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Abstract A generalized nonlocal nonlinear Hirota
(GNNH) equation with variable coefficients is pre-
sented, which can be reduced into the nonlocal Hirota
equation with the self-induced PT-symmetric poten-
tial. Especially, the nonlocal Gross–Pitaevskii (NGP)
equation with the self-induced PT-symmetric poten-
tial is derived from the GNNH equation. Then, we
obtain some novel non-autonomous breather solutions
and rogue waves of GNNH equation via similarity and
Hirotamethods, and consider some controllable behav-
iors of these non-autonomous wave solutions. Further-
more, some properties of the non-autonomous rational
(NR) waves are investigated analytically for the NGP
equation. The trajectories of peaks and depressions
of the non-autonomous rogue waves are produced by
means of analytical method, and the dynamical stabili-
ties of the NR solution are derived through the numeri-
cal method. The obtained results are different from the
solutions of the local nonlinear equations. Some dif-
ferent propagation phenomena can also be produced
through manipulating non-autonomous rogue waves,
which can present the potential applications for the
rogue wave phenomena in nonlocal wave models.
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1 Introduction

In 2016, Ablowitz and Musslimani proposed some
novel nonlocal nonlinear integrable equations, such
as nonlocal integrable nonlinear Schrödinger (NNLS)
equation, modified Korteweg–de Vries (mKdV) equa-
tion, sine-Gordon equation, three-wave interaction
equations and so on [1,2]. Some nonlocal nonlinear
equations have new types of soliton solutions and
are broadly applied in many fields of physics. Some
works investigate the nonlocal nonlinear equations
with a finite distance; the 3-dimensional spatiotempo-
ral solitary waves have been investigated frequently
in strongly nonlocal media [3], and some specific
Hermite–Gaussian vector solitons are obtained in non-
local optical media [4].

From an experimental viewpoint, the controlling of
the complex refractive index distribution is realized
with the PT-symmetric potential, the PT-symmetry
breaking within the realm of optics has been observed
in experiment, and some unusual characteristics of
the unidirectional invisibility and nonlinear switch-
ing effect in the PT-symmetric waveguides have been
revealed [5,6]. In the nonlinear optics, the Kerr nonlin-
earity and PT-symmetric linear potentials of the non-
linear Schrödinger (NLS) equations have been inten-
sively studied in [7,8], including the interactions of
bright and dark solitons with a PT-symmetric dipole
and dynamical behaviors in the oligomers, and so on.
Thus, the new nonlocal equation is PT-symmetric and
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has self-induced potential in the case of classical optics
[9]; the wave propagation in PT-symmetric coupled
waveguides or photonics lattices has been experimen-
tally observed in classical optics [10].

A class of NNLS equations can describe the col-
lapse arrest and the soliton stabilization in many non-
local nonlinear medias [11]. Especially, the integrable
NNLS equations with ‘parity-time symmetry’ [12]
have some important characters [12]. Some exact solu-
tions and numerical simulations of NNLS equation
with self-induced PT-symmetric potential have been
considered experimentally [13]. The PT-symmetric
integrable local and nonlocal vector NLS equations are
formulated with matrix Lax pairs in [14]. An improved
Hirota bilinear method is achieved by bilinearization
both the NNLS equation and its associated parity trans-
formed complex conjugate equation in a novel way;
one and two soliton solutions are invariant under com-
bined space and time reversal transformations and are
more general than the known ones [15]. The inverse
scattering theory is developed by using a novel left–
right Riemann–Hilbert problem, and the Cauchy prob-
lem for the NNLS equation is formulated, which can
lead to explicit time-periodic one and two soliton solu-
tions in [1]. A general integrable nonlocal coupledNLS
system with the PT-symmetry is investigated in [16],
which contains not only the nonlocal self-phase mod-
ulation and the nonlocal cross-phase modulation, but
also the nonlocal four-wave mixing terms. Some novel
soliton solutions of the 2-dimensional NLS equation
with a PT-symmetric potential can be extended to the
equations with two or more spatial variables [17]. The
discrete and coupledNNLSequations are solved via the
Darboux transformation in [18], and some dynamics of
higher-order rational solitons of theNNLS equation are
explained with generalized Darboux transformation in
[19–21]. Some discrete rogue wave solutions with PT-
symmetric potential of Ablowitz–Musslimani equation
are derived by Yu in [22]. The generalized three cou-
pled Gross–Pitaevskii equations are worked by means
of the Darboux transformation and Hirota’s method;
several non-autonomous matter-wave solitons includ-
ing dark–dark–dark and bright–bright–bright shapes
are obtained in [23]. The NNLS equation with nonzero
boundary conditions is investigated with inverse scat-
tering transform in [24]. An algebraic iterative algo-
rithm is provided to obtain a series of analytic solu-

tions for the discrete PT-symmetric NNLS equation in
[25]. Zhou considers the Darboux transformations and
global solutions for an nonlocal derivative NLS equa-
tion, which can be globally defined and bounded for all
(x, t) in [26]. Integrability of a general integrable non-
local coupledNLSequation is confirmed; somedynam-
ics and interactions of different kinds of solitons are
discussed by Zhu in [27]. Yan presents a method to
construct some novel two-family-parameter equations,
including the local, nonlocal andmixed-local–nonlocal
vector NLS equations [28].

Recently, how to solve a class of NNLS equa-
tions is a focus problem. In this paper, we extend
the ideas of the previous works and use the similar-
ity transformation, Hirota method and Darboux trans-
formation to study the generalized nonlocal nonlin-
ear Hirota (GNNH) equation and nonlocal Gross–
Pitaevskii (NGP) equation with the self-induced PT-
symmetric potential. We can find that some novel
results are different from the local nonlinear Hirota
equation and Gross–Pitaevskii equation. Then, we
obtain some non-autonomous breather (NB) solutions
and non-autonomous rogue waves (NRWs) of GNNH
equation, and non-autonomous rational (NR) waves
of NGP equation. Some properties of the NR waves
are investigated analytically for the nonlocal nonlin-
ear equation, which are different from the solutions of
the local nonlinear equation. The trajectories of peaks
and depressions of the non-autonomous rogue waves
are produced by means of analytical method, and the
dynamical stabilities of the NR solutions are derived
through the numerical method. The obtained different
results can be useful to explain the corresponding wave
phenomena in some nonlocal wave models.

The rest of this paper is organized as follows. In
Sect. 2, we consider a generalized nonlocal nonlin-
ear Hirota equation with PT-symmetric potential. In
Sect. 3, some novel non-autonomous breather and
rogue wave solutions are explicitly found, and the tra-
jectories of motion of peaks and depressions of the
derived DRWs are explicitly considered. In Sect. 4, the
non-autonomous rational solutions of the NGP equa-
tion are obtained; then, the numerical simulations of
rational wave solutions are performed. Finally, we give
some conclusions.
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2 A generalized nonlocal nonlinear Hirota
equation with the PT-symmetric potential

We consider the variable coefficient GNNH equation
with PT-symmetric potential, which is given rise to as
following:

i
∂Ψ

∂t
+ ic(x, t)

∂Ψ

∂x
+ b(t)

∂2Ψ

∂x2
+ g(t)Ψ Ψ ∗(−x, t)Ψ

+ id(t)
∂3Ψ

∂x3
+ ie(t)Ψ Ψ ∗(−x, t)

∂Ψ

∂x
+ v(x, t)Ψ + iγ (t)Ψ = 0, (1)

where Ψ = Ψ (x, t) is a complex valued function, x
is the propagation variable, t is the transverse variable,
and the i = √−1. TheΨ Ψ ∗(−x, t) is aPT-symmetric
potential; the b(t), c(x, t) and d(t) represent the group-
velocity dispersion, first-order and third-order disper-
sion, respectively. The γ (t) is gain/loss time coeffi-
cient, and an external potential v(x, t) is real-valued
function, and the g(t), e(t) are the nonlinearities of
time functions. This variable coefficient GNNH equa-
tion arises in many fields such as nonlinear optics and
BECs.

The variable coefficient GNNH (1) is an impor-
tant nonlocal wave model and can explain the corre-
sponding wave phenomena. We can derive an nonlocal
Gross–Pitaevskii (NGP) equation with PT-symmetric
external potential in some special reducing cases
c(x, t) = d(t) = e(t) = 0

i
∂Ψ

∂t
+ b(t)

∂2Ψ

∂x2
+ g(t)Ψ Ψ ∗(−x, t)Ψ

+ v(x, t)Ψ + iγ (t)Ψ = 0, (2)

which has an important application of soliton dis-
persion management experiment in nonlinear optics,
where Ψ (x, t) is the complex envelope of the elec-
tric field. In the case of temporal solitons in optical
fibers, x and t represent the propagation distance and
the retarded time, respectively. The b(t) is real-valued
function of time coordinate and represents the group-
velocity dispersion, the nonlinearity g(t) is real-valued
function of time coordinate, the nonlinearity can be
modulated by a Feshbach resonance, the v(x, t) is the
external potential, and γ (t) is the gain or loss function.

Recently, some integrable continuous and discrete
NNLS equations describing wave propagation in non-
linear PT-symmetric media are also found [9,29]. This
Eq. (2) can describe the PT-symmetric optics with
v(x, t), for which v(x, t) represents a ‘waveguide.’

We search for a similar transformation connecting
nonlocal solutions of Eq. (1) with the solutions of NNH
equation [30]. The NNH equation is given as following

i
∂Φ

∂τ
+ iε

∂Φ

∂η
+ δ

∂2Φ

∂η2
+ σΦ[Φ(−η, τ)]∗Φ

+ iλ
∂3Φ

∂η3
+ 3iλσΦ[Φ(−η, τ)]∗ ∂Φ

∂η
= 0, (3)

where the σ is an arbitrary constant, η and τ are two
variables.

When ε = λ = 0, we can derive an NNLS equation
with PT external potential [19] as following

i
∂Φ

∂τ
+ δ

∂2Φ

∂η2
+ σΦ[Φ(−η, τ)]∗Φ = 0, (4)

the Φ = Φ(η, τ) is a function of η = η(x, t) and
τ = τ(t).

We consider a kind of similarity of the nonlocal
equation, which is different from the method in [31],
and search for the novel solutions of the nonlocal phys-
ical fields Ψ (x, t) and Ψ ∗(−x, t)

Ψ (x, t) = ρ(t)eiϕ(x,t)Φ(η(x, t), τ (t)), (5)

Ψ ∗(−x, t) = ρ(t)eiϕ
∗(−x,t)Φ∗(η(−x, t), τ (t)), (6)

which must satisfy the following condition

η(−x, t) = −η(x, t), (7)

with ρ(t) and ϕ(x, t) are the indicated variables. And,
we substitute transformations (5) and (6) into Eq. (1)
and have the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ηxx = 0, ϕxx = 0, ργ (t) + ρt = 0,
v(x, t) = ϕt + b(t)ϕx

2 + c(x, t)ϕx − d(t)ϕx
3,

τt = d(t)η3x
λ

, b(t) =
(
3ϕx + δηx

λ

)
d(t),

e(t) = 3ση2x
ρ2ei(ϕ−ϕ∗)

d(t), g(t) = 3ση2x
ρ2ei(ϕ−ϕ∗)

( ηx
3λ + ϕx

)
d(t),

c(x, t) =
(

εη2x
λ

− 3ϕ2
x − 2δϕxη

2
x

λ

)
d(t) − ηt

ηx
.

(8)

We consider the conditions ηxx = 0 and ϕxx = 0,
can obtain the functions η(x, t), τ (t), ρ(t) and ϕ(x, t).
The other functions c(x, t), g(t), e(t) and b(t) can
be expressed through the given function d(t). Thus,
we can derive the novel non-autonomous soliton wave
solutions of Eq. (1). And, the similarity variables
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η(x, t), τ (t) and the ρ(t) are derived in the forms

η(x, t) = α(t)x, ρ(t) = ρ0e
− ∫ t

0 γ (s)ds,

τ (t) = 1

λ

∫ t

0
d (s) (α (s))3 ds. (9)

3 Novel non-autonomous solutions and
trajectories of extreme points of GNNH Eq. (1)

Some various types of exact breather solutions of
NNH Eq. (3) are presented in [28]. However, the non-
autonomous breather (NB) solutions of the GNNH
equation are not considered. In this section, we derive
the NB solution of GNNH equation as following

Ψ (x, t) = ρ e− ∫ t
0 r(s) dse−i(ω τ−ϕ(x,t)) g

f
, (10)

with

g = 1 + a1 e
i pη−Ω τ+ζ 1 + a2 e

−i pη−Ω τ+ζ 1

+ Ma1 a2 e
−2Ω τ+ζ 1+ζ 2 ,

and

f = 1 + ei pη−Ω τ+ζ 1 + e−i pη−Ω τ+ζ 2

+Me−2Ω τ+ζ 1+ζ 2

where M = 2 σ ρ2

2 σ ρ2−p2
, a1 = a2 = − p2−iΩ

p2+iΩ
, c =

λ
(−3 σ ρ2 + p2

)
,Ω =

√

p2
(
2 σ ρ2 − p2

)
, η (x, t)

= a (t) x, τ (t) =
∫ t
0 d(s)(a(s))3 ds

λ
.

Some wave propagations of NB solution of GNNH
Eq. (1) can be controlled via time-management func-
tions a(t), d(t) and γ (t). Figure 1a describes the prop-
agation of NB solution with γ (t) = 0, a(t) = 1 and
d(t) = 1. Figure 1b presents a novel ‘The-two-teams’-
shape NB solution with γ (t) = 0.1 sin(t), a(t) = t2

and d(t) = 1/t2. It is interesting to note that NB solu-
tion has the shape of Bi-opposite-parabola-liking on
the hill in Fig. 1c.

The non-autonomous hyperbolic function solution
of the GNNH equation is derived as following

Ψ (x, t) = ρ e− ∫ t
0 r(s) dse−i(ω τ−ϕ(x,t)) g

f
, (11)

with

g = √
M

(
(cos (β))2 cosh (Θ) + (sin (β))2 sinh (Θ)

+ i cos (β) sin (β) (cosh (Θ) − sinh (Θ)))

+ cos (px) (cos (β) + i sin (β)) ,

and f = √
M cosh (Θ) + cos (px), a1 = eiβ, c =

λ
(−3 σ ρ2 + p2

)
,Θ = Ω (t − t0) ,Ω =

√

p2
(
2 σ ρ2 − p2

)
, η (x, t) = a (t) x, τ (t) =

∫ t
0 d(s)(a(s))3 ds

λ
. From the non-autonomous hyperbolic

function solution (11), we can obtain the novel non-
autonomous rogue wave (NRW) solution

Ψ (x, t) = ρ e− ∫ t
0 r(s) dse−i

(
ω τ−iσ ρ2τ

)

×
[

1 − 2
1 + 2 iσ ρ2τ

σ ρ2

×
(

2 σ ρ2τ 2 + η2 + 1/2
1

σ ρ2

)−1
]

. (12)

Rogue waves (alias as freak waves, monster waves,
killer waves, giant waves or extreme waves), as an
important physical phenomenon, are localized both in
space and time. From the study of the phenomenon,
which depict a unique event that appears from nowhere
and disappears without a trace. Consequently, RW has
been studied extensively in other fields such as optics,
thunderstorms, earthquakes and hurricanes. A standard
RW is given in Fig. 2a, which has the all characters of
rogue wave and is localized both in time and in space.
From Fig. 2b, we can find that the parameter ρ has
an important effecting to the rogue wave. The RW can
change into a dark rogue wave when the ρ increases in
Fig. 2b.

We hope that find a way to catch RW for a long
time after their abrupt appearance through managing
the nonlinear function d(t). If we choose the free func-
tion as the d(t) of time t , Fig. 2c depicts the dynamical
behavior of the RW solution for a long time. A ‘long-
life’ NRW is obtained in Fig. 2c, which means that we
can catch the rogue wave in a larger time range. We
find a long-lived RW, which still seems to appear from
nowhere, but does not disappear likeNLSERWwithout
a trace. And, there is a novel phenomenon appearing in
Fig. 2d; one rogue wave and two bright soliton waves
appear in a plane wave at the same time.

We consider the NRW solution Ψ (x, t) in Eq. (12)
and some trajectories of extreme points in the cases
γ (t) = 0, a(t) = 1, d(t) = 1 and σ = 1, ρ = 1. We
note that the NRW solutionΨ (x, t) is localized both in
time and in space, so we can derive some trajectories
of extreme points:

{∂
(
|Ψ (x, t)|2

)
/∂t = 0, {∂

(
|Ψ (x, t)|2

)
/∂x = 0.

(13)
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Fig. 1 (Color online) aNB solution |Ψ | of (10) with γ (t) = 0, a(t) = 1 and d(t) = 1. bNB solution |Ψ | of (10) with γ (t) = 0.1 sin(t),
a(t) = t2 and d(t) = 1/t2. c NB solution |Ψ | of (10) with γ (t) = 0.1JacobiSN (2t, 1), a(t) = t and d(t) = 1/t2

It is easy to see that expressions (13) have some critical
points

(x1, t1) = (0, 0), (x2,3, t2,3) =
(

±1

2

√
6√

σρ
, 0

)

,

and

(x4,5, t4,5) =
⎛

⎝0,±1

2

√(
ρ4 − 2

) (
3 ρ4 − 2

)

(
ρ4 − 2

)
σ ρ2

⎞

⎠ , (14)

which arefive real roots of system {∂ (|Ψ (x, t)|2) /∂t =
0, {∂ (|Ψ (x, t)|2) /∂x = 0}.

The trajectories of extreme points (x, t) are maxi-
mum or minima, as

∂2
(|Ψ (x, t)|2)

∂x2
= 32∗ (15)

ρ2σ
(
16 ρ8σ 4t4 − 16 ρ6σ 3t2x2 − 64 ρ4σ 4t4 − 12 ρ4σ 2x4 + 160 ρ2σ 3t2x2 − 8 ρ4σ 2t2 + 36 ρ2σ x2 − 16 σ 2t2 − 3

)

(
4 ρ4σ 2t2 + 2 ρ2σ x2 + 1

)4 ,

and

∂2
(|Ψ (x, t)|2)

∂t2
∂2

(|Ψ (x, t)|2)
∂x2

−
(

∂2
(|Ψ (x, t)|2)

∂t∂x

)2

= A (16)

A = 2048 ρ2σ 3(192 ρ16σ 6t6 + 288 ρ14σ 5t4x2 −
1152 ρ12σ 6t6 + 144 ρ12σ 4t2x4 − 960 ρ10σ 5t4x2 −
432 ρ12σ 4t4+1536 ρ8σ 6t6+24 ρ10σ 3x6−96 ρ8σ 4t2

x4−432 ρ10σ 3t2x2+1536 ρ6σ 5t4x2+1696 ρ8σ 4t4+
48 ρ6σ 3x6 −108 ρ8σ 2x4 +384 ρ4σ 4t2x4 +608 ρ6σ 3

t2x2 + 228 ρ8σ 2t2 − 1024 ρ4σ 4t4 − 120 ρ4σ 2x4 +
114 ρ6σ x2+256 ρ2σ 3t2x2−248 ρ4σ 2t2−60 ρ2σ x2−
9 ρ4 +32 σ 2t2 +6)/− (

(
4 ρ4σ 2t2 + 2 ρ2σ x2 + 1

)7
),

which make the meaning of condition with the param-
eters.

The critical point (x, t) is maximum (peak), as

∂2
(|Ψ (x, t)|2)

∂x2
= −96 ρ2σ, for σ > 0, (17)

and

∂2
(|Ψ (x, t)|2)

∂t2
∂2

(|Ψ (x, t)|2)
∂x2

−
(

∂2
(|Ψ (x, t)|2)

∂t∂x

)2

= − 2048 ρ2σ 3 (− 9 ρ4 + 6
)
,

for σ > 0, ρ4 >
2

3
(18)

at point (0, 0). Similarly, two critical pointsΨ (x, t) are
minima (depressions), as

123



1872 F. Yu, L. Li

Fig. 2 (Color online) aNRWsolution |Ψ | of (12)with γ (t) = 0,
a(t) = 1, d(t) = 1 and σ = 1, ρ = 1. b NRW solution
|Ψ | of (12) with γ (t) = 0, a(t) = 1, d(t) = 1 and σ = 1,

ρ = 1.5. c NRW solution |Ψ | of (12) with γ (t) = 0, a(t) = 1,
d(t) = 0.2 cos(t) and σ = 1, ρ = 1. dNRW solution |Ψ | of (12)
with γ (t) = sin(t), a(t) = t2, d(t) = 1/t4 and σ = 1, ρ = 1

∂2
(|Ψ (x, t)|2)

∂x2
= 3 ρ2σ, forσ > 0

∂2
(|Ψ (x, t)|2)

∂t2
∂2

(|Ψ (x, t)|2)
∂x2

−
(

∂2
(|Ψ (x, t)|2)

∂t∂x

)2

= 24ρ2σ 3, for σ > 0

at points
(
± 1

2

√
6√

σρ
, 0

)
.

4 Non-autonomous rational solutions and
dynamical behaviors of NGP Eq. (2)

Some dynamics of higher-order rational solitons of the
NNLS equation are explained in [19]. However, the
non-autonomous rational (NR) solutions of the NGP
equationwithPT-external potential are not considered.
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Fig. 3 (Color online) a 1-order NR solution |Ψ | of (19) with
γ (t) = sin(t), a(t) = cos(t) and d(t) = 0.2 cos(t). b |Ψ | of
(19) with γ (t) = 0.1 sin(1.5t), a(t) = t and d(t) = 5/t . c |Ψ |

of (19) with γ (t) = sin(t), a(t) = t and d(t) = 1/t2. d |Ψ | of
(19) with γ (t) = 0, a(t) = 1 and d(t) = 0.1 cos(t)

In this section, we derive the non-autonomous 1-order
and 2-order rational solutions via similarity method.
Based on the similarity method and the solutions of
NNLS equation, we obtain the 1-order NR solution of
NGP Eq. (2) as following

Ψ (x, t) = ρ e− ∫ t
0 r(s) dse−i(ω τ−ρ2τ)

×2 ρ3
(−ρ2τ 2 + (a (t))2 x2

) + ρ + 2 iρ2 (2 ρ τ + a (t) x)

2 ρ2
(−ρ2τ 2 + (a (t))2 x2

) − 1 + 2 iρ a (t) x
,

τ (t) =
∫ t

0
(a (s))3 ds. (19)

The 1-order NR solution of NGP Eq. (2) exists
the multi-peaks in Fig. 3. Furthermore, we study the
dynamics of the 1-order NR solution and find that there
are two peaks in local field through managing the non-
linear functions in Fig. 3b.

In this section, we consider some dynamical behav-
iors of the 1-order NR solution (19) with γ (t) = 0,
a(t) = 1 and d(t) = 0.1 cos(t) in Fig. 4. Figure 4a
describes the exact 1-order NR solution (19), Fig. 4b
illustrates the time evolution of 1-order NR solution
without the perturbation, and Fig. 4c illustrates the time
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Fig. 4 (Color online) The 1-order NR solution (19) with γ (t) =
0, a(t) = 1 and d(t) = 0.1 cos(t). a The exact 1-order NR solu-
tion (19), b the time evolution of 1-order NR solution without the

perturbation, c the time evolution of 1-order NR solution with
the small noise perturbation 0.2

evolution of 1-order NR solution with the small noise
perturbation 0.2. We can note that the 1-order NR solu-
tion is almost stable in the time propagation in Fig. 4c.

In particular, we next will consider three kinds of
2-order NR solutions of NGP Eq. (2) in the different
cases.

Case I The first 2-order NR solution of NGP Eq. (2) is
given rise to

Ψ (x, t) = ρ e− ∫ t
0 r(s) dse−i(ω τ−ρ2τ)

(

−G1

F1

)

, (20)

with G1 = 16 η6 − 24 η4 − 144 η2 − 16 τ 6 +
48 τ 3 + 120 τ 4 + 144 τ 2 − 9 + 72 i + 48 iη5 +
72 iη3 − 180 i (η) − 144 iη2 + 96 iτ 5 + 96 iτ 3 −
144 iτ 2+144 η2 (τ )−48 η4τ 2+48 τ 4η2−192 η3 (τ )−
288 η2τ 2+192 (η) τ 3+144 (η) (τ )+144 i (η) (τ )+
48 i (η) τ 4 − 192 iη2τ 3 + 96 iη4 (τ ) − 216 i (η) τ 2 −
96 iη3τ 2 − 72 τ + 144 η, and F1 = 144 i (η) τ 2 +
36 i (η) + 48 i (η) τ 4 − 81 + 48 i − 96 iη3τ 2 +
144 i (η) (τ ) − 72 iτ 3 (η) + 144 η2 (τ ) + 48 τ 3 −
48 η4τ 2 + 48 τ 4η2 − 144 τ 2 + 72 τ − 24 iη3 + η5 −
16 τ 6+16 η6−72 η4−120 τ 4,η(x, t) = a(t)x, τ (t) =∫ t
0 (a (s))3 ds.

Case II The second 2-order NR solution of NGP Eq.
(2) is obtained as following

Ψ (x, t) = ρ e− ∫ t
0 r(s) dse−i(ω τ−ρ2τ)

(

−G2

F2

)

, (21)

with G2 = −16 τ 6 + 48 τ 3 + 120 τ 4 + 216 τ 2 +
16 η6 − 24 η4 − 72 η2 + 96 iη4 (τ ) + 144 i (η) (τ ) −

360 iτ 2 (η) − 45+ 72 i + 24 iη3 + 48 iη5 − 144 iη2 −
36 i (η) + 96 iτ 5 + 96 iτ 3 − 144 iτ 2 − 144 i (τ ) +
144 η2 (τ )−48 η4τ 2+48 τ 4η2−192 η3 (τ )−288 η2τ 2+
192 (η) τ 3 −144 (η) (τ )−192 iη2τ 3 +48 i (η) τ 4 −
96 iη3τ 2 − 72 τ + 144 η, and F2 = −45 + 48 i +
48 i (η) τ 4−72 iη3+36 i (η)−96 iη3τ 2−72 iτ 3 (η)+
144 η2 (τ ) + 48 τ 3 − 48 η4τ 2 + 48 τ 4η2 + 72 τ +
144 i (η) (τ )+ η5 − 16 τ 6 + 16 η6 − 72 η4 − 120 τ 4 +
72 η2 − 72 τ 2, η(x, t) = a(t)x, τ (t) = ∫ t

0 (a (s))3 ds.

Case III The third 2-order NR solution of NGP Eq. (2)
is derived as following

Ψ (x, t) = ρ e− ∫ t
0 r(s) dse−i(ω τ−ρ2τ)

(

−G3

F3

)

(22)

with G3 = 27 + 72 iη3 + 48 i (η) τ 4 − 192 iη2τ 3 +
48 iη5 + 96 iτ 5 − 216 i (η) τ 2 + 96 iτ 3 + 96 iη4 (τ )−
96 iη3τ 2−180 i (η)−48 η4τ 2+48 τ 4η2−192 η3 (τ )−
288 η2τ 2+192 (η) τ 3+144 (η) (τ )−16 τ 6+16 η6−
24 η4 +120 τ 4 −144 η2 +144 τ 2, and F3 = 36 i (η)−
72 iτ 3 (η) − 24 iη3 − 45 + 48 i + 144 i (η) τ 2 −
96 iη3τ 2+48 i (η) τ 4−48 η4τ 2+48 τ 4η2−144 τ 2+
η5 − 16 τ 6 + 16 η6 − 72 η4 − 120 τ 4, η(x, t) =
a(t)x, τ (t) = ∫ t

0 (a (s))3 ds.
The 2-order NR solutions (20)–(22) of NGP Eq. (2)

are shown in Fig. 5. The 2-order NR soliton exhibits
the strong interaction in Fig. 5a. And, the 2-order NR
soliton is split into the interactions of multi-bright soli-
tons and two dark solitons in Fig. 5b, which are multi-
bright solitons and multi-dark solitons happened at the
same time. It is interesting to note that the 2-order
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Fig. 5 (Color online) a 2-order NR solution |Ψ | of (20) with
γ (t) = 0.1 sin(t), a(t) = t2 and d(t) = 1/t4. b |Ψ | of (21)
with γ (t) = 0.1 sin(t), a(t) = t2 and d(t) = 1/t4. c |Ψ | of

(22) with γ (t) = 0, a(t) = 1 and d(t) = 1. d |Ψ | of (22) with
γ (t) = 0.1JacobiSN (2t, 1), a(t) = t and d(t) = 1/t2

NR solution has the strong interaction on the hill in
Fig. 5d.

We also consider the dynamical behaviors of the 2-
order NR solution (20) with γ (t) = 0, a(t) = 1 and
d(t) = 0.1 cos(t) in Fig. 6. Figure 6a describes the
exact 2-order NR solution (20), Fig. 6b illustrates the
time evolution of 2-order NR solution without the per-
turbation, and Fig. 6c illustrates the time evolution of
2-order NR solution with the small noise perturbation
0.2. We can find that the 2-order NR solution is almost
unstable in the time propagation in Fig. 6c.

A ‘mild’ modulation instability (MI) can permit a
readily observableNR solution,while a ‘strong’MI can

‘overwhelm’ or ‘mask’ the development. When the MI
effect is weak, a NR solution can be readily observed
(Figs. 4c, 6c). We have presented a bright soliton solu-
tion of NGP equation with external potential in Fig. 3d.
Moreover, the stability of the obtained analytical soli-
ton solution is investigated by using numerical simula-
tions and the stable solution is found in a broad range of
parameter. The evolution of the amplitude Fig. 4c with
the background noise of 0.2 is shown, we can find that
the formation of aNR solutionwith almost no influence
from the background of modulation instability. It is
observed fromFig. 4c that the bright exact solution (19)
is dynamically stable with the choosing parameters. In
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Fig. 6 (Color online) The 2-order NR solution (20) with γ (t) =
0, a(t) = 1 and d(t) = 0.1 cos(t). a The exact 2-order NR solu-
tion (20), b the time evolution of 2-order NR solution without the

perturbation, c the time evolution of 2-order NR solution with
the noise perturbation 0.2

addition, we can find that the phase noise regime of the
stable solution is larger than the usual soliton solution
through appropriately adjusting the free parameters and
analyzing the phase noise, respectively.

5 Conclusions

We studied the GNNH equation with variable coeffi-
cients and NGP equation with the self-induced PT-
symmetric potential by using similarity reduction,
Hirota method and Darboux transformation. Further-
more, we obtained some NB solutions, NRW solu-
tions and NR solutions of GNNH equation, which are
different from the solutions of some local nonlinear
equations. The trajectories of peaks and depressions of
the non-autonomous rogue waves were produced by
means of analytical method, and the dynamical stabili-
ties of theNR solutionwere derived through the numer-
ical method. We derived the multi-bright solitons and
multi-dark solitons happened at the same time, which
is interesting to note that a 2-order NR solutionwith the
strong interaction on the hill. In particular, some trajec-
tories of motion of peaks and depressions of the 1- and
2-order NRWs were produced through the analytical
and numerical methods. The obtained different results
might be useful to explain the correspondingwave phe-
nomena in nonlocal wave models. In the next research
work,wewill further consider the coupled soliton equa-
tion with the self-induced PT-symmetric potential and
derive some novel rational solutions. Furthermore, the

stabilities and dynamics of the solutions will be tested
through the numerical method.
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