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Abstract The fractional-order derivative is a pow-
erful and promising concept to describe many phys-
ical phenomena due to its heredity/memory feature.
This paper aims to establish a general methodology
for parameter identification of nonlinear fractional-
order systems based on the time domain response
data and the sensitivity analysis. The development of
the enhanced response sensitivity approach is mainly
threefold. Firstly, a computational scheme based on the
Adams-type discretization and theNewmark-β method
is presented to get the numerical solution of the nonlin-
ear fractional-order systems. Thereafter, a hybrid strat-
egy is developed to proceed the sensitivity analysis
where the sensitivity to the fractional-order parameters
is obtained through finite different calculation, while
the sensitivity to other parameters is analyzed via direct
differentiation. Secondly, the trust-region constraint is
incorporated into the response sensitivity approach, and
as a result, a weak convergence is reached. Thirdly, the
optimal choice of the weight matrix within the frame-
work of the response sensitivity approach is derived by
minimizing the identification error, and eventually, the
reciprocal of themeasurement error covariance is found
to be the optimal weight matrix. Numerical examples
are conducted to testify the feasibility and efficiency
of the present approach for parameter identification
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of nonlinear fractional-order systems and to verify the
improvement in the identification accuracy brought up
by the optimal weight matrix.
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1 Introduction

Fractional-order derivatives are the fundamental theo-
ries of fractional-order dynamical systems with a his-
tory as long as calculus [1]. Compared to the integer-
order derivatives, fractional-order derivatives are much
more complex in both definitions and numerical calcu-
lations. Nevertheless, due to the simple form in model-
ing and the heredity/memory feature [2,3], fractional-
order derivatives have been widely used in many sci-
entific and engineering systems, such as viscoelastic-
ity system [4], electrode–electrolyte polarization [5],
signal processing [6], quantitative finance [7] and elec-
tromagnetic wave [8]. A critical thing before analysis
and design of such fractional-order systems is that the
parameters including the fractional-order parameters
and other system parameters should be calibrated or
identified, and this is just the goal of this work.

Classically, identifying or calibrating the parame-
ters of the fractional-order systems from the measured
response data belongs to a class of inverse problems.
Following the general idea, the parameter identification
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problem can be modeled as a nonlinear least-squares
optimization problem whose objective function is the
weighted least squares of the misfit between the mea-
sured and calculated response data. Over the years, two
main categories of methods have been developed to get
the solution of the optimization problem, and they are
the meta-heuristic algorithms and the gradient-based
methods.

The meta-heuristic algorithms such as the genetic
algorithm [9,10], the artificial bee colony algorithm
[11], the hybrid stochastic fractal search algorithm
[12], the particle swarm optimization algorithm [13]
have been widely used in many optimization problems,
including parameter identification of fractional-order
systems [12,13]. In such algorithms, only the forward
problems are required to be solved and no sensitiv-
ity analysis is involved [12]; this renders the whole
identification procedure very simple. Moreover, these
algorithms are free from the careful determination of a
proper choice of initial parameters and the global min-
ima can often be reached. However, due to the random
search nature, the meta-heuristic algorithms will admit
a considerable number of iterations and thereof a quite
slow convergence speed. In particular for parameter
identification of the fractional-order systems, the slow
convergence speed would give rise to the prohibitively
high computational cost because even a single forward
problem should be solved in a costly manner.

In contrast, much quicker convergence is often
reached by the gradient-based methods where the gra-
dient or more specifically the sensitivity analysis is
involved.Notwithstanding, due to the complexity in the
sensitivity analysis, limited publications can be found
for parameter identification of the fractional-order sys-
tems using the gradient-based methods. On the one
hand, for linear fractional-order systems, the frequency
response function is much simpler to describe the
fractional-order systems than the dynamic equations.
Therefore, the frequency response data were often pre-
ferred to establish the objective function [14,15]. Based
on this objective function, Poinot and Trigeassou [14]
proposed to use the Levenberg–Marquardt algorithm
[16] to get the solution where only the first-order sen-
sitivity analysis is required; Leyden andGoodwine [15]
directly applied the sequential quadratic programming
algorithm to identify the parameters, and to do so, the
fmincon function in MATLAB is simply called. On
the other hand, for nonlinear fractional-order systems,
only the time domain response data can be used. To this

end, Mani et al. [17] defined the objective function as
the least squares of the error in the dynamical equation
and thereafter developed a two-step iteration algorithm
to identify the parameters on considering the complex-
ity of the fractional-order derivative term. Specifically,
in each iteration, two steps are involved: In the first step,
the parameters excluding the fractional-order parame-
ters are quickly determined from themeasured data and
the assumed fractional-order parameters, while in the
second step, the fractional-order parameters are to be
estimated through a gradient search procedure. How-
ever, all state variables are required to be measured in
order to carry out the two-step algorithm and the system
is required to be linearly dependent on the parameters
excluding the fractional-order parameters. As a con-
sequence, new gradient-based methods for parameter
identification of general nonlinear fractional-order sys-
tems with partial time domain measurements are still
in demanded.

In this paper, the focus is to establish a general
methodology for parameter identification of nonlinear
fractional-order systems, and before doing so, some
properties of nonlinear fractional-order systems are
summarized below

– For nonlinear systems, the Laplace/Fourier trans-
formation cannot be conducted in a simple and
straightforward manner as for the linear systems.
Thus, the time domain response data rather than the
frequency response data should be used for param-
eter identification.

– For nonlinear fractional-order systems, the forward
problem should be numerically solved in a very
costly manner, and therefore, the gradient-based
methods rather than the meta-heuristic algorithms
are preferred for parameter identification.

– The fractional-order derivative term is much more
complex than the integer derivatives, and therefore,
special attention should be paid to the sensitivity
analysis with respect to the fractional-order param-
eters when using the gradient-based methods.

On considering these properties, the enhanced response
sensitivity method which is primitively proposed and
developed by Lu and his co-workers [18,19] for dam-
age identification is found to be suitable for parame-
ter identification of nonlinear fractional-order systems.
The reasons are given in the following:

– The enhanced response sensitivity approach per-
tains to the gradient-based methods and has been
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shown to admit a quick convergence in damage
identification [19].

– Unlike the Newton method where the second-order
sensitivity is involved, only the first-order sensi-
tivity analysis is required so that the enhanced
response sensitivity approach becomes simpler and
computationally cheaper than the Newton method.

– The enhanced response sensitivity approach has
been proved to be weakly convergent for param-
eter identification problems [19].

Actually, the enhanced response sensitivity approach
has been successfully used to parameter identifica-
tionof chaotic/hyperchaotic systems [20] andnonlinear
hysteretic systems [21], and this to some extent shows
that the enhanced response sensitivity approach would
be a feasible tool for parameter identification of non-
linear fractional-order systems in this paper. Conse-
quently, the contributions of the whole work aremainly
threefold:

– Firstly, a new and practical hybrid strategy for
sensitivity analysis of nonlinear fractional-order
systems is developed. In doing so, the sensitiv-
ity to the fractional-order parameters is calculated
through finite difference, while the sensitivity to
other parameters is obtained through direct differ-
entiation;

– Secondly, a generic framework for parameter iden-
tification of nonlinear fractional-order systems
is established based on the sensitivity analysis.
Such a framework can be applied for general lin-
ear/nonlinear fractional-order systems and arbi-
trary type of measurements, e.g., partial time
domain measurements.

– Thirdly, an optimal choice of the weight matrix
as the reciprocal of the measurement error covari-
ance for general nonlinear parameter identification
is derived theoretically to minimize the expectation
of the squares of the identification error.

The remainder of this paper is structured as follows.
In Sect. 2, a numerical scheme based on the Adams-
type discretization and the Newmark-β method is pre-
sented for numerical solution of nonlinear fractional-
order systems. In Sect. 3, how to identify the parameters
from the time domain response data by the enhanced
response sensitivity approach is elaborated. Herein, a
hybrid strategy is developed to proceed the sensitivity
analysis and the optimal choice of the weight matrix
is also derived theoretically. Numerical examples are

studied in Sect. 4, and the final conclusions are drawn
in Sect. 5.

2 Formulation of forward problem

Consider a typical nonlinear fractional-order system
over the time interval [0, T ]whose governing equation
is

Mq̈ + CDαq + Kq + F
(
ξ, q, q̇

) = P(t), t > 0

q(0) = q0, q̇(0) = q̇0
(1)

where

– M,C, K and ξ represent the respective mass
matrix, damping matrix, stiffness matrix and the
parameters in the nonlinear term F

(
ξ, q, q̇

)
, and

P(t) denotes the external loading vector;
– q = [q1; q2; . . . ; qN ], q̇, q̈ are the displacements,
velocities and accelerations, respectively, and for
this dynamical problem, q0, q̇0 are initial displace-
ments and velocities;

– α = [α1;α2; . . . ;αl ] are the fractional-order
parameters and Dαq is the fractional-order dif-
ferential vector that has been shown to pose the
effect of damping. Herein, the Caputo fractional-
order derivative is used so that Dαq, 0 < α < 1 is
defined as

Dαq = 1

Γ (1 − α)

∫ t

0

q̇(τ )

(t − τ)α
dτ. (2)

As for parameter identification of such a system (1) in
this paper, the parameters χ = [χ1;χ2; . . . ;χm] ∈ P
withP being the admissible parameter space shall con-
tain the fractional-order parameters α, the nonlinear
term parameters ξ , and the parameters in M,C, K
and even the load P(t). From the complex definition
of the fractional-order derivative in equation (2), the
fractional-order parameters α should receive particular
attention in parameter identification, and therefore, it
is set that χ = [χ̂;α] where χ̂ collects the parameters
excluding the fractional-order parameters.

Remark 1 Herein, somenonlinear fractional-order sys-
tems are presented for exemplification. The simplest
model of nonlinear fractional-order systems in the form
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of Eq. (1) is theDuffing oscillator [17]which has a non-
linearity in stiffness, that is,

mq̈ + cDαq + kq + εq3 = F cos(Ωt). (3)

Besides, the van der Pol oscillator is a self-excited sys-
tem with nonlinearity appearing in the damping, lead-
ing to

mq̈ + cDαq (q2 − 1) + kq = F cos(Ωt). (4)

Combining the above two, the forced van der Pol–
Duffing oscillator is obtained

mq̈ + cDαq (q2 − 1) + kq + εq3 = F cos(Ωt). (5)

In the above oscillators, the fractional-order derivative
term occurs in the damping; nevertheless, it can also
appear in the acceleration term, e.g., the extended Van
der Pol oscillator

mD1+αq + cq̇(q2 − 1) + kq + εq3 = F cos(Ωt). (6)

It is noteworthy that only the Duffing oscillator fits
with the form (1) in this paper; nevertheless, analy-
sis and parameter identification of other forms of the
nonlinear fractional-order systems, e.g., (4)–(6), can be
proceeded likewise.

For thenonlinear fractional-order system (1), numer-
ical methods should be called to get the approximate
solution. To do so, a series of time nodes 0 = t0 <

t1 < · · · < tl = T is obtained at first, and then,
qn = q(tn), q̇n = q̇(tn), q̈n = q̈(tn) are to be succes-
sively derived from qn−1, q̇n−1, q̈n−1. Following the
general idea of the Newmark-β method, one can have

q̇n = γ

β
t
(qn − qn−1) +

(
1 − γ

β

)
q̇n−1

+
(
1 − γ

2β

)

t q̈n−1

q̈n = 1

β
t2
(qn − qn−1) − 1

β
t
q̇n−1

−
(

1

2β
− 1

)
q̈n−1

(7)

where β and γ are the two parameters of Newmark-
β method and 
t = tn − tn−1 is the time step size.
One difficulty in numerical solution of the nonlinear

fractional-order systems resides at the numerical treat-
ment of the fractional-order derivative term Dαq (2),
and usually, an Adams-type discretization scheme can
be used

Dαq(tn)
.= 
t1−α

Γ (3 − α)

(
n−1∑
i=0

ci,nq̇i + cn,nq̇n

)
(8)

where q̇i = q̇(ti ) and ci,n is the quadrature coefficient
with the following form

ci,n =

⎧⎪⎪⎨
⎪⎪⎩

n2−α − (n − 1 + α)(n + 1)1−α i = 0

(n − i + 2)2−α + (n − i)2−α − 2(n − i + 1)2−α 1 ≤ i ≤ n − 1

1 i = n.

(9)

To be complete, Eq. (1) at time tn should be additionally
introduced, that is,

Mq̈n + CDαq(tn) + Kqn + F
(
ξ , qn, q̇n

) = P(tn).

(10)

Combination of Eqs. (7), (8) and (10) can lead to
a nonlinear equation about qn, and such a nonlinear
equation can be solved by the Newton–Raphson itera-
tion method. It should be pointed out that this strategy
requires qn to have a suitable initial guess value. In
addition to the Newton–Raphson iteration method, one
can cope with the nonlinear term F

(
ξ , qn, q̇n

)
by the

Taylor expansion, i.e.,
F
(
ξ , qn, q̇n

) = F
(
ξ , qn−1, q̇n−1

)

+∂F
(
ξ , qn−1, q̇n−1

)
∂q

(qn − qn−1)

+∂F
(
ξ , qn−1, q̇n−1

)
∂ q̇

(q̇n − q̇n−1).

(11)

Then, using (11), qn shall be obtained by directly solv-
ing a linear equation. The Taylor expansion makes the
solution easily obtained; however, the accuracy would
be substantially degraded, and thereof, the time step
size should be small enough.

Remark 2 The above numerical solution is derived
upon the condition 0 < α < 1 for the fractional-order
parameter; nevertheless, if 1 < α < 2, the fractional
derivative Dαq is in another form,

Dαq = 1

Γ (2 − α)

∫ t

0

q̈(τ )

(t − τ)α−1 dτ, (12)
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and then, the numerical solution can be obtained like-
wise via replacing Eq. (8) by the followingAdams-type
discretization scheme

Dαq(tn) = 
t2−α

Γ (4 − α)

( n−1∑
i=0

di,nq̈i + dn,nq̈n

)
(13)

where the quadrature coefficient di,n has the following
form

di,n =

⎧⎪⎪⎨
⎪⎪⎩

n3−α − (n − 2 + α)(n + 1)2−α i = 0

(n − i + 2)3−α + (n − i)3−α − 2(n − i + 1)3−α 1 ≤ i ≤ n − 1

1 i = n.

(14)

3 Parameter identification of nonlinear
fractional-order systems

3.1 Inverse problem formulation

For inverse problems, the parameters χ are to be iden-
tified from the measured time domain response data
that may contain the displacement response and/or the
acceleration response. Assume that the measured time
domain response data over the sampling time nodes
0 = t0 < t1 < · · · < tl = T is designated as

R̂ =
{[q̂ j (t1), q̂ j (t2), . . . , q̂ j (tl)]T , j ∈ Sq

[ ˆ̈qk(t1), ˆ̈qk(t2), . . . , ˆ̈qk(tl)]T , k ∈ Sq̈

}
(15)

where q̂ j (ti ), ˆ̈qk(ti ) denote the j th displacement and
the kth acceleration at time ti and Sq , Sq̈ collect all
measured displacement and acceleration DOFs. From
the forward problem (1) and the numerical solution pro-
cedure thereafter, it is easily deduced that the solution
is an implicit function of the time and the parameters,
i.e., q = q(t,χ). Then, the calculated data that are
derived from governing Eq. (1) under the given param-
eters χ in correspondence to the measured data are also
an implicit function of the parameters χ with the fol-
lowing expression

R(χ) =
{[q j (t1, χ), q j (t2, χ), . . . , q j (tl , χ)]T , j ∈ Sq

[q̈k(t1, χ), q̈k(t2, χ), . . . , q̈k(tl , χ)]T , k ∈ Sq̈

}
.

(16)

With the above preparation, the parameter identifica-
tion problem can be stated as: Determine the param-

eters χ ∈ P that minimize the misfit between the
measured data (15) and the calculated data (16), or
mathematically, find the solution χ∗ ∈ P of the fol-
lowing weighted nonlinear least-squares optimization
problem,

χ∗ = arg min
χ∈P
{
h̄(χ) :=‖R̂ − R(χ)‖2W

}
(17)

where h̄(χ) is the objective function, ‖(·)‖W =√
(·)TW(·) and W is a user-defined positive definite

weight matrix. Problem (17) is a typical nonlinear opti-
mization problem, and the enhanced response sensitiv-
ity approach [19] that has been shown to be suitable for
solution of such kind of problems will be called to get
the solution. In doing so, the following three aspects
should be clarified for the sake of completeness:

1. At first, the sensitivity analysis of the nonlinear
fractional-order system (1) should be conducted to
get the sensitivity matrix.

2. Next, the trust-region constraint is introduced along
with the sensitivitymatrix to get the solutionχ∗ and
to enhance the convergence property.

3. Finally, based on the above solution, the optimal
choice of the weight matrix W shall be derived to
minimize the expectation of the squares error in the
identification parameters from the noised response
data.

The above three aspects are to be elaborately analyzed
in Sects. 3.2, 3.3 and 3.4, respectively.

3.2 Time domain sensitivity analysis

The sensitivity analysis is indispensable for solution
of the inverse problem (17) by the gradient-based
methods, including the enhanced response sensitivity
approach. In this paper, the response sensitivities with
respect to the parameters

χi ∈ χ · · · ∂q
∂χi

,
∂ q̈
∂χi

, , i ∈ {1, 2 . . .m} (18)

are to be obtained through a hybrid strategy, that is,

– For the sensitivity to the fractional-order parame-
ters αi ∈ α ⊂ χ , direction differentiation of the
fractional-order derivative term Dαi q with respect
to αi is very complex and would give rise to the pro-
hibitively high computation cost. Instead, the finite
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difference scheme is reasonably used to approx-
imately compute the sensitivity to the fractional-
order parameters herein. Specifically, let αε,i be the
parameters obtained after the small perturbation of
α so that αi ∈ α is perturbed to αi + ε ∈ αε,i and
others keep unchanged. Then, the sensitivity can be
obtained by central difference

∂q
∂αi

= q(t, [χ̂;αε,i ]) − q(t, [χ̂;α−ε,i ])
2ε

,

∂ q̈
∂αi

= q̈(t, [χ̂;αε,i ]) − q̈(t, [χ̂;α−ε,i ])
2ε

(19)

where ε is a small enough positive number and
q(t, [χ̂;αε,i ]), q̈(t, [χ̂;αε,i ]) (resp. q(t, [χ̂;α−ε,i ]),
q̈(t, [χ̂;α−ε,i ])) are acquired by solving the forward
problem (1) under the parameters [χ̂;αε,i ] (resp.
[χ̂;α−ε,i ]). In this paper, ε = 0.001 is taken.

– For the sensitivity to other parameters χi ∈ χ̂ ⊂ χ ,
direct differentiation leads to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M
∂ q̈
∂χi

+ CDα ∂q
∂χi

+ K
∂q
∂χi

+ ∂F
(
ξ, q, q̇

)
∂ q̇

∂ q̇
∂χi

+ ∂F
(
ξ, q, q̇

)
∂q

∂q
∂χi

= ∂ P(t)

∂χi
−
(

∂M
∂χi

q̈ + ∂C
∂χi

Dαq + ∂K
∂χi

q

+ ∂F
(
ξ, q, q̇

)
∂χi

)

∂q
∂χi

(0) = 0,
∂ q̇
∂χi

(0) = 0

(20)

where
∂F
(
ξ,q,q̇
)

∂ q̇ = [ ∂F
(
ξ,q,q̇
)

∂q̇1
, . . . ,

∂F
(
ξ,q,q̇
)

∂q̇n
] and

∂F
(
ξ,q,q̇
)

∂q = [ ∂F
(
ξ,q,q̇
)

∂q1
, . . . ,

∂F
(
ξ,q,q̇
)

∂qn
]. Obvi-

ously, sensitivity Eq. (20) is again a nonlinear
fractional-order equation and can be solved in a sim-
ilar way as described in Sect. 2.

With the above sensitivities obtained, the sensitivity
matrix S(χ) corresponding to the calculated data R(χ)

is assembled in the following way

S(χ) = ∇χ R(χ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∇χ

⎛
⎜⎝
q j (t1)

...

q j (tl)

⎞
⎟⎠ , j ∈ Sq

∇χ

⎛
⎜⎝
q̈k(t1)

...

q̈k(tl)

⎞
⎟⎠ , j ∈ Sq̈

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

∇χ

⎛
⎜⎝
q j (t1)

...

q j (tl)

⎞
⎟⎠ =

⎛
⎜⎜⎝

∂q j (t1)
∂χ1

,
∂q j (t1)
∂χ2

. . .
∂q j (t1)
∂χm

...
∂q j (tl )
∂χ1

,
∂q j (tl )
∂χ2

. . .
∂q j (tl )
∂χm

⎞
⎟⎟⎠ ,

∇χ

⎛
⎜⎝
q̈k(t1)

...

q̈k(tl)

⎞
⎟⎠ =

⎛
⎜⎜⎝

∂q̈k (t1)
∂χ1

,
∂q̈k (t1)
∂χ2

. . .
∂q̈k (t1)
∂χm

...
∂q̈k (tl )
∂χ1

,
∂q̈k (tl )
∂χ2

. . .
∂q̈k (tl )
∂χm

⎞
⎟⎟⎠ .

(21)

In what follows, the sensitivity matrix S(χ) will be
shown to play a significant role for parameter identifi-
cation by the enhanced response sensitivity approach.

3.3 Enhanced response sensitivity approach

The parameter identification problem (17) is a nonlin-
ear and non-quadratic optimization problem, and there-
fore, it should be solved iteratively by the gradient-
based methods, for which the general procedure reads:
Given the initial parameters χ (0), the following suc-
cessively update procedure is called for k = 1, 2, . . . ,

χ (k) = χ (k−1) + δχ (k) (22)

until convergence. The key of the iterative solution pro-
cedure lies in how to quickly find a reasonable update
δχ based on the arbitrarily known parameters χ̄ ∈ P
such that h̄(χ̄+δχ) is as small as possible. A usual way
is to linearize the nonlinear residual R̂− R(χ̄ + δχ) at
χ̄ such that the original nonlinear least-squares objec-
tive function h̄(χ̄ + δχ) is approximately transformed
into a linear least-squares objective function ˆ̄h(δχ , χ̄)

[16,19], i.e.,

R̂ − R(χ̄ + δχ) ≈ δR(χ̄) − S(χ̄)δχ; δR(χ̄)

:= R̂ − R(χ̄)

⇒ ˆ̄h(δχ , χ̄) = ||δR(χ̄) − S(χ̄)δχ ||2W
(23)
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where the sensitivity matrix S(χ̄) has been defined in
Eq. (21).

The approximate linear least-squares problem (23)
can be easily solved; however, to be proper, the update
δχ should be small enough so that the linearization
becomes sensible, or ˆ̄h(δχ , χ̄) agrees well with h̄(χ̄ +
δχ); this is also known as the trust-region constraint.
To measure how well ˆ̄h(δχ , χ̄) agree with h̄(χ̄ + δχ),
an agreement indicator is defined


(δχ , χ̄) = h̄(χ̄) − h̄(χ̄ + δχ)

ˆ̄h(0, χ̄) − ˆ̄h(δχ , χ̄)

= ‖δR(χ̄)
∥∥2
W−‖δR(χ̄ + δχ)

∥∥2
W

‖δR(χ̄)
∥∥2
W−‖δR(χ̄) − S(χ̄)δχ

∥∥2
W

.

(24)

Usually, good agreement requires the satisfaction of the
agreement condition, i.e.,


(δχ , χ̄) ≥ 
cr ∈ [0.25, 0.75]. (25)

Under the fact that ˆ̄h(0, χ̄) ≥ ˆ̄h(δχ , χ̄), the agreement
condition guarantees that the update δχ is always in
the descending direction, or h̄(χ̄) ≥ h̄(χ̄ + δχ). To
conclude, the trust-region constraint is mathematically
stated as: Find a small enough update δχ so that the
agreement condition (25) is satisfied.

Usually, the trust-region constraint shall be tack-
led by solving an inequality-constrained optimization
problem [16,22], which is cumbersome and costly.
Luckily, Lu and Wang [19] have proved that the trust-
region constraint is equivalent to the Tikhonov regular-
ization with a proper regularization parameter. Specif-
ically, incorporating the Tikhonov regularization into
the approximate goal function ˆ̄h(δχ , χ̄) results in

δχλ = arg min
δχ∈P−χ̄

||δR(χ̄) − S(χ̄)δχ ||2W + λ||δχ ||2

= [ST (χ̄)W S(χ̄) + λI
]−1

ST (χ̄)WδR(χ̄)

(26)

where λ ≥ 0 is the regularization parameter, || · ||
is the usual �2-norm for vectors and I denotes the
identity matrix. The reason why the Tikhonov regu-
larization can be used to cope with the trust-region
constraint resides at the fact that under the condition∥∥ST (χ̄)WδR(χ̄)

∥∥ �= 0, there holds [19]

lim
λ→+∞ 
(δχ , χ̄) = 1 > 
cr ∈ [0.25, 0.75]. (27)

The result (27) indicates that the agreement condition
can always be satisfied for a large enough regulariza-
tion parameter λ. In other words, there exists a criti-
cal regularization parameter λcr so that the agreement
condition is satisfied for all λ ≥ λcr. A practical way to
determine a proper regularization parameter λ so that
the trust-region constraint is verified can be found in
references [19,21], and then, the proper update δχλ

based on the known parameters χ̄ ∈ P is obtained.
Along these lines, the iterative solution procedure (22)
can proceed for which the algorithmic details are listed
in Table 1 and it has been proved that such an approach
is weakly convergent [19], i.e.,

lim
k→0

||∇χ h̄(χ (k))|| = 0. (28)

3.4 Optimal choice of weight matrix

Section 3.3 presents the enhanced response sensitivity
approach for parameter identification of the nonlinear
fractional-order system (1) under the measured data R̂
and the user-defined weight matrix W ; nevertheless,
a good choice of the weight matrix W remains to be
determined; this is to be investigated in the following.

Let χex be the exact parameters and assume that
the measured data admits some small perturbations (or
measurement noises), i.e.,

R̂ = R(χex) + ε (29)

where ε denotes the measurement noise vector, per-
taining to the Gaussian distribution with zero means
and the positive definite covariance Q = E[εεT ] with
E[·] being the expectation operator. Then, the identi-
fied solution χ∗ (see (17)) is reasonably believed to be
in the vicinity of χex by referring to the weak conver-
gence (28), or ||χ∗−χex|| is small enough. In this way,
the objective function h̄(χ) for all χ in the vicinity of
χex can be approximately treated by resorting to the
Taylor expansion as follows

h̄(χ) =‖R(χex)+ε−R(χ)‖2W ≈‖ε−S·(χ −χex)‖2W
(30)

where S = S(χex) is the sensitivity matrix under
the exact parameters. Considering the definition of the
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Table 1 Flowchart of enhanced response sensitivity approach

1: Set the initial parameters as χ (0) and define the error tolerance of convergence

criterion tol

2: Fix the maximum numbers of the whole iterations and the trust-region steps as

Nit and Ntr . Define the trust-region parameters: the critical agreement indicators


cr ∈ [0.25, 0.75] and the amplification factor σ > 1

3: Load the measured response data R̂ and the user-defined weight matrix W

4: For k = 1 : Nit

5: Get the response R
(
χ (k−1)

)
of the nonlinear fractional-order system (1) and

compute the response residual δR = R̂ − R
(
χ (k−1)

)
6: Obtain the sensitivity matrix S

(
χ (k−1)

)
through the sensitivity analysis in Sect. 3.2

7: Use the L-curve method [23,24] to get the regularization parameter λL (χ (k−1))

8: For i = 1 : Ntr

9: Set the regularization parameter λ = λL (χ (k−1))σ i−1

10: Obtain the update δχ by Tikhonov regularization (26), if χ (k−1) + δχ /∈ P , continue

11: Compute the new response R
(
χ (k−1) + δχ

)
and the new response

residual δRnew = R̂ − R
(
χ (k−1) + δχ

)
12: Compute the agreement indicator 
(δχ,χ (k−1)), if 
(δχ,χ (k−1)) ≥ 
cr , break

13: End for

14: Update the parameters χ (k) = χ (k−1) + δχ , if
∥∥δχ∥∥/∥∥χ (k)

∥∥ ≤ tol, break

15: End for

identified solution in (17) and the approximate form of
h̄(χ) in (30), there yields

χ∗ ≈ argmin
χ

‖ε − S · (χ − χex)‖2W
⇒ χ∗ − χex ≈ LWε; LW := [STWS]−1STW .

(31)

By Eq. (31), the identification error would also be ran-
dom numbers with approximately zero means if the
measurement error ε pertains to random distribution
with zeromeans. In this way, the optimal weight matrix
W shall render the expectation of the squares of the
identification error E[(χ∗ − χex)T (χ∗ − χex)] mini-
mized. To go further, note that (χ∗ −χex)T (χ∗ −χex)

is a scalar number, and therefore, the following would
hold

(χ∗ − χex)T (χ∗ − χex)

= tr((χ∗ − χex)T (χ∗ − χex))

= tr((χ∗ − χex)(χ∗ − χex)T ), (32)

and then, by referring to Eq. (31), one can have

E[(χ∗ − χex)T (χ∗ − χex)]
= E[tr((χ∗ − χex)(χ∗ − χex)T )]
≈ E[tr(LWεεT LW

T )] = tr(LW QLW
T ) (33)

where tr(·) denotes the trace of a matrix and Q =
E[εεT ] is used. Eventually, with the result (33), the
optimal weight matrix problem is stated as:

Find positive definite W ,

Minimize E[(χ∗ − χex)T (χ∗ − χex)]
≈ tr(LW QLW

T ).

(34)

In following theorem, the optimal weight matrix by
solving the problem (34) is to be derived.

Theorem 1 The optimal weight matrix that minimizes
F(W) := tr(LW QLW

T ) is

Wopt = cQ−1, c > 0, (35)

and then, there is

F(Wopt) = tr([ST Q−1S]−1). (36)
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Proof The optimization problem is solved upon the
auxiliary matrix LW rather than directly upon the
weight matrix W . At first, considering the definition
of LW in Eq. (31), an additional equality constraint is
essentially introduced,

LW S = I (37)

and the optimization problemover LW is found to be an
equality-constrained optimization problem that can be
solved by resorting to the Lagrange multiplier method.
Next, to get the minimum solution of F(W) under the
constraint (37), a Lagrange function is defined

�(LW ,�) = tr(LW QLW
T ) + tr((I − LW S)�) (38)

where � is the auxiliary Lagrange multiplier matrix to
enforce the constraint (37). Optimization of �(LW ,�)

over LW results in

2QLW
T = S� ⇒ LW

T = 1

2
Q−1S�. (39)

Combination of Eqs. (39) and (37) yields

� = 2(ST Q−1S)−1. (40)

Then, substituting Eq. (40) into Eq. (39), there would
be

LW
opt = (ST Q−1S)−1ST Q−1,

tr(LW
opt Q(LW

opt)T ) = tr([ST Q−1S]−1).
(41)

Finally, the conclusions (35) and (36) follow naturally
from Eq. (41) and the definition of LW in Eq. (31).

Remark 3 Theorem 1 reveals that the optimal weight
matrix shall be the reciprocal of the measurement error
covariance for the nonlinear least-squares optimization
problem and similar conclusion has been recognized in
[25] for linear problems. To see more, assume that the
measured displacement q̂ j (ti ), i = 1, . . . , l and the
measured acceleration ˆ̈qk(ti ), i = 1, . . . , l pertain to
perturbations with covariance being respective σ 2

q j
and

σ 2
q̈k
. Then, under the optimal weight matrix (35) with

c = 1, the objective function (17) is simply regrouped

into

h̄(χ) = ‖R̂ − R(χ)‖2Wopt

=
l∑

i=1

{∑
j∈Sq

( q̂ j (ti ) − q j (ti ,χ)

σq j

)2

+
∑
k∈Sq̈

( ˆ̈qk(ti ) − q̈k(ti ,χ)

σq̈k

)2}
. (42)

By Eq. (42), the optimal weight matrix (35) is found
to be quite proper and the reason is twofold. On the
one hand, the optimal weight matrix would lead to the
scaling effect, or more specifically, equivalent change
of the dimensions, e.g., 1m to 1000 mm, would no
longer affect the objective function because the terms
q̂ j (ti )−q j (ti ,χ)

σq j
,

ˆ̈qk (ti )−q̈k (ti ,χ)
σq̈k

become dimensionless. On

the other hand, since the optimal weight is inverse pro-
portional to the measurement error covariance, lager
error σq j , σq̈k would reasonably correspond to less
weight.

4 Numerical examples

In this section, three examples concerning an SDOF
(single-degree-of-freedom) fractional-order Duffing
system with analytical solution, an SDOF Duffing sys-
tem with two fractional-order parameters and a MDOF
(multiple-degree-of-freedom)vander Pol–Duffing sys-
tem are studied to verify the feasibility and efficiency of
the present enhanced response sensitivity approach for
parameter identification of nonlinear fractional-order
systems. For the measured data, it is obtained from
numerical simulation with the addition of the measure-
ment noise in the following way

v̂ = vcal + ev · rand · std(vcal) (43)

where ev denotes the measurement noise level, rand is
a random vector of the same size with vcal pertaining
to the standard normal distribution, std(·) denotes the
standard deviation of a vector and vcal is the calcu-
lated response data directly from Eq. (1) with vcal =
[q j (t1), q j (t2), . . . , q j (tl)]T for the j th displacement
measurement and vcal = [q̈k(t1), q̈k(t2), . . . , q̈k(tl)]T
for the kth acceleration measurement. With the mea-
sured data, the algorithm in Table 1 is applied to get
the solution of the parameter identification problem
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and some of the algorithmic parameters are chosen
as tol = 1 × 10−6, σ = 2,
cr = 0.5, Nit =
1000, Ntr = 20. Other algorithmic parameters includ-
ing the initial parameters χ (0) and the user-defined
weight matrix W are to be discussed later in the exam-
ples.

4.1 Example 1: SDOF fractional-order Duffing
system with analytical solution

Consider a fractional-order Duffing system with the
cubic nonlinearity [refer to Eq. (3)] and the following
governing equation

{
mq̈ + μDαq + k1q + k2q

3 = p(t), t ≥ 0

q(0) = q0, q̇(0) = q̇0.
(44)

Assume that the following analytical solution (ω = 2)

q(t) = sin(ωt) (45)

is obtained and to achieve this goal, the load is of the
form p(t) = −m sin(ωt)+ k1 sin(ωt)+ k2 sin3(ωt)+
ωμt1−α

∑∞
k=0

(−1)k (ωt)2k

Γ (2k+2−α)
, and the initial states are

q0 = 0, q̇0 = 2. For the parameters, the mass is
fixed at m = 1 and the parameters to be identified
in this example are χ = [μ, k1, k2, α]. For later anal-
ysis, the actual/exact parameters are set to be χex =
[0.8, 1.2, 1.5, 0.5]. The numerical method described in
Sect. 2 is adopted to solve the forward problem where
the Newmark parameters are set to β = 0.25, γ = 0.5
and comparison of the numerical solution with the ana-
lytical solution (45) over the time interval [0, T = 20]
is depicted in Fig. 1. Evidently, the numerical solution
coincides well with the analytical solution, indicating
that the numerical scheme in Sect. 2 is effective for
solution of the nonlinear fractional-order system. Fur-
thermore, the sensitivity analysis can also be proceeded
following the guidelines in Sect. 3.2 and the calculated
sensitivities of the displacement and the acceleration to
the four parameters under the exact parameters χex are
displayed in Figs. 2 and 3, respectively.

Next, to see the performance of the present parame-
ter identification approach, eight cases I–VIII as listed
in Table 2 are considered to identify the parameters
χ where the effect of different initial parameters χ (0),
differentmeasurement quantities–acceleration q̈ or dis-
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Fig. 1 Comparison of analytical and numerical solutions of
example 1

0 5 10 15 20
-0.01

-0.005

0

0.005

0.01

0.015

Fig. 2 Displacement response sensitivities of example 1
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Fig. 3 Acceleration response sensitivities of example 1
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Table 2 Parameter identification cases for example 1

Case Initial parameters χ (0) Measurement data Noise level ev Weight matrix W

I [1,1,1,1] q̈ 0% I

II [1,1,1,1] q̈ 2% I

III [1,1,1,1] q̈ 5% I

IV [0.8,0.8,0.8,0.8] q̈ 5% I

V [0.4,0.4,0.4,0.4] q̈ 5% I

VI [1,1,1,1] q 5% I

VII [1,1,1,1] q̈, q 5%,5% I

VIII [1,1,1,1] q̈, q 5%,5% Wopt

Table 3 Identified parameters and relative errors (in brackets) of example 1 by enhanced response sensitivity approach

Ex 1 μ k1 k2 α Iter#

Case I 0.8 (4.9e−4%) 1.2 (−4.3e−4%) 1.5 (−1.3e−5%) 0.5 (−4.5e−4%) 42

Case II 0.762 (−4.63%) 1.241 (3.49%) 1.507 (0.47%) 0.523 (4.56%) 66

Case III 0.714 (−10.7%) 1.298 (8.18%) 1.517 (1.19%) 0.556 (11.35%) 404

Case IV 0.714 (−10.7%) 1.298 (8.17%) 1.518 (1.20%) 0.556 (11.36%) 107

Case V 0.714 (−10.7%) 1.298 (8.17%) 1.518 (1.20%) 0.556 (11.36%) 132

Case VI 0.726 (−9.29%) 1.281 (6.75%) 1.517 (1.18%) 0.548 (9.72%) 671

Case VII 0.765 (−4.33%) 1.225 (2.07%) 1.516 (1.05%) 0.522 (4.41%) 334

Case VIII 0.779 (−2.55%) 1.205 (0.45%) 1.513 (0.89%) 0.512 (2.42%) 193

placement q, different noise levels ev and even differ-
ent weight matricesW is to be exploited in detail. More
specifically, the choice W = I means the conventional
identity weight matrix, while the choice W = Wopt

indicates that the optimal weight matrix (35) Wopt =
Q−1 is used. It is also noteworthy that in casewhenonly
one of the two quantities q̈, q is measured and the noise
is added bymeans of Eq. (43), the identitymatrixwould
coincide with the optimal weight matrix, i.e,Wopt = I;
otherwise, they are often different. The acceleration
or displacement response data over the time interval
[0, 20] are measured at the sampling rate of 100 Hz.
Applying the algorithm in Table 1, the parameters can
be identified and the detailed results are summarized in
Table 3 where the relative error throughout this paper
is defined as

Relative error = χ∗
i − χex

i

χex
i

× 100%

with χ∗
i , χex

i being the respective identified and exact
values of the i th parameter. The ’Iter #’ in the table
means the number of iterations for the enhanced

response sensitivity approach involved to reach the con-
vergence criterion

∥∥χ (k) − χ (k−1)
∥∥/∥∥χ (k)

∥∥ ≤ tol(1×
10−6) is also counted in Table 3.

Firstly, in Cases I–III, the acceleration data are used
with the addition of different levels of the measure-
ment noise. The three cases are intended to show the
effect of the measurement noise in parameter identifi-
cation forwhich the results are again graphically shown
in Fig. 4. Obviously, without measurement noise, the
parameters are almost exactly identified, while the rel-
ative errors in identification results increase with the
increase in the measurement noise level ev (see also
Cases I–III of Table 3) and more iterations are taken to
get the convergence under higher level of the measure-
ment noise.When the measurement noise level reaches
5% in Case III, the maximum relative error arrives at
11.35%; nevertheless, the parameters are reasonably
identified because the absolute errors for μ and α are
merely 0.086 and 0.056.

Secondly, in Cases III–V, three different initial
parameters χ (0) are considered in the algorithm to see
whether the present approach is sensitive to the ini-
tial choice of the parameters in parameter identification
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Fig. 4 Identified parameters for Cases I–III of example 1 under
different measurement noise
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Fig. 5 Evolution of the parameters during iterations for Cases
III–V of example 1 with different initial parameters

of the nonlinear fractional-order system. The detailed
identification results are presented in Table 3, and it
is seen that the three initial parameters have led to
almost the same identification results, indicating that
the present approach is to some extent insensitive to
the initial parameters and can admit a reasonable range
of the initial parameters to reach the desired conver-
gence. To further visualize the convergence of the iden-
tification procedure in the three cases, the evolution of
the parameters with the iterations is plotted in Fig. 5.
Though it requires more than 100 iterations to reach
the convergence tol = 1 × 10−6 for Cases III–V
in Table 3, acceptably good identification results are
actually obtainable in no more than 50 iterations from

0

0.5

1

1.5

2

Fig. 6 Identified parameters for Cases III–V of example 1 under
different measurements

Fig. 5; the convergence of the present approach is well
verified.

Thirdly, in Cases III, VI and VII, different quantities
are measured to see their effect on parameter identifi-
cation. Besides the identification results in Table 3, the
identified parameters of the three cases are addition-
ally depicted in Fig. 6. The parameters are well iden-
tified for the three cases using the acceleration data,
the displacement data and the hybrid data, respectively.
Moreover, the use of the displacement data gives rise
to almost the same good identification results with the
use of the acceleration data, while the use of the hybrid
data obviously leads to more accurate identification;
this is reasonable because more data often lead to bet-
ter identification.

Finally, the effect of the optimal weight matrix
is investigated in Cases VII–VIII. The identification
results of the two cases regarding use of the identity
weight matrix and the optimal weight matrix Wopt are
listed in Table 3. It is found that the maximum rela-
tive error under the optimal weight matrix is 2.55%,
which approaches the half of the maximum relative
error 4.41% under the identity weight matrix. More-
over, less iterations are required to get the convergence
under the optimal weight matrix. Indeed, the improve-
ment in the identification accuracy by use of the opti-
mal weight matrix as illustrated in Sect. 3.4 is perfectly
verified.
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Fig. 7 Displacement and
acceleration responses of
example 2: a without noise
and b with 3%
measurement noise
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4.2 Example 2: SDOF Duffing system with two
fractional-order parameters

In some physical phenomena, multiple fractional-order
operators may be needed to describe the complex
behavior. In this example, an SDOF Duffing system
with two fractional-order derivative operators is con-
sidered and its governing equation is given as follows

⎧⎪⎨
⎪⎩
mq̈ + k1D

α1q + k2q̇ + k3D
α2q + k4q + k5q

3

= f cos(ωt), t ≥ 0

q(0) = q0, q̇(0) = q̇0
(46)

where the initial displacement and velocity of the sys-
tem are set to q0 = 0, q̇0 = 1. Herein, the mass and
the frequency of the load are fixed at m = 1, ω = 1.5,
while other unknown parameters are to be identified,
i.e., χ = [k1, k2, k3, k4, k5, f, α1, α2]. Assume that
the exact values of the parameters in this example
are set to α1 = 0.6, α2 = 1.4, k1 = 0.8, k2 =
0.6, k3 = 1, k4 = 10, k5 = 15 and f = 5, or
χex = [0.8, 0.6, 1, 10, 15, 5, 0.6, 1.4] where α1 ∈
(0, 1), α2 ∈ (1, 2) indicate two different types of the
fractional-order derivatives. By the numerical method
described in Sect. 2, numerical solution of the dis-
placement and the acceleration can be obtained and
the results are depicted in Fig. 7a. It is seen that the
solution is nearly periodic with the period approaching
1.33π , which is the reasonably good approximation
of the theoretic period 2π/ω; this also explains why
the frequency of the external load ω is often known a
priori. For later parameter identification, the measure-
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Fig. 8 Displacement response sensitivity of example 2

ment data are obtained from the simulated results in
Fig. 7a with the addition of the measurement noise as
in Eq. (43), and under the measurement noise at level
ev = 3%, the response data that will be used later are
displayed in Fig. 7b. The response data are measured
over the time interval [0, T = 20] at the sampling rate
of 100 Hz. It is noteworthy that sensitivity analysis is
inevitably invoked in the present parameter identifica-
tion approach and then, to gain a schematic impression
on the sensitivity, the sensitivities of the displacement
and acceleration responses to the parameters are shown
in Figs. 8 and 9, respectively.

For parameter identification of the nonlinear
fractional-order system, six cases concerning differ-
ent measurement data, different initial parameters and
different weight matrices are studied in this example
as presented in Table 4. By proceeding the algorithm
in Table 1, the parameters can be identified and the
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Fig. 9 Acceleration response sensitivity of example 2

detailed results are listed in Table 5. Here, it is again
noted that in case when only one of the two quantities
q̈, q are measured, the identity weight matrix I would
equal to the optimal weight matrix, while if both of the
two quantities are measured, the optimal weight matrix
would be different from the identity weight matrix.

Firstly, for Cases I–III, different quantities are mea-
sured to see the effect of different measurements on
parameter identification. The initial fractional-order
parameters α

(0)
1 = 0.5, α(0)

2 = 1.5 are reasonably
chosen at the middle of the corresponding intervals
α1 ∈ (0, 1) and α2 ∈ (1, 2). The results in Table 5
show that good identification of the parameters has
been reached for all the three cases. Specifically, the
maximum relative error is 2.31%when using the accel-
eration data and reaches 3.64% when using the dis-
placement data; this indicates that acceleration data can
lead to better identification than the displacement data.
While when both the displacement and acceleration
data are used, the maximum relative error is 2.14%,
which is slightly less than the case using merely the
acceleration data; the improvement by using the hybrid
data is slight under the identity weight matrix.

Secondly, for Cases I, IV and V, different initial
parameters are called to get the solution. Almost the
same good identification of the parameters has been
reached by referring to the results in Table 5. Actu-
ally, the initial parameters of the three cases are to
some extent far away from the exact parameters and
this shows that a reasonably wide range of feasible ini-
tial parameters can be chosen for parameter identifi-

cation. Again, it is shown that the present approach is
insensitive to initial choice of the parameters.

Finally, for Cases III and VI, two different weight
matrices—the conventional identity weight matrix and
the optimal weight matrix Wopt = Q−1—are used to
see the effect of the weight matrix on parameter identi-
fication with the hybrid data. It is seen that the relative
errors under the optimal weight matrix are almost all
less than those under the identityweightmatrix. To con-
clude, the identification accuracy has been improved by
the use of the optimal weight matrix.

4.3 Example 3: MDOF fractional-order van der
Pol–Duffing system

In this example, a two-DOF fractional-order van der
Pol–Duffing system is considered to see the feasibility
and performance of the present approach for parameter
identification of MDOF fractional-order systems and
the governing equation is given as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̈1 + k1D
α1q1 + μ1

(
q2 − q1

)+ ε1
(
q21 − 1

)
q̇1

+ δ1q
3
1 = 0

q̈2 + k2D
α2q2 + μ2

(
q1 − q2

)+ ε2
(
q22 − 1

)
q̇2

+ δ2q
3
2 = f cos(ωt)

q1(0) = q10, q̇1(0) = q̇10; q2(0) = q20,

q̇2(0) = q̇20
(47)

where the initial states are q10 = 1, q̇10 = q̇20 =
q20 = 0 and the frequency of external load is fixed at
ω = 1.5. For this problem, the fractional-order parame-
ters are assumed to satisfy α1 ∈ (0, 1) and α2 ∈ (1, 2),
implying that two different types of fractional-order
derivatives are invoked. Other parameters are to identi-
fied, i.e., χ = [k1, μ1, ε1, δ1, k2, μ2, ε2, δ2, f, α1, α2].
For parameter identification, the exact parameters are
set to be k1 = 1.6, μ1 = 2, ε1 = 1, δ1 =
0.75, k2 = 0.8, μ2 = 2.3, ε2 = 0.8, δ1 = 1.2, f =
5, ω = 1.5, α1 = 0.6 and α2 = 1.4, or, χex =
[1.6, 2, 1, 0.75, 0.8, 2.3, 0.8, 1.2, 5, 0.6, 1.4]. Numer-
ical solution of this system can be obtained by the
numerical method in Sect. 2, and the results are graph-
ically shown in Fig. 10. Moreover, the sensitivity anal-
ysis can also proceed along the lines of Sect. 3.2, and
then, the results on sensitivity of the accelerations to the
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Table 4 Parameter identification cases for example 2

Case Initial parameters χ (0) Measurement data Weight matrix W

I [2.5,2.5,2.5,2.5,2.5,2.5,0.5,1.5] q̈ I

II [2.5,2.5,2.5,2.5,2.5,2.5,0.5,1.5] q I

III [2.5,2.5,2.5,2.5,2.5,2.5,0.5,1.5] q̈, q I

IV [2,2,2,2,2,2,0.5,1.5] q̈ I

V [1.5,1.5,1.5,1.5,1.5,1.5,0.8,1.8] q̈ I

VI [2.5,2.5,2.5,2.5,2.5,2.5,0.5,1.5] q̈, q Wopt

Table 5 Identified parameters and relative errors (in brackets) of example 2 by enhanced response sensitivity approach

Ex 2 k1 k2 k3 k4 k5 f α1 α2 Iter#

Case I 0.82 0.61 0.99 10.01 14.89 5.01 0.59 1.39 136

(2.31%) (0.76%) (−0.90%) ( 0.08%) (−0.69%) (0.28%) (−0.05%) (−0.04%)

Case II 0.79 0.59 1.04 10.02 15.49 5.02 0.59 1.41 98

(−0.38%) (−2.03%) (3.64%) (0.20%) (3.25%) (0.42%) (−2.12%) (0.87%)

Case III 0.82 0.61 0.99 10.00 14.92 5.02 0.59 1.39 156

(2.14%) (2.01%) (−0.68%) (0.07%) (−0.56%) (0.32%) (−1.5%) (−0.01%)

Case IV 0.78 0.61 0.99 10.06 14.88 5.01 0.61 1.39 204

(−2.21%) (2.36%) (−0.81%) (0.55%) (−0.76%) (0.39%) (1.49%) (−0.16%)

Case V 0.82 0.61 0.99 9.98 14.88 5.01 0.61 1.39 165

(−2.42%) (2.22%) (−0.53%) (0.55%) (−0.76%) (0.39%) (1.55%) (−0.16%)

Case VI 0.81 0.59 1.00 10.04 14.99 5.01 0.60 1.40 207

(1.72%) (−0.84%) (0.40%) (0.36%) (−0.01%) (0.35%) (0.01%) (0.15%)

parameters are plotted inFig. 11. For themeasureddata,
it is obtained over the time interval [0, T = 15] with
the sampling rate being 100 Hz. The level of the mea-
surement noise for this example is fixed at ev = 3%.

For parameter identification, five cases concerning
different types of measurements and different initial
parameters (see Table 6) are considered herein. In the
previous two examples, the optimal weight matrix has
been shown to give superior identification results over
the conventional identity weight matrix, and therefore,
the optimal weight matrix Wopt = Q−1 is used in this
example. For initial guesses of α

(0)
1 and α

(0)
2 in param-

eter identification, they are taken at the middle of the
possible parameter intervals, i.e., α

(0)
1 = 0.5 ∈ (0, 1)

and α
(0)
2 = 1.5 ∈ (1, 2). Again, by resorting to the

proposed algorithm in Table 1, the parameters can be
identified and the detailed results are listed in Table 7.
It takes less than 50 iterations to get the convergent
solution for all cases, verifying the convergence of the
enhanced response sensitivity approach.

On the one hand, for Cases I–III, different measured
data are used to see which type of data are preferred
in parameter identification. By the results in Table 7,
when using the second acceleration data (Case I), the
maximum relative error reaches 5.20%, while if both
accelerations aremeasured (Case II), themaximum rel-
ative error is reduced to 1.05%; the improvement is due
to the fact that more data often lead to better identifi-
cation. In Case III, when the first displacement and the
second acceleration are measured, the maximum rel-
ative error is found to be 2.84%, lying in the interval
[1.05%,5.20%] for Case III and Case I, respectively.
This means that the acceleration data leads to more
accurate identification than the displacement data. To
conclude, two acceleration measurements are found to
give rise to best identification accuracy.

On the other hand, the effect of the initial parameters
χ (0) on parameter identification is explored in Cases II,
IV and V where three choices of the initial parameters
as presented in Table 6 are taken into account. As can be
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Fig. 10 Phase solution of
example 3

(a) (b)

Fig. 11 Acceleration
response sensitivity of
example 3: a for q̈1 and b
for q̈2

(a) (b)

Table 6 Parameter identification cases for example 3

Case Initial parameters χ (0) Measurement data Weight matrix W

I χ
(0)
1 q̈2 Wopt

II χ
(0)
1 q̈1, q̈2 Wopt

III χ
(0)
1 q1, q̈2 Wopt

IV χ
(0)
2 q̈1, q̈2 Wopt

V χ
(0)
3 q̈1, q̈2 Wopt

χ
(0)
1 = [1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 0.5, 1.5]

χ
(0)
2 = [2, 2, 2, 2, 2, 2, 2, 2, 2, 0.5, 1.5]

χ
(0)
3 = [3, 3, 3, 3, 3, 3, 3, 3, 3, 0.5, 1.5]

seen from the results, satisfactory identification results
are gained and the eventually identified parameters are
almost the same for the three cases. Again, the present
approach is shown to insensitive to the initial parame-
ters.

5 Conclusions

An enhanced response sensitivity approach has been
established for parameter identification of nonlin-
ear fractional-order systems using the time domain
response data. For sensitivity analysis, a hybrid scheme
was developed where the sensitivity to the fractional-
order parameters is obtained through finite difference
calculation, while the sensitivity to other parameters
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Table 7 Identified parameters and relative errors (in brackets) of example 3 by enhanced response sensitivity approach

Case I II III IV V

k1 1.59 1.58 1.55 1.58 1.58

(−0.46%) (−1.05%) (−2.84%) (−1.48%) (−1.46%)

μ1 2.09 2.00 2.01 2.01 2.01

(4.27%) (0.17%) (0.71%) (0.31%) (0.29%)

ε1 0.99 0.99 1.00 0.99 0.99

(−0.34%) (−0.16%) (0.44%) (−0.18%) (−0.18%)

δ1 0.78 0.75 0.76 0.75 0.75

(4.17%) (−0.04%) (1.19%) (0.21%) (0.19%)

k2 0.79 0.81 0.80 0.81 0.81

(−1.87%) (0.63%) (0.43%) (1.08%) (1.06%)

μ2 2.28 2.32 2.32 2.32 2.32

(−0.74%) (0.66%) (0.83%) (0.95%) (0.94%)

ε2 0.79 0.81 0.80 0.81 0.81

(−0.65%) (0.60%) (0.42%) (0.78%) (0.77%)

δ2 1.19 1.21 1.21 1.21 1.21

(−0.97%) (0.78%) (0.64%) (1.05%) (1.04%)

f 4.97 5.03 5.04 5.05 5.05

(−0.58%) (0.65%) (0.71%) (0.92%) (0.91%)

α1 0.63 0.61 0.61 0.61 0.61

(5.20%) (0.82%) (1.56%) (1.50%) (1.47%)

α2 1.40 1.41 1.41 1.41 1.41

(−0.07%) (0.82%) (0.86%) (1.02%) (1.02%)

Iter # 38 49 50 35 45

is proceeded through direct differentiation. Then, the
trust-region constraint was introduced to enhance the
response sensitivity approach. Furthermore, an opti-
mal weight matrix as the reciprocal of the measure-
ment error covariance was theoretically derived for the
enhanced response sensitivity approach. Three numer-
ical examples have been conducted, and results show
that

– The present approach can admit a wide range of
the initial parameters for good identification of the
parameters. In other words, the present approach is
found insensitive to the initial parameters.

– The present approach can give rise to reasonably
good identification of the parameters even under
5% measurement noise level.

– The proposed optimal weight matrix indeed
improves the identification accuracy.

– Convergence of the present approach is well veri-
fied.

– The present approach is shown to work well for
parameter identification of both SDOF and MDOF
nonlinear fractional-order systems.

Thus, it is believed that the present enhanced response
sensitivity approach would be an effective tool for
parameter identification of nonlinear fractional-order
systems.
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