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Abstract With large-scale application of a large num-
ber of renewable energy sources, such aswind turbines,
photovoltaics, and various power electronic equipment,
the power electric system is becoming gradually more
power-electronics-based, whose dynamical behavior
becomes much complicated, compared to that of tra-
ditional power system. The recent developed theory
of amplitude–phase motion equation provides a new
framework for the general dynamic analysis of such
a system. Based on this theory, we study a simple
amplitude–phase motion equation, i.e., a single power-
electronics device connected to an infinite-large sys-
tem, but consider its nonlinear effect. With extensive
and intensive theoretical analysis and numerical sim-
ulation, we find that basically the system shows some
similarity with the classical second-order swing equa-
tion for a synchronous generator connected to an infi-
nite bus, such as the two types of bifurcation including
the saddle-node bifurcation and homoclinic bifurca-
tion, and the dynamical behavior of stable fixed point,
stable limit cycle, and their coexistence. In addition,
we find that the Hopf bifurcation is possible, but for
negative damping only. All these findings are expected
to be helpful for further study of power-electronics-
basedpower system, featuredwith nonlinearity of high-
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dimensional dynamic systems involved with not only
a large timescale but also large space scale.

Keywords Amplitude–phase motion equation ·
Nonlinear dynamics · Synchronous generator ·
Bifurcation and basin stability · Swing equation

1 Introduction

Traditional power system is mainly composed of elec-
tromagnetic conversion equipment such as generators,
transformers, andmotors, and its stability canbemainly
determined by the electromechanical motion of syn-
chronous generators. With the rapid development and
application of technologies such as renewable energy
generation, long-distance ultra-high-voltage alternat-
ing current (UHVAC) transmission, high-voltage direct
current (HVDC) transmission, and reactive power com-
pensation, the penetration level of power electronic
equipment continues to increase. It has been referred
to as power-electronics-based power system, or power-
electronics-dominated power system [1–4]. In general,
the dynamic characteristics of whole system are deter-
mined by that of the power equipment and transmis-
sion network as well. Clearly, the extensive introduc-
tion of power electronic equipment in turn leads to
fundamental changes in the dynamic characteristics of
the power-electronics-based power system [5,6],which
have already made several unsolved accidents recently,
such as unpredictable power oscillations. Indeed, the
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dynamic characteristics from the power supply, power
transmission, and load side are all different from the
conventional power systems because of the character of
power-electronics equipment. The main difference lies
in the complicated,multi-scale interaction betweenvar-
ious types of equipment, and also between equipment
and network. For instance, in the double-fed induc-
tion generator (DFIG) for wind power conversion, its
system dynamic problems can be roughly divided into
three timescales: alternating current (AC) inductor cur-
rent, direct current (DC) capacitor voltage, and elec-
tromechanical speed, based on their different response
times [7]. It is evident that the study of its nonlinear
behavior is difficult, and direct application of tradi-
tional analysis methods is hard to uncover the phys-
ical mechanism for the power-electronics-based power
system.

In order to fully describe the dynamic character-
istics of the power-electronics-based power system
with a simple input–output relation containing the
equipment’s key information: back electromotive force
(EMF)’s amplitude and frequency, some scholars have
proposed an approach to describing the dynamic char-
acteristics of equipment within a general framework:
the amplitude–phase motion equation [2]. It describes
the dynamic characteristics of equipment by using the
dynamical relation between unbalanced power (includ-
ing both the active power and reactive power) and the
physical state of unbalanced energy storage compo-
nents (including both the voltage phase and ampli-
tude for the EMF). Essentially, this theory extends
the basic model in the traditional power system with
each synchronous generator modeled by a controlled
voltage source, whose dynamical behavior is mainly
determined by a second-order swing equation for the
rotor’s mechanical motion, to include whole infor-
mation for active power and reactive power. With
a clearer physical meaning, it is expected to play
a crucial role in understanding stable and/or unsta-
ble (oscillation) problems in power-electronics-based
power system. By using this method, many amplitude–
phase motion equation models, such as synchronous
generator, full-power wind turbine, and HVDC on
separated timescales for small-signal (linear) analy-
sis, have already been obtained and extensively ana-
lyzed [8]. Additionally, Ref. [9] used the model of
amplitude–phase motion equation to analyze the elec-
tromechanical transient characteristics of wind tur-
bines.
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Fig. 1 General model for the amplitude–phase motion equation

In this paper, relying on the theory of amplitude–
phase motion equation for the power-electronics-based
power system,wewillmainly study the nonlinear effect
in a simplest model including the unbalanced dynami-
cal relation on both the active power and reactive power.
With the help of some techniques on nonlinear dynam-
ics, such as the local stability analysis, bifurcation anal-
ysis, basin stability [10–12], and center manifold [13–
15], it is expected to uncover the dynamical and phys-
ical nature better.

2 Modeling

Figure 1 shows the schematic diagram of the ampli-
tude–phase motion equation model. In this system,
each equipment plays the role solely by its dynam-
ics of the EMF, i.e., an internal potential rotation vec-
tor, which is determined by the input–output relation:
the balance (or imbalance) relation between the active
and reactive powers and the voltage potential phase
and amplitude, respectively. Note that each equipment
connected to the grid could be described by an EMF,
whether it is a synchronous generator, wind turbine,
asynchronous motor, or other power equipment. The
motion of the EMF is driven by the unbalanced active
power and reactive power acting on it, and the electro-
magnetic powers (such as Pe and Qe in Fig. 1) also
change based on its interaction with other equipment
connected to the power grid. In this process, how the
EMF vector of each equipment moves should be deter-
mined by an equivalent inertia and an equivalent damp-
ing of the equipment. It is believed that the motion
equationmodel is applicable to not only traditional syn-
chronous generators, but also diversified power elec-
tronic equipment.
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Fig. 2 Schematic diagram of a single-machine infinity system

On the basis of these simplifications, the amplitude–
phase motion equation model for equipment can be
obtained as follows [16,17]:

δ̇ = ω0ω,

Mω̇ = −Dω + Pm − Pe,

T Ė = Qin − Qe, (1)

where Pm and Qin are the input (mechanical) active
power and reactive power, in which the equipment
needs, Pe and Qe are the active power and reactive
power that the equipment emits out, and M and D
denote the (effective) inertia and damping of the equip-
ment, respectively.

In this work, we consider a simple model for the
power-electronics-based power system, namely a sin-
glemachineG connected to an infinity system (denoted
by an infinitely strong bus Vs with an unchanged volt-
age amplitude Vs) shown in Fig. 2, where E is used
to represent the selected synchronous machine internal
potential, and the active and reactive currents are

iq = Vs sin δ

x ′
q + xl

, id = E − Vs cos δ

x ′
d + xl

,

respectively. We use δ to denote the phase angle differ-
ence between the EMF in the synchronous generator E
and the infinite-large network voltage Vs , xl is the line
reactance, and x ′

d and x
′
q are the transient reactances of

the d and q axes, respectively. Then, the EMF’s output
active power and reactive power are given by

Pe = Eiq = Vs E sin δ

x ′
q + xl

Qe = Eid = E2 − Vs E cos δ

x ′
d + xl

.

Finally, we obtain a set of differential equations
keeping the nonlinear terms as follows:

δ̇ = ω0ω,

Mω̇ = −Dω + Pm − Vs E sin δ

x ′
q + xl

,

T Ė = Qin − E2 − Vs E cos δ

x ′
d + xl

. (2)

For the convenience, we take B1 = 1
x ′
q+xl

and B2 =
1

x ′
d+xl

and get the simplified amplitude–phase motion

equation model finally

δ̇ = ω0ω,

Mω̇ = −Dω + Pm − B1Vs E sin δ,

T Ė = Qin − B2E
2 + B2Vs E cos δ. (3)

Obviously, the first two equations are exactly the same
as the classical second-order swing equation [18], if
only the rotor motion is considered. Note that the volt-
age dynamics in the third equation is different with the
third-order swing equation with the excitation dynam-
ics concluded, whose nonlinear analysis has been con-
ducted [19–22]. In this work, we will mainly focus on
this model in Eq. (3) and study its nonlinear effect.

3 Analysis of fixed point (or equilibrium operation
state in power system)

To find the fixed point, we make the right side of the
above equations being zero,

0 = ω0ω,

0 = −Dω + Pm − B1Vs E sin δ,

0 = Qin − B2E
2 + B2Vs E cos δ, (4)

eliminate ω, and have

sin δ = Pm
B1Vs E

,

cos δ = −Qin + B2E2

B2Vs E
. (5)

Further eliminating δ, we obtain the equation for the
state variable E ,

E4 −
(
2Qin

B2
+ V 2

s

)2

E2 + Q2
in

B2
2

+ P2
m

B2
1

= 0, (6)

whose discriminant of the root is

� = 4QinV 2
s

B2
+ V 4

s − 4P2
m

B2
1

. (7)

Clearly, we have the following existence condition for
any fixed point,

Pm ≤ B1

√
QinV 2

s

B2
+ V 4

s

4
,
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with the maximum of Pm

PmMAX = B1

√
QinV 2

s

B2
+ V 4

s

4
. (8)

Under such a condition, E is explicitly expressed as

E2 =
2Qin
B2

+ V 2
s ± √

�

2
. (9)

Considering that in any actual situation, the voltage
amplitude E cannot be negative, and we have

E1,2 =
√

2Qin
B2

+ V 2
s ± √

�

2
. (10)

Further based on the expression for sin δ in Eq. (5), for
each E we obtain two solutions:

δ = arcsin
Pm

B1Vs E
and δ = π − arcsin

Pm
B1Vs E

.

Considering the restriction of cos δ, we can further
eliminate unrealistic solutions. If E1,2 =√

2Qin
B2

+V 2
s +√

�

2 , then

−Qin + B2E
2 = −Qin

+
2Qin + B2V 2

s + B2

√
4QinV 2

s
B2

+ V 4
s − 4P2

m
B2
1

2

=
B2V 2

s + B2

√
4QinV 2

s
B2

+ V 4
s − 4P2

m
B2
1

2
≥ 0

Thus, we have cos δ = −Qin+B2E2

B2Vs E
≥ 0. There-

fore, under this condition we have to choose δ =
arcsin Pm

B1Vs E
, the first solution of δ only, for each E .

However, if E2 =
√

2Qin
B2

+V 2
s −√

�

2 , then

cos δ = −Qin + B2E2

B2Vs E

= −Qin +
2Qin+B2V 2

s −B2

√
4QinV

2
s

B2
+V 4

s − 4P2m
B21

2

B2Vs E

=
V 2
s −

√
4QinV 2

s
B2

+ V 4
s − 4P2

m
B2
1

2Vs E
.

We cannot determine whether cos δ is positive or
negative, whose value is now controlled by V 2

s −√
4QinV 2

s
B2

+ V 4
s − 4P2

m
B2
1
, namely, when QinV 2

s
B2

>
P2
m

B2
1
(or

equivalently 0 ≤ Pm < B1Vs
√

Qin
B2

), δ = π −
arcsin Pm

B1Vs E
, and when QinV 2

s
B2

≤ P2
m

B2
1
(or equivalently

B1Vs
√

Qin
B2

≤ Pm < PmMAX), δ = arcsin Pm
B1Vs E

.
In summary, we have the following solutions of the

fixed points, denoted by X1 = (δ1, ω1, E1), X2 =
(δ2, ω2, E2).

δ1 = arcsin
Pm

B1Vs E
ω1 = 0

E1 =

√√√√√ 2Qin
B2

+ V 2
s +

√
4QinV 2

s
B2

+ V 4
s − 4P2

m
B2
1

2
, (11)

and

δ2 =
⎧⎨
⎩

δ2,1 = arcsin Pm
B1Vs E

(
if B1Vs

√
Qin
B2

≤ Pm < PmMAX

)
δ2,2 = π − arcsin Pm

B1Vs E

(
if 0 ≤ Pm < B1Vs

√
Qin
B2

)
ω2 = 0

E2 =

√√√√√ 2Qin
B2

+ V 2
s −

√
4QinV 2

s
B2

+ V 4
s − 4P2

m
B2
1

2
. (12)

Below, we will perform local stability analysis of
these fixed points, on the basis of the Lienard–Chipart
criterion [23]. The Jacobian matrix is⎡
⎣ 0 ω0 0

− B1Vs
M E cos δ − D

M − B1Vs
M sin δ

− B2Vs
T E sin δ 0 − 2B2

T E + B2Vs
T cos δ

⎤
⎦ ,

and its characteristic equation is

λ3 +
(
D

M
+ 2B2

T
E − B2Vs

T
cos δ

)
λ2

+
(
2B2D

MT
E − B2Vs D

MT
cos δ + B1Vsω0

M
E cos δ

)
λ

+ B1B2Vsω0

MT

(
2E2 cos δ − Vs E

)
= 0. (13)

According to the Lienard–Chipart criterion, the fol-
lowing stable conditions should be satisfied:

a0 = 1 > 0

a1 = D

M
+ 2B2

T
E − B2Vs

T
cos δ > 0

a2 = 2B2D

MT
E − B2Vs D

MT
cos δ + B1Vsω0

M
E cos δ > 0
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a3 = B1B2Vsω0

MT

(
2E2 cos δ − Vs E

)
> 0

aD =
∣∣∣∣ a1 a3
a0 a2

∣∣∣∣ = a1a2 − a0a3 > 0

For the fixed point X1 = (δ1, ω1, E1), we have

a1 = D

M
+ B2

T
(2E1 − Vs cos δ1)

= D

M
+ B2

T

(
2E1 − Vs

−Qin + B2E2
1

B2Vs E1

)

= D

M
+ Qin + B2E2

1

T E1
> 0

a2 = B2D

MT
(2E1 − Vs cos δ1) + B1Vsω0

M
E1 cos δ1

= D
(
Qin + B2E2

1

)
MT E1

+ B1Vsω0

M
E1 cos δ1 > 0

a3 = B1B2Vsω0

MT

(
2E2

1
−Qin + B2E2

1

B2Vs E1
− Vs E1

)

= B1ω0E1

MT

(
2B2E

2
1 − 2Qin − B2V

2
s

)

= B1ω0E1

MT

×

⎛
⎜⎜⎝2B2

2Qin
B2

+ V 2
s +

√
4QinV 2

s
B2

+ V 4
s − 4P2

m
B2
1

2

−2Qin − B2V
2
s

⎞
⎟⎠

= B1ω0E1

MT

√
4QinV 2

s

B2
+ V 4

s − 4P2
m

B2
1

> 0

aD =
(
D

M
+ 2B2

T
E1 − B2Vs

T
cos δ1

)

×
(
2B2D

MT
E1 − B2VsD

MT
cos δ1

+ B1Vsω0

M
E1 cos δ1

)

− B1B2Vsω0

MT

(
2E2

1 cos δ1 − Vs E1

)

= 2B2D2

M2T
E1 − B2VsD2

M2T
cos δ1

+ B1VsDω0

M2 E1 cos δ1

+4B2
2D

MT 2 E2
1 − 2B2

2VsD

MT 2 E1 cos δ1

+2B1B2Vsω0

MT
E2
1 cos δ1 − 2B2

2VsD

MT 2 E1 cos δ1

+ B2
2V

2
s D

MT 2 cos2 δ1 − B1B2V 2
s ω0

MT
E1 cos

2 δ1

−2B1B2Vsω0

MT
E2
1 cos δ1 + B1B2V 2

s ω0

MT
E1

= B2D2

M2T
(2E1 − Vs cos δ1) + B1VsDω0

M2 E1 cos δ1

+ B2
2D

MT 2

(
4E2

1 − 4Vs E1 cos δ1 + V 2
s cos2 δ1

)

+ B1B2V 2
s ω0

MT
E1 sin

2 δ1

= D2
(
Qin + B2E2

1

)
M2T E1

+ B1VsDω0

M2 E1 cos δ1

+ B2
2D

MT 2 (2E1 − Vs cos δ1)
2

+ B1B2V 2
s ω0

MT
E1 sin

2 δ1

> 0

As a result, these analyses show that regardless of
how the system parameters are taken, the fixed point
X1 = (δ1, ω1, E1) is always locally stable if the exis-
tence condition in Eq. (8) is satisfied.

For the other fixed point X2 = (δ2, ω2, E2), how-
ever, we will see that it is always unstable as the
Lienard–Chipart criterion is unsatisfied. Consider the
two cases for X2 when the parameter changes. When

0 ≤ Pm < B1Vs
√

Qin
B2

, it is easy to know that cos δ2 <

0. So

a3 = B1B2Vsω0

MT

(
2E2

2 cos δ2 − Vs E2

)
< 0.

When B1Vs
√

Qin
B2

≤ Pm < PmMAX,

2E2 cos δ2 − Vs

= 1

B2Vs

(
−2Qin + 2B2E

2
2 − B2V

2
s

)

= 1

B2Vs

⎛
⎜⎜⎝2B2

2Qin
B2

+ V 2
s −

√
4QinV 2

s
B2

+ V 4
s − 4P2

m
B2
1

2

−2Qin − B2V
2
s

⎞
⎟⎠
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= −

√
4QinV 2

s
B2

+ V 4
s − 4P2

m
B2
1

B2Vs
< 0.

Hence, we have

a3 = B1B2Vsω0

MT
E2 (2E2 cos δ2 − Vs) < 0.

These indicate that X2 = (δ2, ω2, E2) is always
locally unstable regardless of any chosen parameters.

To sum up, interestingly under the existence condi-
tion for Pm < PmMAX in Eq. (8), the system always
has a locally stable fixed point X1 = (δ1, ω1, E1) and
a locally unstable fixed point X2 = (δ2, ω2, E2). We
will see both of themwill play a key role on the system’s
dynamical behavior.

4 Bifurcation analysis

(1) Saddle-node bifurcation
After observing the expressions forX1 = (δ1, ω1,

E1) and X2 = (δ2, ω2, E2) in Eqs. (11) and (12),
obviously we know that as Pm increases until the
critical parameter Pm = PmMAX arrives, the stable
fixed pointX1 and the unstable fixed pointX2 will
collide and annihilate completely, indicative of the
occurrence of a saddle-node bifurcation.

(2) Hopf bifurcation
For the traditional power system, in addition to
the saddle-node bifurcation, another commonphe-
nomenon of bifurcation is the so-called Hopf
bifurcation for the occurrence of power system
oscillation. Different with the fact that the saddle-
node bifurcation is for the appearance (or disap-
pearance) of a pair of fixed points, the Hopf bifur-
cation means that the system will move from a
stable fixed point to an oscillating (limit cycle)
state. Obviously, to make the system stable, it is
necessary to avoid any form of oscillation, and
thus, the study of Hopf bifurcation is practical and
important.

In nonlinear dynamics, the appearance condition for
a Hopf bifurcation is: A pair of conjugated character-
istic roots comes cross the imaginary axis from left to
right, while all other eigenvalues of the system remain
negative. More specifically, denoting the three charac-
teristic roots as λ1 = −a, λ2,3 = ±ib (where a > 0,
b > 0), the system’s characteristic equation should
satisfy

(λ + a)
(
λ2 + b2

)
= 0.

For the system in Eq. (13), we have

a =
(
D

M
+ 2B2

T
E − B2Vs

T
cos δ

)
,

b2 =
(
2B2D

MT
E − B2Vs D

MT
cos δ + B1Vsω0

M
E cos δ

)
,

ab2 = B1B2Vsω0

MT

(
2E2 cos δ − Vs E

)
,

yielding the following condition

aD =
(
D

M
+ 2B2

T
E − B2Vs

T
cos δ

)
(
2B2D

MT
E − B2VsD

MT
cos δ + B1Vsω0

M
E cos δ

)

− B1B2Vsω0

MT

(
2E2 cos δ − Vs E

)
= 0, (14)

and further

Z1D
2 + Z2D + Z3 = 0, (15)

with

Z1 = B2 (2E − Vs cos δ)

M2T
,

Z2 = B1Vsω0E cos δ

M2 + B2
2 (2E − Vs cos δ)2

MT 2 ,

Z3 = B1B2V 2
s ω0E sin2 δ

MT
.

Based on the condition that Qin > 0 and the expres-
sion of cos δ in Eq. (5), we have

E > Vs cos δ, (16)

and thus

Z1 > 0, Z2 > 0, Z3 > 0. (17)

Immediately, we know that if the solutions of D exist,
they have to be negative; this is of consistence with
the local stability analysis result in the above sec-
tion, where it concludes that the fixed point X1 =
(δ1, ω1, E1) [X2 = (δ2, ω2, E2)] is always stable
(unstable), and there is no room for a Hopf bifurcation
if only positive D is considered.

Based on such an analysis, so far we know that a
Hopf bifurcation is possible only within the negative
damping parameter region. A possible physical argu-
ment for this assumption is that a Hopf bifurcation
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Fig. 3 Root loci of the fixed point with decrease of D (from
D = 1 to D = −1 with �D = 0.2), to show the possible Hopf
bifurcation for negative D only

occurs, usually corresponding to the case that a stable
spiral becomes unstable (with a new emergent stable
limit cycle), when the system parameter comes across
a critical value. Thus in this process, the damping of
system for rotor dynamics, namely whether it is pos-
itive or negative, is essential for the occurrence of a
Hopf bifurcation [21]. However, when more system
variable is considered, this basic physical picture for not
only second-order swing equation but also third-order
equations incorporating with excitation dynamics may
change. A particular example is the fourth-order differ-
ential equations with the generator’s electromagnetics,
electromechanics, and its excitation control modeled
together, where Hopf bifurcation has been found and
reported widely happening under the positive damping
condition [19].

To show it clearer, as an example, by setting all
parameters to be 1, namely M = 1, T = 1, ω0 = 1,
B1 = 1, B2 = 1 and Vs = 1, we have the critical
parameters D for the Hopf bifurcation:

D ≈ −0.137 or D ≈ −2.46.

The numerical result in Fig. 3 for the root loci of the
fixed point (with the decrease in D, from D = 1 to
D = −1with�D = 0.2) verifies the above theoretical
prediction well. To prove this point further, the time
series before and after the birth of a Hopf bifurcation
are shown in Fig. 4. In the top two panels, D = −0.136,
a stable fixed point appears and persists, whereas in the
bottom two panels, D = −0.138, a stable limit cycle
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Fig. 4 Comparison of time series before and after a Hopf bifur-
cation at D = −0.136 (top panels) and D = −0.138 (bottom
panels), respectively. Dc ≈ −0.137

becomes emerging immediately after the fixed point
becomes unstable.

(3) Homoclinic bifurcation
In addition, except for the local bifurcation from
fixed points including the saddle-node bifurca-
tion and Hopf bifurcation, which have been ana-
lyzed in the previous subsection, more complicate
global bifurcations are possible, such as homo-
clinic bifurcation.However, their theoretical analy-
ses aremuchdifficult andwehave to rely onnumer-
ical simulation, which leaves to the next section.

5 Numerical simulation

For simplicity of calculation, we take M = 1, T = 1,
ω0 = 1, B1 = 1, B2 = 1 and Vs = 1 and obtain the
simplified set of differential equations as follows:

δ̇ = ω,

ω̇ = −Dω + Pm − E sin δ,

Ė = Qin − E2 + E cos δ. (18)

Note that in the paper, some other parameters have also
been tested, which show similar dynamical behavior.

Figure 5 shows the phase diagram in the D − Pm
parameter space; Qin = 1 is chosen, without losing
generality. Clearly, thewhole diagram has been divided
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Fig. 5 Parameter space ofmechanical power Pm versus damping
D in the amplitude–phase motion equation model, where the
saddle-node bifurcation and homoclinic bifurcation divide the
parameter space into three regions: I (for stable fixed point), II
(for coexistence), and III (for stable limit cycle)

into three regions, in which we use I (and III) to denote
a stable fixed point (limit cycle) zone and II to denote a
bistable zone for coexistence of a stable fixed point and
a stable limit cycle. Based on our analysis of the saddle-
node bifurcation in Eq. (8), the critical parameter Pm ≈
1.118 has been well predicted, as shown the horizontal
line in the figure. In addition, we can find a homoclinic
bifurcation, which separates the zones I and II. This
pattern is similar to that of the classical second-order
swing equation in the absence of the voltage dynamics,
except that now the homoclinic bifurcation curve at
D = 0 starts from a nonzero Pm (Pm ≈ 0.12).

To make the dynamical behavior clearer, we choose
different parameters and observe their evolutions. Fig-
ure 6 shows the results for the dynamics within region
I (D = 0.2, Pm = 0.3, top panels) and within region
III (D = 0.2, Pm = 1.2, bottom panels), in which the
asymptotic behavior of a stable fixed point and a stable
limit cycle, respectively, is clear. It is notable that these
attractors are globally stable and independent of their
initial conditions.

In comparison with these differences, we present
the result in Fig. 7 for the identical parameters chosen
within the region II, where a stable fixed point and a
stable limit cycle coexist. Clearly, now for different
initial conditions, the eventual asymptotic behaviors
are quite different.

Next let us focus on the underlying mechanism for
the bistable behavior. Figure 8 shows that the basin

of attraction is strongly influenced by the change of
system parameter, such as the mechanical power Pm .
In the pictures, we use green to denote the basin of
a stable fixed point and the transparent region to rep-
resent a stable limit cycle. In addition, we use red to
represent the boundary of the two regions. From up to
down and from left to right, the mechanical power Pm
changes from 0.4, 0.6, 0.7, 0.9, 1 to 1.2, respectively,
with D = 0.4 fixed. Clearly, at Pm = 0.4, all initial
conditions of the systemconverge to the asymptotic sta-
ble fixed point and its basin is the whole phase space.
With the increase in Pm , and after the appearance of
the homoclinic bifurcation at D = 0.4 and Pm ≈ 0.54,
a stable limit cycle is born and its basin gradually com-
presses that of the fixed point. This indicates that the
coexistence happens. With a further increase in Pm
and after the saddle-node bifurcation at Pm ≈ 1.118,
the stable fixed point becomes unstable and the sta-
ble limit cycle becomes the dominant attractor, whose
basin would occupy the whole phase space oppositely.
This point is clear from the empty plot in the final panel
under Pm = 1.2. Additionally, we find that within the
coexistent parameter region, with the increase in the
voltage E , the stable region continuously increases,
indicating that larger voltage amplitude is favorable for
stable operation of the system.

To give an overall view for the dynamical behav-
ior, we also calculate the relative size of the basin of
attraction by using the technique of basin stability [10–
12]. Figure 9 shows the result with the change of D
and Pm . The basin stability is defined as the probabil-
ity to approach to a stable fixed point for random initial
conditions in the δ − ω − E phase space. In numer-
ical simulation, the phase space volume is chosen as
[0, 2π] × [−3, 2] × [0, 4]. From the figure, it is clear
that as D increases, the basin stability for the fixed
point increases until it reaches at 1 and the fixed point
becomes globally stable. In the other direction with
the increase in Pm , the basin stability of the fixed point
decreases until it reaches 0 and the fixed point becomes
globally unstable. In particular, a nonzero value appears
for the coexistence region II.

Finally, let us focus on the homoclinic bifurcation
for the emerging or annihilation of a limit cycle. In the
top two panels of Fig. 10, the parameters D = 0.4
and Pm = 0.8 are chosen. We use green on the left
to show the basin of attraction for a stable fixed point
and the dark blue surface for its basin boundary. On
the right, the light blue solid line is for the system’s
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Fig. 6 Time series and state
diagrams within region I
(D = 0.2, Pm = 0.3) for a
stable fixed point (top) and
within region III (D = 0.2,
Pm = 1.2) for a stable limit
cycle (bottom)
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Fig. 7 Time series and state
diagrams within the bistable
region II (D = 0.2,
Pm = 0.8) for two different
initial values, to show
completely different
dynamics for a stable fixed
point (top) and a stable limit
cycle (bottom)
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stable manifold and the red solid line is for the system’s
unstable manifold. The intersection of the lines is just
the saddle point of the system, i.e., the locally unstable
fixed point X2. It can be found that the manifolds near
the boundary of the stable region will converge toward
the saddle point and then be attracted by the fixed point
X1 or the limit cycle, which is also one of signs of
homoclinic bifurcation [24]. The stable and unstable
manifolds in the plot are calculated by usingMATLAB.

When the mechanical power is reduced (see, e.g.,
D = 0.4 and Pm = 0.58 in Fig. 10 for the bot-
tom two panels), it can be found that the basin of
attraction of the fixed point and the attractor of limit
cycle are very close to each other and nearly collide.
It is not difficult to expect that when Pm is slightly
reduced further, the limit cycle will collide with the
basin boundary of the fixed point and disappear com-
pletely. Hence, the homoclinic bifurcation mechanism
is obvious. Therefore, it is advantageous in power sys-
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Fig. 8 a–fBasin of attraction of the fixed point with the increase
in Pm , from Pm = 0.4, 0.6, 0.7, 0.9, 1, to 1.2; D = 0.4

1
0.8

Pm

0.6
0.4

0.2
00

0.5D

1

0.4

0.6

0.8

1

0

0.2

B
as

in
 S

ta
bi

lit
y

Fig. 9 Basin stability analysis with the changes of D and Pm

tem to keep the system running within regions I or II
and far away from the homoclinic bifurcation parame-
ters.
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Fig. 10 Schematic diagrams of the homoclinic bifurcation under
D = 0.4 and Pm = 0.8 (top panels) and D = 0.4 and Pm = 0.58
(bottom panels)

6 Conclusions and discussions

In summary, a third-order general model of amplitude–
phase motion equation for power-electronics-based
power system, considering both the amplitude and fre-
quency dynamics of the internal voltage potential and
keeping the system nonlinearity, has been investigated
in details.With the aid of both theoretical analysis, such
as local stability and bifurcation analysis, and numer-
ical simulation, such as the calculation of basin sta-
bility, basin boundary, and stable and unstable mani-
fold, some results which are quite similar to the clas-
sical second-order swing equation have been uncov-
ered. For instance, there are three different types of
dynamic behavior including a stable fixed point, a sta-
ble limit cycle, and their bistability and coexistence
within wide parameter regions. There are two types of
bifurcation including the saddle-node bifurcation and
the homoclinic bifurcation,which are essential to deter-
mine the basic dynamical behavior. In addition, we find
that the Hopf bifurcation extensively appears for neg-
ative damping.

Basically, the simple amplitude–phasemotion equa-
tion model with nonlinearity has been studied in the
work for the single-machine infinity system for a sin-
gle timescale. This, however, is only the first step to
explore complicated behavior of power-electronics-
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based power system. Further studying on interac-
tion between multiple timescales and mutual coupling
between different equipments is necessary. It is also
interesting to make a comparison with the usual small-
signal stability analysis results,whichhighly rely on the
linearization of nonlinear systems. In addition, obvi-
ously how to develop a large system theory to deal
with the complicated dynamics with multi-timescale
and multi-space scale for the current revolutionary
power-electronics-based power system remains a big
challenge for not only power electrics and power-
electronics engineers but also complex system sci-
entists. Finally, it is essential that the interaction of
amplitude and phase (and/or frequency) of system vari-
ables is essential for not only power system but also
many cross-discipline fields, such as neural communi-
cation [25], semiconductor lasers [26], and nanoelec-
tromechanical oscillators for quantum synchronization
[27,28] and further deeper investigations are expected.
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