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Abstract We study the effect of electromagnetic
induction on improvedHindmarsh–Rose neuronmodel
with flux-based memristor terms. The electrical activ-
ity of single neuron and of coupled neurons under the
influence of quadratic memristor term and the influ-
ence of noise on isolated and coupled neurons are ana-
lyzed. Our results confirm that, when noise is added,
the oscillation death is achieved for relatively smaller
magnitudes of external steady current and it also leads
to the inhibition of bursting under periodic current. The
functional responses of membrane potential of single
as well as of coupled neuron exhibit bursting, tonic,
quiescent and even suppression of oscillations under
quadratic flux induction, as external current is varied.
The suppression of oscillation for higher current in
the presence of quadratic flux is quite distinct from
the cubic flux case where increase in current exhibits
continuous spiking. The variation of Hamilton energy
against external current confirms the existence of qui-
escent state. The bifurcation plot of interspike interval
versus current in the presence of external quadratic flux
is denser than that of cubic flux-based electromagnetic
induction which indicates a higher degree of aperiod-
icity. The plot of Lyapunov exponent versus character-
istic parameter exhibited anisotropy and chaotic nature
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for the dynamics of the neuron. For coupled neurons,
the synchronization patterns shows periodic-, chaotic-,
and tonic-type transitions. For certain noise intensity
and coupling strength, the oscillation death is also
exhibited by the coupled neurons. For the exponential
flux-controlled memristor, the coupled neurons exhibit
the synchronizations with dynamics of antiphase, peri-
odic, chaotic, and of oscillation death. The plot of trans-
verse Lyapunov exponent of coupled neurons establish
that the system is chaotic for certain values of coupling
constant.

Keywords H–R neurons · Memristor · Hamilton
energy · Lyapunov exponent · Bifurcation · Noise

1 Introduction

Electrical signals are the basis of information trans-
fer in the nervous system. The role of electrical activ-
ity of neurons for neuro-protection [1] is an emer-
gent research field. The four-variable Hodgkin–Huxley
equations [2] and its modified forms are often used to
model the electrical activities in neuron.

When neuron is exposed to electromagnetic radia-
tion, the effect of radiation could be described by an
equivalent current in neuronal loop [3] and the corre-
sponding electrical activities could be detected. Clin-
ical effects of transcranial electrical simulation with
weak currents [4] helps to understand how different
amplitude of electric field affect the ongoing brain
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activities. Experimental studies of complex electrical
activities in cardiac tissueswith electromagnetic induc-
tion are reported which say that these activities respon-
sible for spiral waves, encounter breakup, and turbu-
lence in electrical activities [5].

Magnetic field or flux storage is always associated
with memory. Memory effect can be described by time
delay term in neuronal models. Nowadays, the elec-
tromagnetic induction studies [6] on neuronal network
are carried out where memristor is used to describe
the memory effect which remembers the magnetic flux
across the membrane of neurons or cells. Memristors
(memory+ resistors) are nanoscale devices, where the
nonlinear resistance can be memorized indefinitely by
controlling the flow of the electrical charge or the mag-
netic flux [7,8]. The nonvolatile memory property of
a memristor is a consequence of state-dependent ohms
law. So it affects the potential difference and may lead
to a structural change due to the supplied electrical
energy [9]. The ‘on’ state is represented by a mem-
ory function. A conservation function gives the time-
varying resistance which represents the ‘off’ state [9].
It can be used as a synapse in hardware of artificial
neural networks. The Magnetic effect due to memris-
tor is similar to that of atomic-scale magnetic suscep-
tibility exhibited by NMR spectroscopy and of MRI
imaging [10].

Memristive neural network studies help to inte-
grate information in different functionally specialized
regions of brain. Further, the neuronal synchronization
helps to encode information in brain through different
coherent states which arise through temporal patterns
of neural activity, and it emulates even an optical illu-
sion [11,12].

Recent studies of coupled networks under electro-
magnetic induction show that the synchronization of
neurons causes enlargement of frequency spectrum and
self-induction effect [13]. When external electromag-
netic radiation is imposed on the Fitzhugh–Nagumo
neuron model [14], it helps to detect the mode tran-
sition of electrical activities in a myocardial cell. The
simulations confirm that the neurons exposed to exter-
nal electromagnetic field can induce phase synchro-
nization [15].

Noise also can influence and enhance the synchro-
nization pattern formation in excitable systems [16].
The local magnetic flux density due to neurons is very
much less than that of the Earth’s magnetic field. So
the surrounding noise always becomes comparable to

neuronal magnetic signal. The influence of noise can
be studied by changing its frequency or intensity [17].
It is also reported [18] that information processing due
to synchrony can be modulated by noise.

Energy is an important parameter which influences
the normal behavior of brain and its usage mainly
depends on the rate of variation of action potential and
also on the fraction used by brain for signaling activity.
Various studies [19–21] are done on metabolic energy
for neural activity, energy efficient neural codes, col-
lective behavior of biological oscillators and its energy
cost. It is reported that the energy ismuch dependent on
the mode of electrical activities instead of the external
forcing currents directly and a smaller energy occurs
under bursting states [22]. The study helps to under-
stand the onset of epilepsy (bursting synchronization
induced epilepsy makes energy release). The calcula-
tion of Hamilton energy of the neuron systems based
on Helmholtz’s theorem can explain neurobiological
energy states [23]. It is also observed that an event-
based minimum energy input is desirable clinically
for brain simulation treatment of neurological diseases
(like Parkinson’s disease) [24]. The delayed response
of Hamilton energy to external forcing currents con-
firms that neuron contributes to energy coding [25,26].
These results prompt for further investigation on energy
problems in neuronal network.

Bifurcation analysis [27] of H–R neuron helps to
understand the relationship between neural firing pat-
terns which are induced by corresponding modulations
in potassium channel of neuron model. Gu et al. [28]
experimentally demonstrated the bifurcations from
bursting to spiking state predicted by theoretical mod-
els. The effect of external forcing current on electrical
activities of neuron can be predicted with bifurcation
diagram [29]. Transverse Lyapunov exponent plot [30]
confirms synchronization stability. Also, to determine
the neurocomputational properties of cell, bifurcation
analysis is important.

The Hindmarsh–Rose model with fractional order
[31] can give an explanation to dynamical properties of
neuronal electric activities. It is observed that autapse-
modulated neuronmodel and the time- varying electro-
magnetic field canmodulate the membrane potential of
neuron and even the time delay in autapse can suppress
the bursting in neuronal behavior [32]. Recent stud-
ies [33] show that field coupling is also an effective
way to contribute toward electromagnetic induction on
neurons, when synaptic coupling is not available. Lu
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et al. [29] have examined the mode selection in neural
activities and has done the corresponding bifurcation
analysis under high and low frequency current to study
electromagnetic induction of four-variable H–R model
with cubic flux-controlled memristor. Their results
established that the neuron becomes self-adaptive as
it responds to external stimuli. Also, studies of Ge
et al. [34] showed that for a magnetic flux driven neu-
ronmodel, different responses in electrical activities are
resulted in under periodic frequency of electromagnetic
radiation and in the presence of Gaussian white noise.

Studies of Hudson et al. [35] have identified that
the quadratic flux minimizing surfaces can be con-
structed for toroidal magnetic fields. The memory-
based quadratic and exponential flux induction can
influence conductance in channels including channel
blocking [36]. Also, studies [37] show that mathemat-
ical model can interpret the experimental observation
of exponential variation of fluxes which permit to eval-
uate the extent to which the membrane is affected by
external flux. Under these contexts, it seems to be rele-
vant to examine influence of quadratic and exponential
flux-controlled memristor on neurons.

In the next section the influence of quadratic flux-
based memristor on the electric activities properties
of improved H–R model is analyzed. The dynamics
is examined for periodic and nonperiodic forcing cur-
rent. Bifurcation diagram of interspike interval versus
current and the corresponding Lyapunov exponent for
the system is plotted. In Sect. 3, the effect of noise
on electromagnetic induction of neuron is examined.
Section 4 gives the energy of improved H–R model
under quadratic flux and the corresponding numerical
analysis. In Sect. 5, the study is extended on coupled
neurons under quadratic and exponential flux and the
Transverse Lyapunov exponent plot for coupled neu-
rons under quadratic flux is also analyzed.

The studies exhibit the highly interesting rich phe-
nomena such as transitions from the rest state to the
firing state and from the spiking state to the bursting
states in the four-variable H–R neuron models with
these different flux-based memristors. Also, the states
exhibit tonic spiking and oscillation deaths under var-
ious external conditions. When noise is added to the
neuronal model the suppression of these activities is
achieved. The mode transitions exhibited are different
from that of improved H–R neuron model with cubic
flux-controlled memristor in the presence of Gaussian
white noise [34,38].

Numerical analysis of Hamilton energy also sup-
ports the different transitions in electrical modes. The
energy exhibits discontinuous behavior with respect to
the variation of external current. Bifurcation analysis of
interspike interval (ISI) versus current also shows dif-
ference in behavior when compared to that of ordinary
H–R neuron model and improved H–R neuron model
with cubic flux-based electromagnetic induction [6].
The irregularity in the behavior of neurons is also exam-
ined through Lyapunov exponent plot [39].

For coupled neurons, synchronization behavior of
neurons under quadratic flux andnoise showsperiodic-,
chaotic- and tonic-type patterns. The quiescent state
and subsequent suppressionof oscillations are observed
for high values of noise intensity and coupling strength.
For exponential flux under noise, the synchronization
pattern leads to oscillation death.

2 Electrical activities in an H–R neuron under
electromagnetic induction without noise

The general H–R model in an isolated neuron has
been extended to an improved model of four vari-
ables [6]. The new variable ϕ incorporate magnetic
flux. Hence, this model can be effective to detect
the effect of electromagnetic radiation by applying
external magnetic flux associated with electromag-
netic field on the dynamical equation for magnetic
flux.

In this section, the study is done on a four-variable
H–R neuron model which is made to interact with
quadratic flux-controlled memristor. The memristor
magnetic flux is due to the flux arising from the
ions.

The four-variable H–R neuronmodel with quadratic
flux can be written as

ẋ1 = x2 − ax31 + bx22 − x3 + Iext − kρ (ϕ) x1

ẋ2 = c − dx21 − x2

ẋ3 = r (s (x1 − x0)) − x3

ϕ̇ = k1x1 − k2ϕ (1)

Here the variables x1, x2 and x3 represent the mem-
brane potential, slow current recovery variable, and
adaption current. The important electrical signal in neu-
rons arises from a big voltage change (of the order of
many millivolts) which is termed as action potential
or membrane potential (spikes) and it occurs in less
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than a second for neuron [40]. External forcing current
is represented by the term Iext and the magnetic
flux across the membrane is denoted by the fourth
variable ϕ. The memductance corresponding to the
charge q (ϕ) = αϕ + βϕ3 is given by the deriva-
tive of q with respect to the flux as α + 3βϕ2 [6,
32]. But it is also appropriate to incorporate the
quadratic term dependence for the charge [41], and
hence the corresponding memductance after scaling
will be αϕ2 + βϕ + γ . It is observed that memduc-
tance can affect the conduction of electrons [9] and
this term can acts as the influencing magnetic flux on
membrane potential of the selected neuron. Also the
term kρ (ϕ) x1 denotes induced current and it causes
the variation in magnetic flux which in turn gener-
ates Faradic current. Relation among induced current,
flux and memristor can be understood by Faraday’s
law of electromagnetic induction [42] as given below.

i = dq (ϕ)

dt
= dq (ϕ)

dϕ

dϕ

dt
= ρ (ϕ) V = kρ (ϕ) x1

The parameter values are selected as a = 1, b =
3, c = 1, d = 5, s = 4, r = 0.006, x0 = −1.6 and
k1x1 denotes the changes in magnetic flux induced by
membrane potential and k2ϕ represents the leakage of
magnetic flux. Also the interaction between membrane
potential and magnetic flux is represented by the vari-
ables k and k2. The effect of electromagnetic induction
and corresponding modes of electrical activities with
memristor could be examined by finding the influence
of the magnetic flux on membrane.

2.1 Time series behavior under external nonperiodic
current

The time series of membrane potential of a neu-
ron is studied under different external forcing cur-
rent and parameter values. Different electric modes are
observed for different external currents. The external
current is changed through Iext = 1.5, 4.5 and 5mA
respectively and the other parameters are chosen as
k = 0.4, k1 = 1, k2 = 0.5, α = 0.1, β = 0.02, γ =
0.2. It is observed that the electrical activity selects dif-
ferent discharge modes under suitable parameter val-
ues. The different dynamics resulted are shown through
Fig. 1a–d. It is observed that the quiescent states [43]
become broadened (Fig. 1b) for the behavior of the
membrane potential as the value of external current
increases (Iext = 4.5mA). Also for higher values of

external current (Iext = 5mA), the system settles down
to oscillation death [6] after a short time (Fig. 1c).

The results of simulations are summarized inTable 1.

2.2 Behavior under external periodic current

To study the influence of periodic external current on
neuronal electrical activities, periodic current Iext =
A cos ωt is applied to the system and the dynam-
ics is analyzed. From the plots, it is clear that as
external periodic current increases, the action poten-
tial shows enhanced quiescent states for the spiking
activities and for a higher value of current the neu-
ron system exhibits tonic oscillations in contrast to the
suppression of activities observed with the nonperi-
odic external current described in the previous section.
The observation is done for different periodic currents
[(a) A = 0.5, ω = 0.02, (b) A = 3, ω = 0.02 and
(c) A = 5, ω = 0.02] and also choosing appropriate
parameter values as k = 1, k1 = 0.9, k2 = 0.5, α =
0.4, β = 0.02, and γ = 0.2. Figure 2a shows quiescent
state and more quiescent states shows periodic appear-
anceswith increase in the intensity of external radiation
field (A = 3, ω = 0.02). As external periodic current
is increased further (A = 5, ω = 0.02) quiescent state
changes to tonic behavior (Fig. 2c).

The results are summarized in Table 2.
The electrical activities can exhibit different dis-

chargemodes by applying external forcing current with
appropriate parameter values. The behavior under non-
periodic external current confirmed that neuron can be
excited from quiescent state and also states can be sup-
pressed under appropriate intensity of electromagnetic
field. The mode transitions in electrical activities can
be observed with variation of external periodic cur-
rent. Here discharge modes even dominated by angu-
lar frequency and amplitude. For high amplitude (at
ω = 0.02) the quiescent spiking states give way to
tonic behavior.

2.3 Bifurcation diagram and Lyapunov exponent plot

To study the electrical behavior of neurons, it is impor-
tant to analyze pattern of spikes. The complex bifurca-
tion structures in H–R neuron model [28] mainly help
to understand the mechanisms used by the neurons to
encode information and its rapid response to stimuli.
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Fig. 1 Variation of action
potential with time is plotted
for Iext = 1.5, 4.5 and 5mA
respectively. It is clear from
the figure that for high
values of external current,
the system changes from
quiescent state to oscillation
suppression behavior
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Table 1 Different types of dynamics of four-variable H–R neu-
ron with quadratic flux under external nonperiodic current

External nonperiodic current Dynamics

Iext = 1.5 Quiescent state

Iext = 4.5 Quiescent state broadens

Iext = 5.5 Oscillation death

So bifurcation plot of ISI versus current is important in
this respect.

Bifurcation diagram of ISI versus external current
of improved H–R neuron model under the influence of
quadratic memristor flux is as shown in Fig. 3. Here
the pattern of spikes depends on intrinsic property of
neurons, nature of input to neurons, and network of
interactions.

OnComparingwith the study of bifurcation diagram
of cubic flux-based improved H–R model [29,34], it
is observed that for improved H–R neuron model with
quadratic fluxmemristor the bifurcation diagram of ISI
versus external forcing current ismore dense exhibiting
the possibility of higher number of periods and hence
of more complexity.

The dynamics and hence the anisotropy due to the
effect of electromagnetic radiation on neurons is also
examined through Lyapunov exponent plot (Fig. 4).
Here variation of Lyapunov exponent versus external
current is plotted for improved H–R neuronmodel with
quadratic flux-controlled memristor. This plot estab-
lishes the chaotic nature of the system. Hence the
improved H–R model can produce chaotic electrical
modes.

3 Effect of noise on electromagnetic induction of
neurons

Noise can affect the transmission of periodic signals
by nonlinear systems. Studies show [44] that external
noise sources can influence neuronal systems andhence
the important parameters like intensity and correlation
time of noise can play remarkable role in transmission
of signals among the neurons.

Here noise term is added to the fourth variable of
Eq. (1). The parameter values are selected as given in
Sect. 2. The irregularity of electromagnetic radiation
is represented by Gaussian white noise term ξ(t) [44].
Here 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t ′)〉 = 2D0δ(t − t ′) where Do

represents the noise intensity.

ẋ1 = x2 − ax31 + bx22 − x3 + Iext − kρ(ϕ)x1

ẋ2 = c − dx21 − x2

ẋ3 = r (s (x1 − x0)) − x3

ϕ̇ = k1x1 − k2ϕ + ξ (t ) (2)

3.1 Influence of noise under external periodic and
nonperiodic currents

Noise term is introduced as given in Eq. (2) keeping all
the other parameters the same. For nonperiodic current,
the variation of membrane potential with time exhibits
the same dynamics as that of noiseless system (Fig. 1a,
b). But the magnitude of external current needed to
achieve suppression of oscillation gets reduced com-
pared to that of the system without noise (Fig. 1c) and
also it occurs at an earlier time. For Iext = 4.2mA and
for noise intensity D0 = 0.1 suppression of oscilla-
tion takes place (Fig. 5) and same behavior persists for
higher noise values.

As the current is changed to the periodic one, for
amplitude A = 1.6, the resulting oscillations are shown
in Fig. 6. Further for the amplitude and frequency
A = 3 andω = 0.02, respectively, the addition of noise
leads to tonic-type behavior similar to Fig. 2c instead
of quiescent states exhibited in Fig. 2b. Hence the dis-
charge modes are highly influenced by the amplitude.
So it is important that in contrast to the behavior of
the system in noiseless background the effect of noise
in the presence of periodic current inhibits the quies-
cent behavior for low values of amplitude of external
current. The system exhibits the tonic-type oscillation
in the presence of noise as time progresses. But the
presence of noise did not alter the time series plot for
the values A = 0.5, ω = 0.02 and A = 5, ω = 0.02
(Fig. 2a, c).

4 Energy for improved H–R neuron model under
the influence of quadratic memristor flux

Hamilton energy can be calculated on chaotic neural
systems with different types of attractors [45]. The
energy modulation helps to control chaos in various
systems. The negative feedback in energy can suppress
the phase space and oscillating behaviors, and it in turn
can control the chaotic and periodic oscillators. So the
calculation and analysis of Hamilton energy in neu-
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Fig. 2 Influence of periodic
current on membrane
potential is shown in figure.
Figures are plotted for
a A = 0.5, ω = 0.02,
b A = 3, ω = 0.02 and
c A = 5, ω = 0.02,
respectively. The behavior
of membrane potential gets
changed through quiescent
spiking states to tonic
behavior as the external
periodic current becomes
high
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Table 2 Dynamics of four-variable H–R neuron with quadratic
flux under external periodic current

External periodic current Dynamics

A = 0.5, ω = 0.02 Quiescent state

A = 1.5, ω = 0.02 Quiescent state broadens

A = 3, ω = 0.02 Tonic spiking

ronal chaotic and hyperchaotic systems are relevant in
this context.

In this section based on the Helmholtz theorem, the
Hamilton energy is calculated. It helps to discern the
energy dependence on the mode selection of the elec-
tric activities of neuron. Here the statistical Hamilton
energy [26,46] is calculated and it can be used to find
out the relation among action potential, transition of
electric activities of neurons in terms of external forc-
ing and energy. According to Helmholtz theorem, the
dynamical equations for neuron can be treated as veloc-
ity vector field [47] and this can include sum of two
vector fields. These vector fields represent the dissi-
pative and conservative fields. So the system can be
represented as sum of two sub-vector fields as shown
below

f (r) = fd (r) + fc (r) (3)

So the dynamical system given by Eq. (1) can be rep-
resented written as

⎛
⎜⎜⎝
ẋ1
ẋ2
ẋ3
ϕ

⎞
⎟⎟⎠ = [J (x1, x2, x3, ϕ) + R (x1, x2, x3, ϕ)]∇H

= fc (x1, x2, x3, ϕ) + fd (x1, x2, x3, ϕ) (4)

where J (x1, x2, x3, ϕ) and R (x1, x2, x3, ϕ) represent
skew symmetricmatrixwhich satisfies the Jacobi’s clo-
sure condition.

So

fc (x1, x2, x3) = J (x1, x2, x3, ϕ)∇H

=

⎛
⎜⎜⎝
x2 − x3 + Iext − ϕ

c − dx21
r (s (x1 − x0))

k2x1

⎞
⎟⎟⎠ (5)

and

fd (x1, x2, x3, ϕ) =

⎛
⎜⎜⎝

− ax31 + bx21 − kρ (ϕ) x1 + ϕ

− x2
− r x3
− k3ϕ

⎞
⎟⎟⎠

(6)

The general Hamilton energy function H is defined by
the criterion

∇HT fc (x1, x2, x3, ϕ) = 0

∇HT fd (x1, x2, x3, ϕ) = dH

dt
= Ḣ (7)

So energy can be obtained by substituting Eqs. (4) and
(5) in Eq. (1) and can be written as

(x2 − x3 + Iext − ϕ)
∂H

∂x1
+

(
c − dx21

) ∂H

∂x2

+ rs (x1 − x0)
∂H

∂x3
+ k2x1

∂H

∂ϕ
= 0

Solution of above equation can be written as

H = 2

3
dx31 − 2cx1 + rs (x1 − x0)

2

+ (x2 − x3 + Iext − ϕ)2 + k2x
2
1 (8)

Hence time variation of Hamilton energy is given by

Ḣ = 2dx21 ẋ1 − 2cẋ1 + 2rs (x1 − x0) ẋ1
+ 2 (x2 − x3 + Iext − ϕ) (ẋ2 − ẋ3 − ϕ̇) + 2k2 ẋ1x1

(9)

On substituting the values of ẋ1, ẋ2, ẋ3 and ϕ̇ in
the above equation and rearranging the terms, we get
derivative of energy as

Ḣ = 2dx21
(
x2 − ax31+bx21 − x3+ Iext − k1ρ (ϕ) x1

)

− 2c
(
x2 − ax31 + bx21 − x3+ Iext − k1ρ (ϕ) x1

)

+ 2rs (x1 − x0)
(
x2 − ax31 + bx21 − x3 + Iext

− k1ρ (ϕ) x1) + 2 (x2 − x3+ Iext − ϕ) (c − dx21
− x2 − rs(x1 − x0) + r x3 − k2x1 + k3ϕ (10)

Again on rearranging the terms in Eq. (10) we get

Ḣ = 2dx21 − 2c + 2rs (x1 + 1.6)

+ 2k2x1
(
−ax31 + bx21 − k1ρ (ϕ) x1 + ϕ

)

+ 2 (x2 − x3 + Iext − ϕ) (−x2)

− 2 (x2 − x3 + Iext − ϕ)

+ (−r x3) − 2 (x2 − x3 + Iext − ϕ) (−k3ϕ)

= ∇HT fd (11)
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Fig. 3 Bifurcation diagram
of ISI versus current for
four-variable H–R neuron
with quadratic
flux-controlled memristor

Fig. 4 Dynamics of
Lyapunov exponent versus
parameter for improved
H–R neuron model with
quadratic flux-controlled
memristor
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The energy function in neuron shows distinct depen-
dence on external forcing current Iext and the action
potential x1 and thus discharge states are obtained. So
the Hamilton energy gives the fluctuation of energy
function associatedwith external forcing. This explains
why the neuron can give appropriate response to exter-
nal forcing which supplies continuous energy for neu-
rons.

Numerical analysis of system is also done (Fig. 7).
The variation of Hamilton energy with external forcing
current shows discontinuity in behaviors [47].

The plot for the variation of average value of Hamil-
ton energy with current shows a plateau for low values
of current which explains the presence of the quies-
cent state [46,47] in Fig. 2a. For increased current its
behavior get changed through its irregularity and for
values high values of external current high frequency
tonic-type transitions are obtained. Tobe specific,when
amplitude of external current increases beyond 5mA,
the Hamilton energy increases linearly and hence the
appearance of tonic spiking described in Sect. 2.2 is
justified.
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Fig. 5 Variation of action
potential under nonperiodic
current and noise. It is
observed that when
Iext = 4.2mA and for noise
intensity D0 = 0.1
suppression of oscillation
takes place

0 100 200 300 400 500 600 700 800 900 1000
Time

-0.5

0

0.5

1

1.5

2

2.5

M
em

br
an

e 
po

te
nt

ia
l (

m
V

)

External current I ext  = 4.2 mA ,D=0.1

Fig. 6 Variation of action
potential under the influence
periodic current and noise.
It is observed that when
A = 1.6, ω = 0.02 and
noise intensity D0 = 0.9,
the quiescent state later on
changes to oscillations.
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5 Synchronization under electromagnetic
induction and noise

5.1 Quadratic flux-controlled memristor for coupled
neurons

It is possible to control the activity of neurons by mag-
netic forces which in turn control the flow of ions into
specifically targeted cells [48]. Here coupling is intro-
duced to modified four-variable H–R neuron models
where quadratic flux-controlled memristor-based elec-
tromagnetic radiation is present.

ẋ1 = x2 − ax31 + bx22 − x3 + Iext − kρ (ϕ1) x1

+ g (x4 − x1)

ẋ2 = c − dx21 − x2

ẋ3 = r (s (x1 − x0)) − x3

ϕ̇ = k1x1 − k2ϕ1 + ξ (t)

ẋ4 = x5 − ax34 + bx25 − x6 + Iext − kρ (ϕ2) x4

+ g (x1 − x4)

ẋ5 = c − dx24 − x5

ẋ6 = r (s (x5 − xo)) − x5

ϕ̇ = k1x4 − k2ϕ2 + ξ (t) (12)
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Fig. 7 a External current
variation with time, b
variation of average of
Hamilton energy with
respect to current. Here low
value of current gives
quiescent state and high
value of current leads to
tonic-type transitions
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Here x1, x2, x3 and Iext represent the membrane poten-
tial, slow current associated with the recovery variable,
adaptation current term and external forcing current
respectively for the first neuron. Similarly x4, x5 ,and
x6 represent the corresponding variables for the sec-
ond neuron. The parameter values are selected as a =
1, b = 3, c = 1, d = 5, r = 0.006, s = 4, x0 = −1.6.

The memristance of quadratic flux-controlled mem-
ristor is represented by ρ (ϕ) = αϕ2 + βϕ + γ. Since
this term is associated with the memory it is used for

estimating the effect of feedback regulation on mem-
brane potential when corresponding magnetic flux is
changed. The term g represents the coupling intensity
between the neurons. Here the irregularity of electro-
magnetic radiation is represented by Gaussian white
noise term ξ (t). It is found that the synchronization
degree depends on the coupling intensity and the inten-
sity of external electromagnetic radiation.

Time series plots ofmembrane potentials (x1 and x4)
for coupled H–R neurons (Fig. 8) confirm the synchro-
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Fig. 8 Time series for
membrane potentials for the
two coupled neurons are
plotted for different external
forcing current. For
Iext = 1.5, 2.5, 3.5, and
4.5mA the synchronization
behavior of the system of
neurons changes through
periodic, chaotic and finally
through tonic-type
synchronization
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nization pattern.Here the parameter values are k = 0.4,
k1 = 0.8, k2 = 0.5, Do = 0.6, α = 0.02, β = 0.1,
γ = 0.1, g = 1. Depending upon the parameter val-
ues and external forcing current Iext, various synchro-
nization phenomena are observed. For Iext = 2.5mA,
the synchronization behavior of the system shows peri-
odic behavior. Alsowhen the external forcing current is
set as Iext = 3.5mA chaotic synchronization resulted
in. The mode transition from chaotic totonic synchro-
nization states are detected by imposing larger external
forcing current (Iext = 5mA). Hence it is remarkable
to note that as the value of external current increases
the dynamical behaviors such as periodic-, chaotic-,
and tonic-type synchronizations are observed.

In a similarway by keeping the external current fixed
as Iext = 3.5mA and changing the coupling param-

eter and noise intensity as (a) g = 0, D = 0, (b)
g = 1, D = 0 and (c) g = 1 and D = 0.9 various
patterns are observed. When there is no influence of
coupling (g = 0) and with no noise intensity (D = 0),
the two different neurons behave independently as it
must be Fig. 9a. The behavior is retained with the case
where the noise intensity is raised to maximum (same
behavior as that of Fig. 9a). But as the two neurons
are coupled, for high value of coupling strength and
in absence of noise intensity, synchronization of the
system takes place (Fig. 9b). Finally quiescent state
and subsequent suppression of oscillation effects are
observed for appropriate high values of noise intensity
and coupling strength (Fig. 9c).
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Fig. 8 continued
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5.1.1 Transverse Lyapunov plot for quadratic
flux-based memristor

The stability of synchronization can be quantified by
master stability approach [49]. The synchronization is
stable if the master stability function is negative at each
of transverse eigenvalues (Fig. 10).

The largest TLE crosses zero and becomes negative
indicating synchronized state and its stability.

5.2 Influence of exponential flux-controlled
memristor on coupled neurons

The work is extended to examine neuron dynam-
ics under the influence of exponential flux-controlled
memristor where the neurons are allowed to interact

with each other.

ẋ1 = x2 − ax31 + bx22 − x3 + Iext − kρ (ϕ1) x1

+ g (x4 − x1)

ẋ2 = c − dx21 − x2

ẋ3 = r (s (x1 − x0)) − x3

ϕ̇ = k1x1 − k2ϕ1 + ξ (t)

ẋ4 = x5 − ax34 + bx25 − x6 + Iext − kρ (ϕ2) x4

+ g (x1 − x4)

ẋ5 = c − dx24 − x5

ẋ6 = r (s (x5 − x0)) − x5

ϕ̇ = k1x4 − k2ϕ2 + ξ (t) (13)

The parameter values are selected as a = 1, b = 3, c =
1, d = 5, r = 0.006, s = 4, k1 = 0.9, k2 = 0.5.
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Fig. 9 Time series for
membrane potentials are
plotted for fixed external
forcing current (Iext = 3.5
mA). The synchronization
behavior of the system of
neurons is achieved with
control parameter values
g = 1, D = 0 and the
system attains oscillation
death state for higher
coupling (g = 1 and
D = 0.9 ) in the presence of
high noise
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Fig. 10 The TLE of
coupled improved H–R
neuron model with
quadratic flux induction
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The exponential flux-controlled memristor [50] is
represented as

q (ϕ) = k3
(
ab1ϕ1 − 1

)
(14)

where a > 1 and k3b1 > 0. The memductance of
the function is ρ (ϕ) = ab1ϕ1 k3b1lna1. Here a1 = e,
b1 = 50 log (0.5) and k3 = 10.

As the values of external current changes, the syn-
chronization pattern shows various patterns as depicted
in Fig. 11a–c. When Iext = 2.5mA synchronization
behavior is resulted in. Also as the magnitude of exter-
nal forcing current increases (Iext = 3.5mA), the syn-
chronization pattern shows tonic oscillations. Finally
oscillation death state is achieved with appropriate
value of external forcing current (Iext = 5mA).

On comparing with the dynamics corresponding to
quadratic flux-controlled memristor, it is interesting to
find that for same coupling strength and for same noise
intensity (g = 1 and Do = 0.6), instead of the tonic
behavior, the system sets into oscillation death state for
highermagnitude of external forcing current in the case
of exponential flux-controlled system.

Further by keeping the external current fixed at
Iext = 3.5mA and changing the coupling parameter
and noise intensity terms as (a) g = 0.01, D = 0.9,
(b) g = 0.5, D = 1, and (c) g = 1, D = 0.3 vari-
ous patterns are obtained. It is observed that for low
values of coupling strength and noise intensity the sys-
tem exhibits antiphase state (Fig. 12a). The behavior

is preserved as noise intensity is stepped up (the pat-
tern is same as that of Fig. 12a). As g is increased
to 0.5 keeping the noise intensity as1, the behavior of
membrane potential gets changed to chaotic synchro-
nized state (Fig. 12b). But the decrease in intensity of
noise to D = 0.3, at high coupling strength, causes the
time series dynamics to change into that of periodic one
(Fig. 12c).

Depending upon the low and high values of noise
and coupling parameters antiphase state of the system
gives way to chaotic- and then to periodic-type syn-
chronization patterns.

On comparingwith the synchronized and oscillation
death states found in coupled neurons with quadratic
flux-based memristor, the system with exponential
flux-based memristor exhibits chaotic- and periodic-
type synchronization state.

6 Discussions and concluding remarks

The essence of brain function consists in how the infor-
mation is being processed, transferred and stored. The
neuroelectronynamic model (NED) [51] is an emerg-
ing field which describes the intrinsic computational
processes by the dynamics and interaction of charges.

Various studies [6,29,32,42] had been carried out on
the effect of electromagnetic induction on H–R neuron
under the influence of cubic flux-controlled memris-
tor. In the present work influence of quadratic flux and
exponential flux-based inductions in four-variable H–
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Fig. 11 Time series for
membrane potentials are
plotted for different external
forcing current
Iext = 2.5mA,
Iext = 3.5mA and
Iext = 4.5mA. As
magnitude of external
forcing current increases,
the synchronization pattern
changes to oscillation death
state
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R neuron model is studied. In the first part, we ana-
lyzed the different modes of electrical activities in sin-
gle neuron under quadratic memristive term. The sys-
tem behavior is studied under the influence of exter-

nal periodic and nonperiodic current. It is observed
that for nonperiodic current, as the value of exter-
nal current increases the quiescent states [43] become
broadened and also for higher values of external cur-

123



Influence of memristor and noise on H–R neurons 255

Fig. 12 Time series for
membrane potentials are
plotted for different
coupling strength and noise
intensity. Various patterns
such as a antiphase
(g = 0.01, D = 0.9), b
chaotic (g = 0.5, D = 1)
and c periodic
(g = 1, D = 0.3) behavior
are observed for appropriate
values of noise intensity and
coupling strength
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Antiphase synchronization: External current  Iext=3.5 mA ,g=0.01,D=0.9
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rent, the system settles down to oscillation death state.
However, for the periodic current, the action potential
shows enhanced quiescent states for the spiking activi-
ties and for the higher current the neuron exhibits tonic
oscillations in contrast to the suppression of activities
observed in nonperiodic case. So in quadratic flux-
based mode transition, when compared to cubic flux
memristor [6,29,34] the suppression of oscillations is
an additional feature.

The influence of control parameter like noise on
the neurons is also subjected to study. It is found that
when noise is added to the system, the oscillation death
is achieved for smaller magnitude of external current.
Also the presence of noise leads to the inhibition of qui-
escent activity under periodic current. The Lyapunov
exponents are plotted which confirm irregularity in the
neuron dynamics.

Energy is calculated in terms of Hamilton energy
to understand the neuron response to external forcing
current and action potential. It is observed that the plot
forHamilton energy versus current shows discontinuity
in behavior. There is a plateau for low values of cur-
rent which explains the presence of the quiescent states
and as current increases tonic behavior is resulted in.
Bifurcation of ISI versus current is also plotted, and it
shows denser pattern as compared with that of cubic
flux-based electromagnetic induction.

The synchronization of coupled neurons also is the
focus of study. Under the influence of quadratic flux
and noise term the system changes through periodic-,
chaotic- and tonic-type synchronization as the current
is increased. The variation of noise intensity and cou-
pling strength leads to oscillationdeath of these coupled
neurons under constant current. Transverse Lyapunov
exponent plot gives a picture of the stability of the cou-
pled system. The effect of exponential flux-controlled
memristor-based electromagnetic induction onneurons
when coupled is also examined. With exponential flux-
controlled memristor the activity changes to tonic-type
synchronization with increase in forcing current. Here
the synchronization pattern displays oscillation death,
antiphase, periodic, and chaotic transitions.

Thework gives a pathway to understand electromag-
netic flux influence on the overall activity of neurons.
The activity of neurons is examined with quadratic and
exponential flux-based memristor. Brain produces an
electromagnetic fieldwith specific characteristics.Also
Electromagnetic waves are produced due to artificial

nanosynapses. Thememristor asmagnetic flux can also
influence neuromorphic quantum computation.

The effect of field coupling under the influence of
Levy noise on the electromagnetic properties of neu-
ron with quadratic flux is the future focus of study. In
the presence of field coupling and non-Gaussian-type
noise like Levy noise, studies may exhibit improved
electrical activity of neuronal network with informa-
tion exchange in the absence of the synapse.
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