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Abstract Weinvestigate the rational and semi-rational
solutions of the integrable Kadomtsev–Petviashvili
(KP)-based system, which appears in fluid mechan-
ics, plasma physics, and gas dynamics. Various types
of solutions, including soliton, breather, and a mix-
ture of breather and soliton, of the KP-based system
are derived by applying the Hirota’s bilinear method
and the perturbation expansion. By taking a long-wave
limit of the soliton solutions and particular parame-
ter constraints, the rational and semi-rational solutions
are generated. The rational solutions have two differ-
ent dynamical behaviors: lump and line rogue wave;
the first-order lump and line rogue wave are classified
into three patterns: bright state, mixed state, and dark
state. The semi-rational solutions reveal the follow-
ing dynamic features: (1) Elastic interactions between
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lumps and bound-state dark solitons; (2) Elastic inter-
actions between line rogue waves and bound-state dark
solitons; (3) Inelastic collisions of breathers and rogue
waves. Compared to the rational solutions, the semi-
rational solutions have more interesting patterns.
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1 Introduction

Rogue wave (RW), also called freak wave, monster
wave or killer wave, is one kind of common nonlin-
ear local waves, which receives significant attention
recently. The RW is usually used to describe colossal
spontaneous ocean waves, which lead to the genera-
tion of water walls taller than 20–30m so that the RW
is even a threaten to a big ship [1–3]. Researches on
RW have been boosted and confirmed experimentally
by several laboratory observations in nonlinear fiber
[4,5], water tank [6], plasma, super fluid, capillary flow,
Bose–Einstein condensate and atmosphere [7–11].

Theoretically, the RW solution is an ubiquitous
phenomenon in nonlinear integrable system. The RW
model was first derived from a solution of the famous
nonlinear Schrödinger equation (NLSE)

iqt + qxx + 2|q|2q = 0,

in 1983 [12], and have a rational form
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q =
[
1 − 4(1 + 4it)

1 + 4x2 + 16t2

]
e2it .

Generally, the RW is generated from a nonzero bound-
ary condition when the period of breather solution goes
to infinity [13]. Like soliton solutions, the higher-order
RWs are constructed to illustrate the collisions of mul-
tiple RWs [14–16], which displaymany interesting pat-
terns. In addition to the NLSE, there are numerous non-
linear equations admitting RW and higher-order RWs
such as derivative-typeNLSE [17–21], theHirota equa-
tion [22,23] and so on.

In the real world, the oceanic and ultra-short opti-
cal RWs are evident (2 + 1)-dimensional phenomena
[24–26], so extensions of RW to higher spatiotemporal
dimension are inevitable. In this work, wewill consider
a new (2 + 1)-dimensional nonlinear evolution equa-
tion, namely the Kadomtsev–Petviashvili (KP)-based
system, which is an extension of the well-known KP
equation [27].

The KP equation, an integrable (2+1)-dimensional
extension of the famous Korteweg–de Vries (KdV)
equation, has the form

uxt + uxxxx + suyy − 3(u2)xx = 0, s = ± 1, (1.1)

and it plays an important role in nonlinear wave theory.
The KdV equation describes the evolution of strictly
one-dimensional long water waves of small ampli-
tude, while the KP equation describes the evolution
of weakly two-dimensional long water waves of small
amplitude. This means that the KP equation plays the
same role in (2+ 1) dimensions that the KdV equation
plays in (1+1) dimensions. The KP equation is one of
the classical prototype problems in the field of exactly
solvable equations and arises generically in physical
contexts, such as the plasma physics and surface water
waves.

The KP equation allows the formation of stable soli-
ton and rational localized solution pertinent to systems
involving quadratic nonlinearity, weak dispersion, and
slow transverse variation [28]. Up to now, this equa-
tion has been well applied in a wide class of physical
areas, including the ion-acoustic wave in plasma [29]
and the 2-D shallow water wave [30], nonlinear optics,
Bose–Einstein condensate, string theory [31–33]. The
RW solution of the KP equation is derived in [34,35].
However, unlike the (1 + 1)-dimensional equations,

the KP equation admits another rational solution–lump
solution when s = −1 [36,37].

In [27], Maccari introduces the following transfor-
mations to the KP equation (1.1)

ξ = ε p1(x − V1t), η = ε p2(y − V2t),

τ = εq t, p1, p2, q > 0,

u(x, y, t) =
+∞∑

n=−∞
εγn�n(ξ, η, τ ; ε)

× exp{in(K1x + K2y − ωt)},
�−n(ξ, η, τ, ε) = �∗

n (ξ, η, τ, ε), γn = |n|,
n = ±1,±2,· · · ,

(1.2)

where

V1 = V (K1, K2) = −3K 2
1 − s

K 2
2

K 2
1

, V2 = V (K1, K2) = 2s
K2

K1
,

mean components of the group velocity V = (V1, V2)
of the linear dispersive part of the KP equation (1.1),
and γ0 = 1 + r is a real number to be determined. For
convenience, through taking further ansatz

ξ → x, η → y, τ → t,

�1(ξ, η, τ ; ε → 0) = u(x, y, t),

�0(ξ, η, τ ; ε → 0) = v(x, y, t),

a new (2+1)-dimensional complex nonlinear evolution
equation is obtained as follows:

iut + uxx + uv = 0,

vt + vy + (|u|2)x = 0,
(1.3)

which is just the integrable KP-based system. (The
parameters x, y, t are just ξ, η, τ in [27], and u, vmean
�1, �0 in [27], respectively.) The Lax pair of these
equations were first constructed in [27], the Painlevé
property was investigated in [38], the doubly peri-
odic solutions were constructed in [39] by utilizing the
extended Jacobian elliptic function expansion method,
and its N -soliton solutionswere derived in [40]with the
help of the Hirota method. Besides, several other solu-
tions had been derived by applying different methods,
such as rational solutions and traveling wave solutions
[41–44]. In particular, an integrable semi-discrete ana-
log of the KP-based system was investigated in [40]. In
this work, we will present the nonsingular rational and
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Rational and semi-rational solutions 1135

semi-rational solutions of KP-based system by utiliz-
ing the bilinear method. The rational solutions consist
of lumps and line rogue waves; the semi-rational solu-
tions describe interactions between line rogue waves,
lumps, dark solitons, and breathers.

The outline of this paper is organized as follows:
In Sect. 2, the formulae of N -th order rational solu-
tions of the KP-based system are derived by employing
the bilinear method and a long-wave limit. In Sect. 3,
typical dynamics of lump and RW solutions of the
KP-based system are demonstrated vividly. In Sect. 4,
three types of semi-rational solutions are investigated in
detail. The summary and discussion are given in Sect. 5.

2 Rational solution of the
Kadomtsev–Petviashvili-based system

In this section, we derive explicit formulae of rational
solutions of the KP-based system. Through using the
dependent variable transformations

u = ρei(kx+(ε−k2)t) g

f
, v = ε + 2(log f )xx , (2.1)

Equation (1.3) can be transformed into the following
bilinear forms:

(D2
x + 2ikDx + iDt )g · f = 0 ,

Dx (Dt + Dy) f · f = ρ2( f 2 − gg∗).
(2.2)

Here, f is a real function, g is a complex function,
ρ, k, ε are real parameters, the asteriskmeans complex
conjugation, and the operator D is the Hirota’s bilinear
differential operator [45] defined by

P(Dx , Dy, Dt , )F(x, y, t · ··) · G(x, y, t, · · ·)
= P(∂x − ∂x ′ , ∂y − ∂y′ , ∂t − ∂t ′ , · · ·)
× F(x, y, t, · · ·)G(x

′
, y

′
, t

′
, · · ·)|x ′=x,y′=y,t ′=t ,

where P is a polynomial of Dx , Dy , Dt .
To obtain N -th order soliton solutions by the

Hirota’s bilinear method and the perturbation expan-
sion [45], one needs to expand f and g in terms of
power series of a small parameter ε:

f = 1 + ε f1 + ε2 f2 + ε3 f3 + · · · ,

g = 1 + εg1 + ε2g2 + ε3g3 + · · · .
(2.3)

Substituting functions f and g into bilinear equations
(2.2) yields a series of equations corresponding to dif-
ferent orders of ε. After solving these equations, func-
tions f and g are expressed as

f =
∑

μ=0,1

exp

⎛
⎝ (N )∑

j<s

μ jμk A jk +
N∑
j=1

μ jη j

⎞
⎠ ,

g =
∑

μ=0,1

exp

⎛
⎝ (N )∑

j<s

μ jμk A jk +
N∑
j=1

μ j (η j + iφ j )

⎞
⎠ ,

(2.4)

where

η j = Pj x + Q j y + � j t + η0j ,

Q j = −� j P4
j + � j (2Pjk + � j )

2 − 2ρ2P3
j

P4
j + (2Pjk + � j )2

,

exp(A js) = P2
j P

2
s (Pj − Ps)2 + (� j Ps − �s Pj )

2

P2
j P

2
s (Pj + Ps)2 + (� j Ps − �s Pj )2

,

sin(φ j ) = 2P2
j (2Pjk + � j )

P4
j + (2Pjk + � j )2

,

cos(φ j ) = −P4
j + (2Pjk + � j )

2

P4
j + (2Pjk + � j )2

,

Pj ,� j , η
0
j are arbitrary real parameters, the notation∑

μ=0 indicates summation over all possible combina-
tions of μ1 = 0, 1 , μ2 = 0, 1 , ..., μN = 0, 1, and the∑(N )

j<s summation over all possible combinations of the
N elements with the specific condition j < s.

Similar to earlier works in the literatures [46–54],
general n-breather solutions of the KP-based system
can be generated by taking the following constraints in
(2.4)

N = 2n, Pn+ j = P∗
j , �n+ j = �∗

j , η0n+ j = η0
∗
j .

(2.5)

For example, let N = 2 and

P2 = P∗
1 = k1 − ik2 ,�2 = �∗

1 = q1 − iq2 ,

η02 = η0
∗

1 = 0, (2.6)

then the first-order breather solution can be obtained,
and its three types are shown in Fig. 1. Besides, mixed
solution consisting of breather and soliton can also be
derived by taking parameters in (2.4) as

Pn+ j = P∗
j ,�n+ j = �∗

j , η
0
n+ j = η0

∗
j , Ps = P∗

s ,
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1136 Y. Zhang et al.

Fig. 1 (Color online) Three types of first-order breather solu-
tions of the KP-based system with parameters ρ = 1, ε =
0, k = 0 at time t = 0. a (k1, k2) = (0, 1), (q1, q2) =
(1, 0). b (k1, k2) = (0, 1), (q1, q2) = (2, 2). c (k1, k2) =
(0, 2

3 ), (q1, q2) = (1, 3)

�s = �∗
s (2n < N , 2n + 1 ≤ s ≤ N ). (2.7)

This mixed solution describes collision of dark soliton
and breather, which leads to several interesting dynam-
ics in physical system. Particularly, the mixed solution
has many intriguing dynamical behaviors, which are
important in forming different wave structures such as
lump soliton, rogue wave, and so on. To demonstrate
this kind of mixed solution in detail, we consider the
case of N = 3 and choose

P2 = P∗
1 = k

′
1 − ik

′
2, �2 = �∗

1 = q
′
1 − iq

′
2,

η02 = η0
∗

1 = 0, P3 = k
′
3, �3 = q

′
3,

(2.8)

where k
′
1, k

′
2, k

′
3, q

′
1, q

′
2, q

′
3 are arbitrary real constants.

Three types of interesting wave structures are shown in
Fig. 2.

Now we will generate rational solution of the KP-
based system by taking a long-wave limit of f and g

Fig. 2 (Color online) Three types of mixed solutions of the KP-
based system with parameters ρ = 1, ε = 0, k = 0, η03 = 0 at

time t = 0. a (k
′
1, k

′
2, k

′
3) = (0, 1, 1), (q

′
1, q

′
2, q

′
3) = (1, 0, 1).

b (k
′
1, k

′
2, k

′
3) = (1, 1

2 , 1
10 ), (q

′
1, q

′
2, q

′
3) = ( 12 , 1, 1

20000 ). c
(k

′
1, k

′
2, k

′
3) = (1, 1

2 , 1), (q
′
1, q

′
2, q

′
3) = ( 13 , 1

3 , 1)

in (2.4). In order to eliminate the exponential functions
in (2.4), we set

� j = λ j Pj , η0j = i π (1 ≤ j ≤ N ). (2.9)

In this case, taking Pi → 0 in (2.4) implies that Q j and
� j also go to zero. By applying L’Hospital’s rule, the
formulae of rational solutions of the KP-based system
are obtained.

Theorem 1 The KP-based system has rational solu-
tions defined by (2.1) with f and g given by

f =
N∏
j=1

θ j + 1

2

(N )∑
j,k

a jk

N∏
l �= j,k

θl + · · ·

+ 1

M !2M
(N )∑

j,s,...,m,n

M︷ ︸︸ ︷
a jsa jr · · · amn
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Rational and semi-rational solutions 1137

×
N∏

p �= j,s,...m,n

θp + · · · ,

g =
N∏
j=1

(θ j + β j ) + 1

2

(N )∑
j,s

a js

N∏
l �= j,s

(θl + βl) + · · ·

+ 1

M !2M
(N )∑

j,s,...,m,n

M︷ ︸︸ ︷
a jsa jr · · · amn

×
N∏

p �= j,s,...m,n

(θp + βp) + · · · , (2.10)

where

θ j = x +
[
−λ j + 2ρ2

(2k + λ j )2

]
y + λ j t , β j = 2i

2k + λ j
,

a js = − 4

(λ j − λs)2
,

λ j is an arbitrary complex constant, and k , ρ are real
constants.

Remark 1 The proof for Theorem 1 can be found in
[48]. By applying the similar method in [37], we can
prove that the rational solutions given by Theorem 1
are nonsingular when N = 2n, λ j+n = λ∗

j .

3 Dynamics of rational solutions

This section focuses on the typical dynamics of rational
solutions of the KP-based system generated by Theo-
rem 1.

Let N = 2, λ1 = a + ib, λ2 = a − ib in (2.10),
then functions f and g can be rewritten as

f =θ1θ
∗
1 + a12,

g =(θ1 + δ1 + iδ2)(θ∗
1 − δ1 + iδ2) + a12,

(3.1)

where

θ1 = l1 + il2,

l1 = x +
{
2ρ2 (2k + a)2 − b2

[(2k + a)2 + b2]2 − a

}
y + at,

l2 = −
{
b + 4ρ2b(a + 2k)

[(2k + a)2 + b2]2
}
y + bt,

δ1 = 2b

(a + 2k)2 + b2
, δ2 = 2(a + 2k)

(a + 2k)2 + b2
,

a12 = 1

b2
(b �= 0). (3.2)

According to (2.1), a rational solution can be con-
structed as

u =ρei(kx+(ε−k2)t)

[
1 − 2i(δ1l2 − δ2l1) + δ21 + δ22

l21 + l22 + a12

]
,

v =ε + 4
l22 − l21 + a12

(l21 + l22 + a12)2
,

(3.3)

where a, b, k, ε, ρ are arbitrary real constants. Obvi-
ously, solutions u and v are regular.

For convenience, we define

� = b + 4ρ2b(a + 2k)

[(2k + a)2 + b2]2 . (3.4)

After simple analysis, we find that rational solution
given by (3.3) has two different structures depending
on whether � equals to zero or not.

A: Lump solutionWhen� �= 0, we find that u, v given
by (3.3) preserve constant along the following trajec-
tory:

⎧⎪⎪⎨
⎪⎪⎩

x +
{
2ρ2 (2k + a)2 − b2

[(2k + a)2 + b2]2 − a

}
y + at = 0,

−
{
b + 4ρb(a + 2k)

[(2k + a)2 + b2]2
}
y + bt = 0 .

(3.5)

On the trajectory, u(x, y, t) arrives at its amplitude.
Actually, solving the above linear equations implies
that the location of amplitude is related to time t , i.e.,
u(x, y, t) can arrive at its amplitude on this trajectory
at any time. This is different from the RW in (1 + 1)-
dimensional system that only exists for a very short
while. In addition, the lump solution can be classified
into three classes according to the number of extreme
point.

1. Dark lumpWhen 0 ≤ (b− k)2 ≤ 1
3a

2, |u| has two
global maximum points and one global minimum
point, shown in Fig. 3a.

2. Mixed lump When 1
3a

2 < (b − k)2 ≤ 3a2, |u| has
two global maximum points and two global mini-
mum points, shown in Fig. 3b.

3. Bright lump When (b − k)2 > 3a2, |u| has two
global minimum points and one global maximum
point, shown in Fig. 3c.
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1138 Y. Zhang et al.

Fig. 3 (Color online) The lump solution of the KP-based system
given by Eq. (3.3) with parameters ρ = 1, ε = 0, k = 0 at time
t = 0. a Dark lump: (a, b) = (1, 1

3 ). b Mixed lump: (a, b) =
(1, 1). c Bright lump: (a, b) = (1, 3)

B: Rogue wave solution When � = 0, the ratio-
nal solution given by (3.3) displays a line-style RW,
which is similar to the Davey–Stewartson (DS) equa-
tion, the Fokas system, and Yajima–Oikawa systems
[25,26,55,56]. This line-style RW solution is differ-
ent from the classic soliton, which maintains a perfect
profile without any decay during its propagation. Like
the RW in (1 + 1)-dimension, the RW solution (u, v)

generated by (3.3) approaches to its amplitude from
background (ρ, ε) at certain time quickly and disap-
pears into background extremely fast. Like the previous
case of lump, theRWcan be classified into three classes
according to its number of extreme point.

1. Dark RW When 0 ≤ (b − k)2 ≤ 1
3a

2, |u| has two
global maximum lines and one global minimum
line, shown in Fig. 4.

2. Mixed RW When 1
3a

2 < (b − k)2 ≤ 3a2, |u| has
one global maximum line and one global minimum
line, shown in Fig. 5.

3. Bright RW When (b − k)2 > 3a2, |u| has two
global minimum lines and one global maximum
line, shown in Fig. 6.

In brief, � plays an extremely important role in
determining the type of the rational solution given by
(3.3). When � �= 0, it yields the lump solution, and
the RW solution otherwise. Both the lump and RW
solutions are classified into three classes related to
(a, b). To illustrate these phenomena explicitly, Fig. 7
and Table 1 are given, which present the relationships
between the status of rational solution and parameters
(a, b), i.e., dark case 0 ≤ (b− k)2 ≤ 1

3a
2, mixed case

1
3a

2 < (b−k)2 ≤ 3a2, and bright case (b−k)2 > 3a2.
If one sets

N = 2n(n > 1), λ∗
n+ j = λ j = a j + ib j (2 ≤ j ≤ n),

in (3.1), then the higher-order nonsingular rational
solutions can be obtained, which describe the interac-
tions of n individual lump or RW solutions. Similarly,
introducing � j

� j = b j + 4ρ2b j (a j + 2k)

(2k + a j )2 + b2j
, j = 1, 2, 3, · · · , n,

(3.6)

we obtain different types of higher-order rational solu-
tions.

For instance, when N = 4, λ∗
3 = λ1 = a1 +

ib1, λ∗
4 = λ2 = a2 + ib2, the second-order rational

solution can present two-lump, two-RW, and mixture
of one lump and oneRWbased on the values of parame-
ters ρ, k, a j , b j ( j = 1, 2). Here, we only discuss the
case of two-RW solution, since the discussions related
to another two cases can be conducted similarly. As
� j = 0, ( j = 1, 2), the second-order rational solution
illustrates the collision of two line RWs. In addition,
the second-order rational solution presents six types of
status as follows:

– Dark–Dark status when (b j −k)2 ≤ a2j
3 ( j = 1, 2);

– Dark–mixed status when (b1 − k)2 ≤ a21
3 and

a22
3 < (b2 − k)2 ≤ 3a22 , or

a21
3 < (b1 − k)2 ≤ 3a21

and (b2 − k)2 ≤ a22
3 ;
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Rational and semi-rational solutions 1139

Fig. 4 (Color online) The
evolution of dark RW
solution of KP-based
system given by (3.3) with
parameters
ρ = 3/5, ε = 0, k =
0, a = −1, b = √

5/5. a
t = − 5. b t = − 1. c
t = − 0.5. d t = 0. e t = 1.
f t = 5

Fig. 5 (Color online) The
evolution of mixed RW of
KP-based system given by
(3.3) with parameters
ρ = 1, k = 0, ε = 0, a =
−1, b = 1. a t = − 5. b
t = − 1. c t = − 0.5. d
t = 0. e t = 1. f t = 5

123



1140 Y. Zhang et al.

Fig. 6 (Color online) The
evolution of bright RW of
KP-based system given by
(3.3) with parameters
ρ = 9, k = 0, ε = 0, a =
− 1, b = √

17. a t = − 5. b
t = − 1. c t = − 0.5. d
t = 0. e t = 1. f t = 5

– Dark–bright status when (b1−k)2 ≤ a21
3 and 3a22 <

(b2 − k)2, or 3a21 < (b1 − k)2 and (b2 − k)2 ≤ a22
3 ;

– Mixed–mixed status when
a2j
3 < (b j − k)2 ≤

3a2j ( j = 1, 2);

– Mixed–bright status when
a21
3 < (b1 − k)2 ≤ 3a21

and 3a22 < (b2 − k)2, or 3a21 < (b1 − k)2 and
a22
3 < (b2 − k)2 ≤ 3a22 ;

– Bright–bright case when 3a2j < (b j − k)2 ( j =
1, 2).

To express explicitly, the bright–bright pattern is shown
in Fig. 8. Similarly, according to the above conditions,
another five patterns can also be obtained.

4 Semi-rational solutions

In [57], our group constructed a family of semi-rational
solutions of three types of nonlocal DS equations.
Here, we will use the similar method to consider the
semi-rational solutions of the KP-based system, which
describe the interactions of RW and bound-state multi-
dark soliton, interactions of breather andRW, and inter-
actions of lump and bound-state multi-dark soliton.

Table 1 The classification of fundamental solution

Discriminant Type Region Status

� �= 0 Lump (b − k)2 ≤ a2/3 Dark

a2/3 < (b − k)2 ≤ 3a2 Mixed

(b − k)2 > 3a2 Bright

� = 0 RW (b − k)2 ≤ a2/3 Dark

a2/3 < (b − k)2 ≤ 3a2 Mixed

(b − k)2 > 3a2 Bright

In order to obtain the semi-rational solutions, the
long-time limit technique will be applied to deal with
the higher-order solutions. Indeed, choosing

N = 4, Q1 = λ1 P1, Q2 = λ2P2, η01 = η02 = iπ,

and further taking P1, P2 → 0 in (2.4), we transform
f and g into a semi-rational form (a combination of
rational function and exponential function, not just the
exponential function), rewritten as

f = eA34(a13a23 + a13a24 + a13θ2 + a14a23

+ a14a24 + a14θ2 + a23θ1

+ a24θ1 + θ1θ2 + a12)e
η3+η4 + (a13a23 + a13θ2

123
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Fig. 7 (Color online) The regions of (a, b) related to the three
patterns: bright, mixed, and dark, with k = 0

+ a23θ1 + θ1θ2 + a12)e
η3

+ (a14a24 + a14θ2 + a24θ1

+ θ1θ2 + a12)e
η4 + θ1θ2 + a12 ,

g = eA34 [a13a23 + a13a24 + a13(θ2 + β2)

+ a14a23 + a14a24 + a14(θ2

+ β2) + a23(θ1 + β1) + a24(θ1 + β1)

+ (θ1 + β1)(θ2 + β2) + a12]eη3+iφ3+η4+iφ4

+ [a13a23 + a13(θ2 + β2) + a23(θ1 + β1)

+ (θ1 + β1)(θ2 + β2) + a12]eη3+iφ3

+ [a14a24 + a14(θ2 + β2) + a24(θ1 + β1)

+ (θ1 + β1)(θ2 + β2) + a12]eη4+iφ4

+ (θ1 + β1)(θ2 + β2) + a12, (4.1)

where θ1, θ2, β1, β2, a12 are defined in Theorem 1, and

asl = − P3
l

P4
l + (λs − �l)2

( s = 1, 2 , l = 3, 4 ).

Taking the similar procedure as above, we will con-
sider the classification of the semi-rational solution
next.
A: The mixture of a breather and a line RW Assuming

λ1 = a + ib, λ2 = a − ib, P∗
4 = P3, �∗

4 = �3,

η04
∗ = η03,

and

� = b + 4ρ2b(a + 2k)

[(2k + a)2 + b2]2 ,

we obtain a kind of semi-rational solution of the KP-
based systemwhen� = 0, which consists of a breather
and a line RW. To interpret clearly, we choose the fol-
lowing parameters

ε = 0, k = 0, ρ = 9, λ1 = −1 + i
√
17,

λ2 = −1 − i
√
17,

P3 = i, P4 = −i, �3 = 4, �4 = 4, η03 = 0, η04 = 0,

(4.2)

and show the corresponding solution |u| in Fig. 9.
Obviously, the line bright RW only exists for a short
period, while the breather keeps permanent moving on
the constant background. During this short period, the
line RW interacts with the breather apparently, and
the wave structures of the line RW and breather are
strongly destroyed (see the panel at t = 0). After pass-
ing through the breather, themaximumamplitude of the
lineRWbecomes lower thanbefore, and apparent phase
shifts occur to both the lineRWand the breather. In fact,
the phase shift of the RW is observed clearly by com-
paring with the RW shown in Fig. 6, which is derived
by the same parameters. Furthermore, the period of the
breather becomes smaller during the interaction and
then recovers the same period as before. These facts
indicate that energy transfer happens between the rogue
wave and the breather during the interactions.
B: The mixture of a line RW and bound-state two dark
soliton By taking the following parameters in (4.1),

� = 0, Im(P3) = 0, Im(P4) = 0,

where Im represents the imaginary part of a complex
number, the corresponding solution of the KP-based
system behaves as a mixture of a line RW and two dark
solitons. In particular, when the parameters satisfy

�3

P3
= �4

P4
,

�3

q3
= �4

q4
,

these two dark solitons have the same velocity. (The
solitons with same velocity are usually called “bound-
state solitons”.) In this case, these solutions can
describe dynamical profiles of a line RW arising from a
two-soliton background and then decaying back to the
same two-soliton background. The solution with
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Fig. 8 (Color online) The
evolution of bright–bright
second-order rational
solution of KP-based
system with parameters ρ =
9, k = 0, ε = 0, (a1, b1) =
(−1,

√
17), (a2, b2) =

(− 2
3 ,

√
− 4

9 + 6
√
6). a

t = − 5. b t = − 1. c
t = − 0.5. d t = 0. e t = 1.
f t = 5

Fig. 9 (Color online) The
evolution of semi-rational
solution consisting of a line
bright RW and a breather
generated by (4.1) with
parameters given by (4.2). a
t = − 3. b t = − 1. c
t = −0.5. d t = 0. e t = 1.
f t = 3
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Fig. 10 (Color online) The
evolution of semi-rational
solution consisting of a line
RW and two bound-state
dark solitons generated by
(4.1) with parameters given
by (4.3). a t = −3. b
t = −1. c t = 0. d t = 3

ε = 0, k = 0, ρ = 9, λ1 = −1 + i
√
17,

λ2 = −1 − i
√
17,

P3 = 2

3
, P4 = 2

3
, �3 = 1, �4 = −1,

η03 = 3π, η04 = −3π,

(4.3)

is shown in Fig. 10. When |t | is big enough, the semi-
rational solution only has two dark solitons (see the
panels at t = ± 3). During the intermediate time, a line
RW arises and interacts with these two dark solitons
(see the panels at t = −1, 0). Obviously, the interac-
tion does not destroy the structures of the line solitons
and the RW, which is different from the above situa-
tion where the wave structures are strongly destroyed
(shown inFig. 9). Furthermore, to the best of our knowl-
edge, this kind of solutionwith a semi-rational formhas
never been reported before.

C: The mixture of a lump and bound-state two dark
soliton Assuming

� �= 0, ImP3 = 0, ImP4 = 0,
�3

P3
= �4

P4
,

�3

q3
= �4

q4
,

we obtain a solution of the KP-based system including
a lump and bound-state two dark soliton. By choosing

ε = 0, k = 0, ρ = 3, λ1 = 1

5
+ 3i, λ2 = 1

5
− 3i,

P3 = 3

2
, P4 = 3

2
, �3 = 1, �4 = −1, η03 = 3π,

η04 = −3π, (4.4)

this type of solution is shown in Fig. 11. Compared to
the semi-rational solution shown in Fig. 10, this semi-
rational solution not only consists of bound-state two
dark soliton but also a lump when |t | is big enough
(see the panels at t = ± 3), while only bound-state two
dark soliton is presented in the Case B (see the panel
at t = ± 3 in Fig. 10). In Fig. 11, the wave structure of
the semi-rational solution does not change during the
interactions of the lump and two dark soliton (see the
panel at t = 0). In addition, the lump and two dark
soliton do not change any more including phase shift
or darkness, which may imply that these is no energy
transfer between these two dark solitons or between the
two dark soliton and the lumpbefore and after collision.
D: Other types of semi-rational solutions The semi-
rational solution consisting of lump and bound-state
multi-dark soliton has been discussed for the nonlocal
DS equation in [58]. This solution shows the process
of annihilation (production) of two lumps into (from)
multi-dark soliton. Besides, choosing

� �= 0, P∗
4 = P3, �∗

4 = �3, η04
∗ = η03,

we can get a kind of semi-rational solution displaying
a hybrid of one lump and one breather, and this type of
solution has been considered for the third-type nonlocal
DS equation by our group in [57]. Hence, we will not
investigate these two types of solutions of theKP-based
system in this work.
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Fig. 11 (Color online) The
evolution of semi-rational
solution consisting of a
lump and two bound-state
dark solitons generated by
(4.1) with parameters given
by (4.4). a t = −3. b
t = −1. c t = 0. d t = 3

5 Conclusions

By employing the bilinear method and a long-time
limit, the general solutions of the KP-based system
are generated, which include the breather solution, the
rational solution and the semi-rational solution. The
rational solution consists of two types: lump and RW.
Both of them have three types of status: dark state,
mixed state, and bright state. The RW has a line style
arising from constant background and disappearing
into the constant background again after a very short
time. The profiles for the breather, lump, and RW solu-
tion of the KP-based system are shown in Figs. 1, 2, 3,
4, 5 and 6.

Parameters a and b are critical for the generation of
these three types of status. The related regions about
(a, b) corresponding to these three types of status
are shown in Fig. 7 and Table 1 explicitly. Higher-
order rational solutions describe the interactions of sev-
eral individual fundamental solutions, and they possess
more interesting profiles. As an example, the second-
orderRWis considered, and it is classified into six types
of status.

For the semi-rational solutions, this work gives three
types of them in detail. The first one describes the col-
lision between a line RW and a breather, and the wave
structures of the line RWand the breather are destroyed
during the interaction, shown in Fig. 9; the second one
is an elastic collision of a line rogue wave and bound-
state two dark soliton, shown in Fig. 10; the last one
features an elastic collision of a lump and bound-state
two dark soliton, shown in Fig. 11. Except for these

three types of semi-rational solutions, a parallel way
can be used to single out other types of semi-rational
solutions, including mixtures of lumps and periodic
line waves, mixtures of breathers, lumps, and RWs.
Finally, it is worth to emphasize that the technique pre-
sented in this paper may also succeed to other nonlin-
ear integrable (1+1) and higher-dimensional systems,
such as negative-ordermodifiedKdV equation [59,60],
and the local KP-based system. The related results will
be reported elsewhere.
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