr and the predicted
model by the FF-H-MISG algorithm with λ1 = 0.91,
λ2 = 1.00 and l = 7. The predicted data x̂k and the
measurement data xk are plotted in Fig. 6. To evaluate
the prediction performance, we define and compute the
mean square error (MSE)

MSE :=
⎡
⎣ 1

Lr

Le+Lr∑
k=Le+1

(x̂k − xk)
2

⎤
⎦
1/2

= 0.19635.

From Fig. 6, we can see that the predicted data is close
to the measurement data, which means the predicted
model can reveal the dynamics of this ExpAR process.
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Table 5 The FF-H-MISG estimates and errors (σ 2 = 0.202, λ1 = 0.91, λ2 = 1.00)

l k α1 α2 β1 β2 ξ δ (%)

5 100 0.49534 0.27397 1.13043 1.13351 1.53723 43.59349

200 0.69813 0.22973 1.13034 1.12075 1.53837 41.16763

500 0.99277 0.03144 1.12374 1.09265 1.53952 38.09418

1000 1.16897 − 0.17448 1.13851 1.08685 1.52340 36.81494

2000 1.28966 − 0.33550 1.20027 1.14395 1.48566 35.47039

3000 1.31692 − 0.39613 1.26166 1.20153 1.45519 34.38786

6 100 0.53946 0.26806 1.36935 1.36071 1.92855 33.18161

200 0.73563 0.20753 1.37115 1.35494 1.92911 29.86680

500 1.02242 0.02122 1.37425 1.34767 1.92839 25.37927

1000 1.16564 − 0.15212 1.39993 1.36572 1.91305 23.12858

2000 1.23194 − 0.27820 1.48535 1.45777 1.87609 20.42404

3000 1.24631 − 0.31193 1.57122 1.54571 1.84419 18.38652

7 100 0.54603 0.29172 1.60914 1.61667 2.36236 26.83406

200 0.73972 0.20569 1.61202 1.61533 2.36188 22.17354

500 1.03169 0.02289 1.62143 1.62111 2.35862 15.35780

1000 1.14722 − 0.12360 1.65573 1.65741 2.34266 11.57955

2000 1.18572 − 0.20994 1.75055 1.76906 2.30523 7.36433

3000 1.18065 − 0.23155 1.84794 1.87601 2.27055 4.70866

True values 1.25000 − 0.28000 2.00000 1.85000 2.30000

Fig. 3 The FF-H-MISG
estimation errors δ versus k
(σ 2 = 0.202, λ1 = 0.91,
λ2 = 1.00)

6 Conclusions

Applying the hierarchical identification principle and
the multi-innovation identification theory, this paper
derives an H-SG algorithm and an H-MISG algorithm

for theExpARmodel. For the sake of the improved esti-
mation accuracy, two forgetting factors are introduced
into the H-MISG, and a variant of the H-MISG, i.e., the
FF-H-MISG algorithm is presented in this work. The
simulation results demonstrate that the FF-H-MISG
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Table 6 The FF-H-MISG estimates and errors (σ 2 = 0.202, l = 7, λ2 = 1.00)

λ1 k α1 α2 β1 β2 ξ δ (%)

0.91 100 0.54603 0.29172 1.60914 1.61667 2.36236 26.83406

200 0.73972 0.20569 1.61202 1.61533 2.36188 22.17354

500 1.03169 0.02289 1.62143 1.62111 2.35862 15.35780

1000 1.14722 − 0.12360 1.65573 1.65741 2.34266 11.57955

2000 1.18572 − 0.20994 1.75055 1.76906 2.30523 7.36433

3000 1.18065 − 0.23155 1.84794 1.87601 2.27055 4.70866

0.97 100 0.50182 0.39921 1.60333 1.61150 2.35988 29.37939

200 0.59836 0.37113 1.60352 1.60999 2.35995 27.26498

500 0.75346 0.24373 1.60370 1.60784 2.35917 22.70653

1000 0.91250 0.07740 1.60520 1.60535 2.35349 17.90619

2000 1.08223 − 0.08715 1.62537 1.62689 2.32268 13.35437

3000 1.15777 − 0.18392 1.65491 1.65908 2.28378 10.99554

0.99 100 0.49891 0.44383 1.60125 1.60958 2.35939 30.19217

200 0.54791 0.43635 1.60106 1.60860 2.36015 29.23940

500 0.59940 0.36804 1.60001 1.60648 2.36314 27.25883

1000 0.68393 0.28638 1.59785 1.60200 2.36847 24.60749

2000 0.81932 0.17078 1.59786 1.60014 2.36203 20.72777

3000 0.93413 0.05726 1.60147 1.60275 2.34243 17.41429

True values 1.25000 − 0.28000 2.00000 1.85000 2.30000

Fig. 4 The FF-H-MISG
estimation errors δ versus k
(σ 2 = 0.202, l = 7,
λ2 = 1.00)
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Table 7 The FF-H-MISG estimates and errors (l = 7, λ1 = 0.91, λ2 = 1.00)

σ 2 k α1 α2 β1 β2 ξ δ (%)

0.202 100 0.54603 0.29172 1.60914 1.61667 2.36236 26.83406

200 0.73972 0.20569 1.61202 1.61533 2.36188 22.17354

500 1.03169 0.02289 1.62143 1.62111 2.35862 15.35780

1000 1.14722 − 0.12360 1.65573 1.65741 2.34266 11.57955

2000 1.18572 − 0.20994 1.75055 1.76906 2.30523 7.36433

3000 1.18065 − 0.23155 1.84794 1.87601 2.27055 4.70866

0.232 100 0.56746 0.24224 1.59956 1.60044 1.97636 27.25173

200 0.80713 0.13856 1.59557 1.58461 1.97839 22.22129

500 1.13045 − 0.08102 1.58406 1.55834 1.98164 16.96918

1000 1.22336 − 0.21425 1.59756 1.56192 1.97465 15.74527

2000 1.26659 − 0.29252 1.66707 1.63962 1.95573 13.81780

3000 1.25020 − 0.30111 1.73947 1.71097 1.94113 12.27984

0.262 100 0.59214 0.19257 1.58259 1.57361 1.67381 30.08145

200 0.87582 0.07124 1.56283 1.52826 1.67857 25.64775

500 1.21452 − 0.17371 1.51219 1.44412 1.68690 23.47748

1000 1.27296 − 0.28121 1.49179 1.40197 1.68458 24.16677

2000 1.31721 − 0.34485 1.51491 1.42746 1.67419 23.81738

3000 1.28663 − 0.33779 1.54898 1.45054 1.66876 23.10347

True values 1.25000 − 0.28000 2.00000 1.85000 2.30000

Fig. 5 The FF-H-MISG
estimation errors δ versus k
(l = 7, λ1 = 0.91,
λ2 = 1.00)
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Fig. 6 The predicted data
x̂k and the measurement
data xk for the FF-H-MISG
algorithm

algorithm with appropriate innovation length and for-
getting factors is effective to identify theExpARmodel.
Jointing other methods [23] such as the neural network
[24,25] and the kernel collocation [26,27], the algo-
rithms proposed in this paper can be exploited to study
parameter identification of different systems and can
be applied to other fields [28–31].
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