
Nonlinear Dyn (2019) 95:1027–1033
https://doi.org/10.1007/s11071-018-4612-4

ORIGINAL PAPER

Rational solutions and lump solutions to a non-isospectral
and generalized variable-coefficient Kadomtsev–Petviashvili
equation

Jian-Guo Liu · Mostafa Eslami ·
Hadi Rezazadeh · Mohammad Mirzazadeh

Received: 20 August 2018 / Accepted: 10 October 2018 / Published online: 22 October 2018
© Springer Nature B.V. 2018

Abstract In thiswork, a non-isospectral and variable-
coefficient Kadomtsev–Petviashvili equation is con-
sidered using Hirota’s bilinear form and a direct
assumption with arbitrary functions. Analytical ratio-
nal solutions in light of positive quadratic functions and
lump solutions of the variable-coefficient Kadomtsev–
Petviashvili equation are obtained. These lump solu-
tions describe two types of characters by some three-
dimensional graphs and contour plots, which contain
bright lump wave and bright–dark lump wave. Mean-
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while, periodic structure of the lump wave is also
shown.
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1 Introduction

Nonlinear integrable equations are oftenused todescribe
problems in the fields of mechanics, fluid mechanics,
plasma, fiber optic communication and Bose–Einstein
condensation [1–5]. Finding exact solutions of non-
linear integrable equations has become an important
research topic [6–13], and a series of special meth-
ods have been proposed, such as inverse scattering
method [14], Darboux transformation method [15],
truncated Painlevé expansion method [16], Hirota’s
bilinear method [17], (G ′/G)-expansion method [18],
multi-exponential function method [19] and so on.

In recent years, lump-type solutions and lump–stripe
mixed solutions have attracted many scholars’ atten-
tion. They can reveal very interesting dynamical prop-
erties [20–32]. The lump solution, also known as the
rational solution, is an elastic collision in which the
shape, amplitude and velocity remain unchanged after
collision with the soliton solution. The mixed solu-
tion of lump–stripe mainly considers the interaction
between lump solution and other soliton solutions. The
research in this field is mainly based on Hirota’s bilin-
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ear method and symbolic computation. Many non-
linear integrable equations have lump formal solu-
tions and lump–stripe mixed solutions. Some impor-
tant results have been established. Gilson and Nimmo
discussed the lump solution and properties of the B-
type Kadomtsev–Petviashvili (KP) equation [33]. Li
[34] and his collaborators considered the interaction
between lump solution and cosh function. Sun et al.
[35] considered the interaction between lump solutions
and exponential functions. Ma et al. [36] further con-
sidered the interaction between the lump solution and
the trigonometric function and the bi-exponential func-
tion, which have more abundant dynamical properties
and structures. With the development of lump formal
solutions and lump–stripe mixed solutions, the dynam-
ical properties of the solutions are discussed,whichwill
help us to understand the physical background behind
the nonlinear integrable equations.

The KP equation was first proposed in 1970 by
Soviet physicists Kadomtsev and Petviashvili [37],
which has been used to describe water waves of long
wavelength with weakly nonlinear restoring forces
and frequency dispersion, and waves in ferromagnetic
media, as well as two-dimensional matter-wave pulses
in Bose–Einstein condensates. The KP model has the
wave dispersion changing significantly the nonlinear
dynamics [38]. Nonlinear stability with infinite space
and periodic boundary conditions and dynamics of soli-
tary waves of KP-type equation have been discussed in
many literatures [39–41].

In this paper, a (3+ 1)-dimensional generalized KP
equation with variable coefficients is presented as fol-
lows [42]:

ϑ3(t)[ϑ5(t)uy + uyt ] + ux [3ϑ2(t)uxy + ϑ5(t)]
+3ϑ2(t)uyuxx+ϑ1(t)uxxxy+uxt−ϑ4(t)uzz = 0,

(1)

where u = u(x, y, z, t) is the wave amplitude func-
tion, which describes the long water waves and small-
amplitude surface waves with weak nonlinearity, weak
dispersion and weak perturbation in fluid mechan-
ics. ϑi (t)(i = 1, 2, 3, 4, 5) are arbitrary differentiable
functions. ϑ1(t) and ϑ2(t) represent the dispersion and
nonlinearity, respectively. ϑ3(t) and ϑ5(t) are the func-
tions representing the perturbed effects. ϑ4(t) repre-
sents the disturbed wave velocities along the z direc-
tion, and the subscripts represent the corresponding
derivatives. When ϑ1 = ϑ2 = ϑ3 = ϑ4 = 1 and
ϑ5 = 0, Eq. (1) becomes the (3+ 1)-dimensional gen-

eralized KP equation [43]. For Eq. (1), Wronskian and
Grammian solutions were obtained with a constraint
condition on the variable coefficients [44]. A couple
of solutions have been studied by the extended trans-
formed rational function method [45]. Pfaffian solu-
tions were presented by the Pfaffianization procedure
of Ohta and Hirota [42].

For the KP-type equations with constant coeffi-
cients, rational solutions and lump-type solutions have
been obtained in many research works. However, as far
as we know, rational solutions and lump-type solutions
to the KP equation with the variable coefficients have
not been found yet, which will become the primary
work of our paper. Section 2 inquires the rational solu-
tions and lump solutions by the Hirota’s bilinear form
and a direct assumptionwith arbitrary functions; Sect. 3
describes the spatial structures of the lump waves in
figures by choosing some suitable parameters; Sect. 4
gives the conclusion.

2 Rational solutions and lump solutions for Eq. (1)

Through the transformation u = 2ϑ1(t)
ϑ2(t)

[lnξ(x, y, z,

t)]x and the constraint ϑ1(t) = ϑ0ϑ2(t)e− ∫
ϑ5(t)dt ,

Hirota’s bilinear form of Eq. (1) can be presented as

[Dt Dx + ϑ1(t)D
3
x Dy + ϑ3(t)Dt Dy

−ϑ4(t)D
2
z ]ξ · ξ = 0. (2)

This is equivalent to:

−ξtξx + ϑ4(t)ξ
2
z − ϑ3(t)ξtξy + 3ϑ1(t)ξxyξxx

−3ϑ1(t)ξxξxxy − ϑ1(t)ξyξxxx + ξ [ξxt
−ϑ4(t)ξzz + ϑ3(t)ξyt + ϑ1(t)ξxxxy] = 0. (3)

Considering the rational solutions and lump solutions
for Eq. (1), we make the following assumption

ζ = xα1 + yα2 + zα3 + α4(t),

ς = xα5 + yα6 + zα7 + α8(t),

ξ = ζ 2 + ς2 + α9(t), (4)

where α1, α2, α3, α5, α6 and α7 are undefined con-
stants. α4(t), α8(t), α9(t) are unknown differentiable
function. Compared with those methods in Refs. [25–
32], our assumption can be used for solving variable-
coefficient nonlinear integrable equation. Substituting
Eq. (4) into Eq. (3) with the Mathematica software, we
have following results
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(I ) : α2 = α6 = 0, α8(t) = η1

+
∫ t

1

α2
3α

2
1ϑ4(t) + α2

3α
2
5ϑ4(t) − α3

1α
′
4(t)

α2
1α5

dt,

α7 = α3α5

α1
, α9(t) = η2

+
∫ t

1
2[−α2

3α1η1ϑ4(t) + α2
1η1α

′
4(t)

+ [α2
1α

′
4(t) − α2

3α1ϑ4(t)]

×
∫ t

1

α2
3α

2
1ϑ4(t) + α2

3α
2
5ϑ4(t) − α3

1α
′
4(t)

α2
1α5

dt

+ α2
3α5α4(t)ϑ4(t) − α5α1α4(t)α

′
4(t)]/(α1α5) dt

(5)

where α1α5 �= 0, η1 and η2 are integral con-
stants. Substituting Eqs. (4), (5) and the constraint
ϑ1(t) = ϑ0ϑ2(t)e− ∫

ϑ5(t)dt into the transformation
u = 2ϑ1(t)

ϑ2(t)
[lnξ(x, y, z, t)]x , the rational solutions for

Eq. (1) can be expressed as follows:

u(I ) =
[
2ϑ0e

− ∫
ϑ5(t)dt

⎡

⎢
⎣2α5

⎡

⎢
⎣η1 +

∫ t

1

α2
3

(
α2
1+α2

5

)
ϑ4(t)

α2
1

− α1α
′
4(t)

α5
dt

+α5

(

x + α3z

α1

)]

+ 2α1 (α4(t) + α1x + α3z)

⎤

⎥
⎦

⎤

⎥
⎦ x

/[η2 +
∫ t

1

⎡

⎢
⎣2

(
α1α

′
4(t) − α2

3ϑ4(t)
)
[α1 [η1

+
∫ t

1

α2
3

(
α2
1+α2

5

)
ϑ4(t)

α2
1

− α1α
′
4(t)

α5
dt

⎤

⎥
⎦

− α5α4(t)]] /(α1α5) dt +
[

η1

+
∫ t

1

α2
3

(
α2
1+α2

5

)
ϑ4(t)

α2
1

− α1α
′
4(t)

α5
dt

+ α5

(

x + α3z

α1

)]
2 + (α4(t) + α1x + α3z)

2
]

, (6)

where ϑ0 is an arbitrary nonzero constant. In addition
to the constraint (I), other parameters are arbitrary.

Todescribe the resulting rational solutions inEq. (6),
we select the two particular values for the parameters:

α4(t) = sin t, ϑ3(t) = 1, ϑ4(t) = t, ϑ5(t) = 0,

α1 = 1, α3 = 2, α5 = −3, η1 = η2 = ϑ0 = 1,

(7)

and

α4(t) = sin t, ϑ3(t) = 1, ϑ4(t) = t,

ϑ5(t) = 0, α1 = −5,

α3 = 2, α5 = 3, η1 = η2 = ϑ0 = 1. (8)

SubstitutingEq. (7) andEq. (8) into solutionu(I ), three-
dimensional graphs and contour graphs at z = −5 and
x = −5 are shown in Figs. 1 and 2, respectively.

Next, we will present the lump solutions for Eq. (1)
and discuss their spatial structures as follows

(I I ) : ϑ4(t) = [3(α2
1 + α2

5) (α1α2 + α5α6) ϑ1(t)
[
α2
1 + α2

5 +
(
α2
2 + α2

6

)
ϑ3(t)

2

+ 2 (α1α2 + α5α6) ϑ3(t)
]]

/ [α9[α7 (α1 + α2ϑ3(t)) − α3[α5

+α6ϑ3(t)]]2], α9(t) = α9,

α4(t) = η3 +
∫ t

1
[3

(
α2
1 + α2

5

)
(α1α2 + α5α6)

ϑ1(t)
[
2α3α5α7

+α1

(
α2
3 − α2

7

)
+

[
2α3α6α7

+α2

(
α2
3 − α2

7

)]
ϑ3(t)

]]

/[α9 [α7 (α1 + α2ϑ3(t))

−α3 (α5 + α6ϑ3(t))]2] dt,
α8(t) = η4 +

∫ t

1
[3

(
α2
1 + α2

5

)
(α1α2 + α5α6)

ϑ1(t)[α2
3[−[α5

+α6ϑ3(t)]] + 2α7α3 (α1 + α2ϑ3(t))

+α2
7 (α5 + α6ϑ3(t))]]

/[α9[α7 (α1 + α2ϑ3(t))

−α3 (α5 + α6ϑ3(t))]2] dt (9)

where α9[α7 (α1 + α2ϑ3(t)) − α3 (α5 + α6ϑ3(t))] �=
0, η3 and η4 are integral constants. Substituting Eq. (4),
Eq. (7) and the constraint ϑ1(t) = ϑ0ϑ2(t)e− ∫

ϑ5(t)dt

into the transformation u = 2ϑ1(t)
ϑ2(t)

[lnξ(x, y, z, t)]x ,
the lump solutions for Eq. (1) can be expressed as fol-
lows:

u(I I ) =
[
2ϑ0e

− ∫
ϑ5(t)dt [2α1(α4(t) + α1x

+α2y + α3z) + 2α5(α8(t) + α5x

+α6y + α7z)]]/[α9 + (α4(t) + α1x

+α2y + α3z)
2

+ (α8(t) + α5x + α6y + α7z)
2
]
, (10)

where ϑ0 is an arbitrary nonzero constant. In addition
to the constraint (II), other parameters are arbitrary.
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Fig. 1 Rational solution
u(I ) when z = −5 a
three-dimensional graph, b
contour graph
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Fig. 2 Rational solution
u(I ) when x = −5 a
three-dimensional graph, b
contour graph
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Fig. 3 Spatial structure of
the bright–dark lump
solution u(I I ) when z = 0 a
three-dimensional graph, b
contour plot
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3 Spatial structures of lump solutions in Eq. (10)

To demonstrate the spatial structures of lump solutions
in Eq. (10), we select the three particular values for the
parameters:

ϑ2(t) = t, ϑ3(t) = 1, ϑ5(t) = t = 0, α2 = α9 = 2,

α1 = α3 = α6 = α7 = η3 = η4 = ϑ0 = 1, α5 = −3, (11)
ϑ2(t) = t, ϑ3(t) = 1, ϑ5(t) = x = 0, α2 = α9 = 2,

α1 = α3 = α6 = α7 = η3 = η4 = ϑ0 = 1, α5 = −3, (12)

and

ϑ2(t) = sin t, ϑ3(t) = 1, ϑ5(t) = y = 0,

α2 = α9 = 2, α1 = α3 = α6 = α7 = η3

= η4 = ϑ0 = 1, α5 = −3. (13)

Substituting Eq. (11) into solution u(I I ), three-
dimensional graphs and contour plots at z = 0 and
x = 0 are shown in Figs. 3 and 4, respectively. Substi-
tuting Eq. (12) and Eq. (13) into solution u(I I ), three-
dimensional graphs and contour plots at y = −5; 0; 5
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Fig. 4 Spatial structure of
the bright–dark lump
solution u(I I ) when x = 0 a
three-dimensional graph, b
contour plot
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Fig. 5 Spatial structure of the bright lump solution u(I I ) when y = −5 (a, d), y = 0 (b, e) and y = 5 (c, f)

and x = −5; 0; 5 are presented in Figs. 5 and 6, respec-
tively.

Figures 3 and 4 demonstrate the spatial structure of
the bright–dark lump solution because the height of the
peak is competent for the depth of the valley bottom,
which contains one peak and one valley. Their peak and
valley are meristic. Figure 5 shows the spatial structure
of the bright lump solution, which contains one peak

and two valleys. Figure 6 shows the periodic structure
of the lump solution.

4 Conclusion

In this work, by applying Hirota’s bilinear form and
a direct assumption with arbitrary functions, we have
obtained rational solutions and lump solutions to the
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(a) (b) (c)

(f)(e)(d)

Fig. 6 Periodic structure of the lump solution u(I I ) when x = −5 (a, d), x = 0 (b, e) and x = 5 (c, f)

(3+1)-dimensional generalizedKP equationwith vari-
able coefficients. Spatial structures of the bright lump
solution and the bright–dark lump solution are shown
by some three-dimensional graphs and contour plots.
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