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Abstract One- and two-soliton analytical solutions
of a fifth-order nonlinear Schrödinger equation with
variable coefficients are derived bymeans of the Hirota
bilinear method in this paper. Various scenarios of one-
soliton shaping and two-soliton interaction and reshap-
ing are investigated, using the obtained exact solutions
and adjusting parameters of the underlying model. We
find that widths of two colliding solitons can change
without changing their amplitudes. Furthermore, we
produce a solution in which two originally bound soli-
tons are separated and are then moving in opposite
directions. We also show that two colliding solitons
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can fuse to form a spatiotemporal train, composed of
equally separated identical pulses. Moreover, we dis-
play that thewidth and propagation direction of the spa-
tiotemporal train can change simultaneously. Effects
of corresponding parameters on the one-soliton shap-
ing and two-soliton interaction are discussed. Results
of this paper may be beneficial to the application of
optical self-routing, switching and path control.

Keywords Soliton shaping · Soliton interaction ·
Soliton manipulation · Fifth-order variable-coefficient
nonlinear Schrödinger equation

1 Introduction

The past decades have witnessed a constant growth in
the number of studies on the existence, stability, and
robustness of solitons (ormore properly solitarywaves)
and their applications in diverse areas, such as opti-
cal fibers, matter waves (Bose–Einstein condensates),
and water waves [1–9]. Finding exact solutions to non-
linear partial differential equations (PDEs) describing
the evolution of localized waveforms is a significant
subject in nonlinear science [10–33]. Many nonlinear
evolution equations that model the realistic physical
problems are variable-coefficient nonlinear PDEs [34–
43]. They describe a plethora of physical effects in fluid
dynamics, condensed matter physics, plasma physics,
optics and photonics (especially in nonlinear fiber
optics [44–50]). Solitons propagating in optical fibers
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may be adequately described by variable-coefficient
nonlinear Schrödinger (VCNLS) equations, see book
[2] and Refs. [44,50]. To increase the transmission
rate, ultrashort (picosecond or subpicosecond) pulses
are often used as data carriers, for which the higher-
order dispersion (HOD) cannot be ignored. Therefore,
finding analytical families of soliton solutions of non-
linear PDEs that incorporate higher-order terms, espe-
cially finding exact solutions of higher-order variable-
coefficient NLS-type equations, is of great importance
from both theoretical and experimental point of view
[51–54].

Recently, many works addressed soliton solutions
for the higher-order VCNLS equations, using vari-
ous methods, such as the Darboux transformation and
Hirota bilinear method [55–59]. In particular, breather
solutions for a higher-order VCNLS equation have
been found by means of the Darboux transformation
[60], producing the effect of HODon the obtained solu-
tions, and the analysis of a sixth-orderVCNLSequation
[61] has yielded one- and two-soliton solutions with
the help of the Hirota bilinear method, showing that
HOD significantly affects velocities and amplitudes of
the solitons. Further, a method to realize the transi-
tion between nonautonomous breathers and the nonau-
tonomous multi-peak solitons for a VCNLS equation
with HOD has been proposed in [62]. Recently, first-
and second-order rogue-wave solutions for a fourth-
orderVCNLSequation have been obtained inRef. [63],
and effects of group velocity dispersion (GVD) and
fourth-order dispersion (FOD) on rogue waves have
been revealed.

In this paper, we investigate the following fifth-order
VCNLS equation [64]:

iux + β(x)

(
1

2
utt + u|u|2

)
− iα(x)

(
uttt + 6|u|2ut

)

+ γ (x)
(
utttt + 6u∗u2t + 4u|ut |2

+ 8|u|2utt + 2u2u∗
t t + 6u|u|4)

− iδ(x)
(
utttt t + 10|u|2uttt + 30|u|4ut + 10uutu

∗
t t

+ 10uu∗
t utt + 20u∗ututt + 10u2t u

∗
t

) = 0, (1)

which may be used as an integrable model to describe
the propagation of ultrashort pulses in inhomogeneous
optical fibers. Here u(x, t) is a complex function rep-
resenting the envelope of the optical pulse, x is the
normalized transmission distance, and t is the retarded
time, the asterisk standing for the complex conju-
gate. Physically, real parameters β(x), α(x), γ (x), and

δ(x) represent GVD, third-order dispersion (TOD),
FOD, and thefifth-order dispersion, respectively. Equa-
tion (1) with constant coefficients has been proved to be
completely integrable by using the Lax pair and Dar-
boux transformations [64]. However, possible integra-
bility of Eq. (1) with x-dependent coefficients α(x),
β(x), γ (x) and δ(x) has not been studied before. In the
present work, analytical one- and two-soliton solutions
to Eq. (1) are derived by means of the Hirota bilinear
method for some particular choices of these coefficient
functions, such as the one give by Eqs. (15) and (16).
A comprehensive analysis of integrability conditions
for the x-dependent coefficients of Eq. (1) should be a
subject of a separate work.

Based on the obtained solutions, we present dif-
ferent scenarios of soliton interactions and reshap-
ing, by adjusting parameters of the governing model.
In particular, we will demonstrate a possibility to
have pulse widths of two interacting solitons chang-
ing after the collision, without a change in their ampli-
tudes. In addition, we demonstrate that the state of
two interacting solitons can be changed, after a cer-
tain propagation distance, from a bound state to a
pair of separating solitons with different amplitudes
and widths. Also, an interesting effect revealed by
the exact solutions is that a spatiotemporal pulse train
can be compressed in the course of the propaga-
tion.

The rest of the paper is arranged as follows. The
bilinear form and one- and two-soliton solutions of
Eq. (1) are derived in Sect. 2 via the Hirota method. In
Sect. 3, the use of the model’s parameters for shaping
one-soliton states and control of two-soliton interac-
tions is illustrated graphically, using the obtained exact
one- and two-soliton solutions. Finally, conclusions are
formulated in Sect. 4.

2 Bilinear forms and solutions of Eq. (1)

In this section, bilinear forms and one- and two-soliton
analytical solutions of Eq. (1) are given, using the
Hirota bilinear method [65,66].

2.1 Bilinear forms

To transform Eq. (1) into the Hirota bilinear form, we
introduce a dependent-variable transformation,

u(x, t) = g(x, t)

f (x, t)
,
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where g(x, t) is a complex differentiable function,
while f (x, t) is a real one. Then Eq. (1) can be trans-
formed into

i
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where the Hitota bilinear operators Dm
x and Dn

x are
defined by [65,66]

Dm
x Dn

t g(x, t) · f (x, t) =
(

∂

∂x
− ∂

∂x ′

)m

×
(

∂

∂t
− ∂

∂t ′

)n

g(x, t) f (x ′, t ′)
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x ′=x,t ′=t

. (3)

Setting D2
t f · f = 2|g|2, and according to the prop-

erties of the Hirota bilinear D-operator:

D4
t f · f
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t t
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t f · f
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Eq. (2) can be simplified as
[
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t

]
g · f

f 2

− 3γ (x)g∗ (
D2
t g · g)

f 3

− i
5δ(x)g∗

t

(
D2
t g · g)

f 3
− i

10δ(x)g∗ (Dtg · gtt )
f 3

− i
5δ(x)g∗ (

D2
t g · g) ft

f 4
= 0. (5)

Introducing two complex auxiliary functions r =
r(x, t) and s = s(x, t), the bilinear relations for Eq. (1)
can be derived as

D2
t f · f = 2|g|2, (6a)

D2
t g · g = s f, (6b)

2Dtg · gtt + s ft = r f, (6c)[
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where the Hitota bilinear operators Dm
x and Dn
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defined by [65,66]
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Equation (6) can be solved by expanding functions
g(x, t), f (x, t), r(x, t), and s(x, t) in powers of a for-
mal small parameter ε:

g(x, t) = εg1(x, t) + ε3g3(x, t) + ε5g5(x, t) + · · · ,

(8a)

f (x, t) = 1 + ε2 f2(x, t) + ε4 f4(x, t)

+ ε6 f6(x, t) + · · · , (8b)

r(x, t) = r0(x, t) + ε2r2(x, t) + ε4r4(x, t)

+ ε6r6(x, t) + · · · , (8c)

s(x, t) = s0(x, t) + ε2s2(x, t) + ε4s4(x, t)

+ ε6s6(x, t) + · · · , (8d)

where gm(x, t) (m = 1, 3, 5, . . .), rn(x, t), and sn(x, t)
(n = 0, 2, 4, 6, . . .) are complex functions and fl(x, t)
(l = 2, 4, 6, . . .) are real ones.
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2.2 One-soliton solutions

To obtain the one-soliton solution for Eq. (1), we
assume g(x, t) = εg1(x, t), f (x, t) = 1 + ε2 f2(x, t),
r(x, t) = r0(x, t), s(x, t) = s0(x, t). The expressions
of g1(x, t) and f2(x, t) are assumed to be

g1(x, t) = eθ ,

f2(x, t) = σ(x)eθ+θ∗
. (9)

Here θ = k(x) + wt + d, where k(x) is a complex
function, and w and d are complex constants. Then,
we substitute expression (9) into Eq. (6). After some
calculations, the constraints on the parameters can be
obtained as follows:

k(x) =
∫ [

i

2
w2β(x) + w3α(x)

+ iw4γ (x) + w5δ(x)

]
dx,

r0(x, t) = s0(x, t) = 0, σ (x) = 1

(w + w∗)2
.

(10)

Without loss of generality, we set ε = 1, and the ana-
lytic one-soliton solution for Eq. (1) can be written as

u(x, t) = g1(x, t)

1 + f2(x, t)
. (11)

2.3 Two-soliton solution

To obtain the two-soliton solution of Eq. (1),we assume
g(x, t) = εg1(x, t) + ε3g3(x, t), f (x, t) = 1 +
ε2 f2(x, t)+ ε4 f4(x, t), r(x, t) = r0(x, t)+ ε2r2(x, t)
and s(x, t) = s0(x, t) +ε2s2(x, t), while the expres-
sions for g1(x, t), g3(x, t), f2(x, t), and f4(x, t) are
taken as

g1(x, t) = eθ1 + eθ2 ,

g3(x, t) = ρ1(x)e
θ1+θ2+θ∗

1 + ρ2(x)e
θ1+θ2+θ∗

2 ,

f2(x, t) = ϕ1(x)e
θ1+θ∗

1 + ϕ2(x)e
θ1+θ∗

2

+ϕ3(x)e
θ2+θ∗

1 + ϕ4(x)e
θ2+θ∗

2 ,

f4(x, t) = ψ(x)eθ1+θ2+θ∗
1 +θ∗

2 . (12)

Here θ j (x, t) = k j (x) + w j t + d j ( j = 1, 2), where
k j (x) are complex functions, and w j and d j are com-
plex constants. Then, we substitute expression (12) into
Eq. (6). After some calculations, the expressions for the
parameters can be obtained as follows:

k1(x) =
∫ [

i

2
w2
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1α(x) + iw4
1γ (x)

+w5
1δ(x)

]
dx,
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]
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2,
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2(w1 + w2),

ϕ1(x) = 1(
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1
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2
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w2 + w∗

1

)2 , ϕ4(x) = 1(
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2

)2 ,
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2
,

ρ2(x) = ϕ2(x)ϕ4(x)ξ(x)

2
,

ψ(x) = ϕ1(x)ϕ2(x)ϕ3(x)ϕ4(x)|ξ(x)|2
4

. (13)

We set ε = 1, and the analytic two-soliton solution
for Eq. (1) can be written as

u(x, t) = g1(x, t) + g3(x, t)

1 + f2(x, t) + f4(x, t)
. (14)

3 Discussion

In this section, we will consider the effect of rele-
vant model parameters on shaping of one-soliton states
and control of the two-soliton interaction, and subse-
quent reshaping of the solitons after the collision. The
obtained results will be illustrated graphically by using
both three-dimensional plots and two-dimensional con-
tour plots of the corresponding waveforms.

To investigate the effect of HOD on the reshaping
of the fundamental soliton, we fix the coefficients of
GVD, FOD, and fifth-order dispersion and only vary
the value of TOD to show the change of the shape of
the soliton in the course of the propagation, as displayed
in Figs. 1 and 2.When the variable (x-dependent) TOD
is taken as

α(x) = tan(Cx), (15)
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Fig. 1 One-soliton shaping
based on the solution (11)
with parameters: w = 1,
d = 2, β(x) = γ

(x) = δ(x) = x . a
α(x) = tan(x); b
α(x) = tan(0.69x); c
α(x) = tan(1.3x); d
α(x) = tan(0.6x). In this
figure and similar ones
presented below, values of
|u|2 are shown by means of
the vertical axis, which
seems as a back-tilted left
square bracket,[

with real constantC , and a linear function of x is chosen
for coefficients of the inhomogeneous GVD, FOD, and
fifth-order dispersion, i.e., we consider

β(x) = γ (x) = δ(x) = x, (16)

the reshaping of the fundamental soliton is shown in
Fig. 1a for C = 1. It is clearly seen in Fig. 1a that the
soliton trajectory in the (x, t) plane is a parabola-like
one in this specific case. In the course of the soliton
propagation, it shrinks to the narrowest state along the
negative direction of t , and a phase flip occurs. Then,
the width of the soliton expands, leading to the gen-
eration of left-right symmetric grooves in the course
of the propagation. Further, the distance between two
adjacent phase flips increases along the negative direc-
tion of t , while the amplitude of the soliton remains

almost unchanged before and after the phase flip. If we
adjust coefficient C in Eq. (15), the frequency of the
soliton phase-flipping can be reduced without chang-
ing the soliton’s amplitude, as shown in Fig. 1b. Fur-
thermore, the amplitude of the soliton can be changed
discontinuously by changing the same coefficient. As
shown in Fig. 1c and d, the soliton’s amplitudes, cor-
responding to the two sides of the phase flip, are quite
different. These propagation scenarios show that both
thewidth and amplitude of the soliton can be controlled
by appropriately adjusting the HOD effects.

When we choose function tan(x) as the parameter
of the fifth-order dispersion, and select the function
sin(Cx) as the variable GVD, TOD, and FOD coeffi-
cients, the soliton performs periodic oscillations along
x , as displayed in Fig. 2a, with its width changing peri-
odically in the course of the propagation. C is a real
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Fig. 2 One-soliton shaping
based on the solution (11)
with parameters: w = 1,
d = 2, β(x) = sin(x),
γ (x) = sin(x),
δ(x) = tan(x). a
α(x) = sin(x); b
α(x) = sin(0.69x); c
α(x) = sin(0.52x); d
α(x) = sin(0.42x)

constant. In this case, we only vary the TOD coef-
ficient, to observe its effect on the soliton transmis-
sion. As Fig. 2b–d shows, the periodic oscillations of
the soliton can be controlled by adjusting coefficient
C in sin(Cx) for the inhomogeneous TOD. It is also
found that the variationofTODaffects the overall shape
of the oscillations. Naturally, the oscillation intensity
increases with the decrease of C .

In the abovediscussion of the reshapingof the funda-
mental soliton, we assumed that all HOD coefficients
are functions of variable x . In contrast to that, in the
analysis of two-soliton interactions, presented below,
we assume that the GVD, TOD, and FOD coefficients
are constant, while the fifth-order dispersion coeffi-
cient δ remains a function of x . As shown in Fig. 3a,
widths of the two solitons change after the interaction,
namely, one soliton expands while the other one gets

compressed. Furthermore, amplitudes of the interact-
ing solitons remain unchanged while their propagation
directions in the (x, t) plane change after the colli-
sion. By appropriately modifying the values of com-
plex constants w1 and w2, a noteworthy interaction
scenario occurs, in which both solitons are compressed
simultaneously after the collision, as shown in Fig. 3b.
Besides that, we show that phases of the two solitons
can be reversed when the values of β(x), α(x), and
γ (x) are replaced by −β(x), −α(x), and −γ (x), as
shown in Fig. 3c. These three generic scenarios of the
two-soliton interaction are additionally illustrated by
the corresponding contour plots in Fig. 4.

Figure 5 shows another interesting interaction effect,
namely, that a complex of two interacting solitons can
transform from a bound state to a state in which the
solitons are well separated. The three panels in Fig. 5
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Fig. 3 The interaction of two solitons based on the solution (14)
with parameters d1 = d2 = 0, β(x) = α(x) = γ (x) = 1,
δ(x) = tanh(x). a w1 = 0.6 − 0.34i , w2 = 0.72 + 0.72i ; b

w1 = −0.88 + 0.016i , w2 = −0.73 + 0.56i ; c The same as in
(b), except for β(x) = α(x) = γ (x) = −1

Fig. 4 Contour plots displayed in panels a, b, and c correspond to the three-dimensional plots in Fig. 3a, b, and c, respectively

show that the two solitons attract and repel each other
periodically, generating a kind of a bound state. How-
ever, after propagating steadily for a certain distance,
the solitons suddenly separate from each other and then
propagate in different directions. These results may be
used to design optical switches and to realize an opti-
cal path control. The interaction between two bound
solitons and their subsequent separation are observed
more clearly in Fig. 6, which shows contour plots cor-
responding to the interaction scenarios displayed in
Fig. 5.

Apart from the bound-state soliton complex, another
type of soliton–soliton interactions is displayed in

Fig. 7. In Fig. 7a, fusion of two colliding solitons into
a train of identical spatiotemporal pulses with equal
separations between them is shown. The amplitudes of
the emerging pulses are, obviously, much larger than
the input amplitudes of the two colliding solitons. This
effect may be used in specific applications in nonlin-
ear fiber optics and high-power fiber lasers. Moreover,
phases of two pulses can be flipped by replacing β(x),
α(x), andγ (x)by−β(x),−α(x), and−γ (x), as shown
in Fig. 7b. The formation of the spatiotemporal pulse
train as the result of the collision can be observed more
clearly in Fig. 8, which shows the corresponding con-
tour plots.
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Fig. 5 The interaction of two solitons based on solution (14)
with parameters δ(x) = tanh(x), d1 = d2 = 0. a β(x) = −0.56,
α(x) = 0.56, γ (x) = 0.31, w1 = −0.75 − 0.8i , w2 =
−0.84 − 0.063i ; b The same as in (a), but with β(x) = −1.75,

α(x) = 0.22, γ (x) = −0.095; c The same as in (a), but
β(x) = 0.66, α(x) = 1, γ (x) = 1, w1 = 0.7 + 0.094i ,
w2 = 0.91 + 0.031i

Fig. 6 Contour plots displayed in panels a, b, and c correspond to the three-dimensional plots in Fig. 5a, b, and c, respectively

Finally, Fig. 9 shows another noteworthy effect,
in which the spatiotemporal pulse train compresses
itself after propagating a certain distance. As shown in
Fig. 9a, the spatiotemporal train propagates stably after
performing the self-compression, maintaining identi-
cal shapes of the individual pulses and equal distances
between them. However, the propagation direction of
the compressed train changes in the (x, t) plane. We
also note that, changing only the coefficients of disper-
sion terms in the underlying model one can adjust both
the width of the spatiotemporal train and its propaga-
tion direction, keeping the self-compression property,
as shown in Fig. 9b. In Fig. 10, contour plots addition-
ally illustrate the dynamical scenarios from Fig. 9.

4 Conclusions

In this work, analytical one- and two-soliton solutions
for the fifth-order nonlinear Schrödinger equation (1)
with variable coefficients have been obtained bymeans
of the Hirota bilinear method. Several generic scenar-
ios of one-soliton shaping and two-soliton interaction
and reshaping have been put forward based on exact
one- and two-soliton solutions (11) and (14). Accord-
ing to the one-soliton solution (11), parabola-like and
periodic oscillation patterns of the evolution of funda-
mental solitons have been presented in Figs. 1 and 2.
The results show that both the amplitude and period of
the soliton’s oscillations can be controlled by changing
the variable TOD coefficient α(x), which may help to
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Fig. 7 The interaction of
two solitons based on the
solution (14) with
parameters δ(x) = tanh(x),
w1 = 0.75 + 0.31i ,
w2 = −0.56 − 0.61i . a
β(x) = 0.92, α(x) = 0.99,
γ (x) = 1; b β(x) = −1.44,
α(x) = −1.51,
γ (x) = −1.2

Fig. 8 Contour plots
displayed in panels a and b
correspond to the
three-dimensional plots in
Fig. 8a and b, respectively

Fig. 9 The evolution of the
soliton train based on
solution (14) with
parameters: δ(x) = tanh(x),
d1 = d2 = 0,
w1 = 0.75 + 0.54i ,
w2 = 0.73 − 0.855i . a
β(x) = 1.8, α(x) = 1.8,
γ (x) = 1.79; b
β(x) = α(x) = γ (x) = 1

123



378 C. Yang et al.

Fig. 10 Contour plots
displayed in panels a and b
correspond to the
three-dimensional plots in
Fig. 9a and b, respectively

apply dispersion management to solitons propagating
in fibers with inhomogeneous higher-order dispersion.
Using the two-soliton solution (14), we have found
a scenario where one of the two interacting solitons
widens, while the width of the other soliton is com-
pressed, see Fig. 3a. For other sets of the model’s
parameters we have found that, after the interaction,
the two solitons are compressed, see Fig. 3b. The anal-
ysis has also revealed an interesting effect, in which
the complex composed of two interacting solitons can
transform from a bound state into a pair of separating
solitons, see Fig. 5. Further, in Fig. 7 we display the
fusion of two colliding solitons into a train of identical
spatiotemporal pulses with equal separations between
them. In the latter case, the amplitude of the emerging
train is much larger than amplitudes of the two input
solitons. Also, a simple method to realize the soliton
phase reversal has been proposed, see Figs. 3c, 4c, 7b,
and 8b. Lastly, the exact solution demonstrates that the
spatiotemporal pulse train can strongly compress itself,
as shown in Figs. 9 and 10. The results reported in this
work may be useful to the design of optical switches
and path controllers, and for performing pulse com-
pression in fiber laser systems.
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