
Nonlinear Dyn (2019) 95:87–99
https://doi.org/10.1007/s11071-018-4552-z

ORIGINAL PAPER

Semirational solutions to the coupled Fokas–Lenells
equations

Tao Xu · Yong Chen

Received: 9 May 2018 / Accepted: 3 September 2018 / Published online: 11 September 2018
© Springer Nature B.V. 2018

Abstract The Darboux transformation for the cou-
pled Fokas–Lenells equations and the special vec-
tor solution of the corresponding Lax pair are con-
structed. Utilizing a limiting process, some novel high-
order semirational solutions of the coupled system are
given. They include high-order rogue waves interact-
ing with multi-bright or dark solitons, and high-order
rogue waves interacting with multi-breathers. Also,
the dynamic structures of the first- and second-order
semirational solutions are discussed. Furthermore, it
is shown that the free parameter γ in the special vec-
tor solution can influence the interactional processes
(fusion or separation) amongdifferent nonlinearwaves.
Compared to the uncoupled systems, there may exist
more abundant and interesting solutions in the coupled
ones.
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1 Introduction

It is well known that the nonlinear localizedwaves have
been widely researched in a lot of documents, which
usually include rogue waves (RWs) [1,2], breathers
[3–5], solitons [6,7] and lump solutions [8,9]. RWs
are commonly defined as the gigantic waves owning
extreme amplitudes and seem to appear from nowhere
and disappear without a trace [10].Moreover, breathers
are periodic in space (Kuznetsov-Ma breathers) [3]
or time (Akhmediev breathers) [4,5] or both. Owing
to the balance between nonlinearity and dispersion in
the nonlinear models, solitons can be generated [7].
Additionally, they always keep their amplitudes and
speeds unchanged during propagation. Furthermore,
lump solutions are special rational localization solu-
tions, which propagate in all directions both in time
and in space [8]. In reality, actual wave dynamics is a
superposition of various types of nonlinear waves [11–
13].

In recent years, there have been a variety of hybrid
solutions among different nonlinear waves researched
in many physical models [14–17]. The higher-order
semirational solutions including higher-order RWs and
higher-order breathers were constructed in the deriva-
tive NLS equation [17]. The RW was constructed by
the interaction between lump soliton and a pair of
resonance kink strip solitons in (2 + 1)-dimensional
Korteweg–de Vries (KdV) equation [18]. In [13] and
[19], some novel semirational solutions were con-
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structed in local and nonlocal Davey–Stewartson (DS)
equations, respectively.Using theDarboux transforma-
tion (DT) technique, the hybrid solutions simultane-
ously including RWs, dark and anti-dark rational trav-
eling waves are exhibited in the nonlocal DS equations
[20]. From the mathematical expressions, semirational
solution can be defined as a combination of rational
and exponential functions [17,19]. In this paper, we
focus on semirational solutions of the following cou-
pled Fokas–Lenells (FL) equations [21–24]

uxt + u + i

(
|u|2 + 1

2
σ |v|2

)
ux + i

2
σuv∗vx = 0,

vxt + v + i

(
σ |v|2 + 1

2
|u|2

)
vx + i

2
vu∗ux = 0.

(1)

Here, σ = ± 1 and the symbol ∗ denotes complex
conjugation, and u and v are all complex functions
of x and t . Besides, u∗ and v∗ represent the complex
conjugations of u and v, respectively, and “i” is the
imaginary unit. The subscripted variables x and t in
Eq. (1) denote the corresponding partial differentiation.
The symbol “||” is the modulus of a complex function.
As the relationship exists between the Camassa–Holm
equation and the Korteweg–de Vries (KdV) equation,
the FL equation has similar relationship with the non-
linear Schrödinger (NLS) equation [25,26]. Actually,
the FL equation is the first negative flow of the hierar-
chy for the derivative NLS equation [24,27].

In this paragraph, some research history on the FL
system will be introduced. The single-component FL
equationwasfirst derived in [25] byFokas.Utilizing the
bi-Hamiltonian structure, theLax pair and conservation
laws of the FL system were constructed by Lenells and
Fokas [26]. In addition, the high-order RW solutions of
the uncoupled FL equation were constructed through
the DT technique [27]. In [28], multi-soliton solutions
of the single-component FL equation were obtained
through DT method. There are many other papers on
single-component FL equation, such as dark soliton
[29], algebraic geometry solutions [30] and long-time
asymptotic behavior of the solution [31]. Similar to
the multi-component NLS equations [32], the coupled
FL systems are supposed to own more novel and abun-
dant solutions than the ones in the single-component FL
equation. With the aid of the spectral gradient method,
the coupled FL system was rediscovered. Besides, its

Lax pair and conservation lawswere also obtained [21].
The coupled FL equations (1) were derived in [23] with
α = − 3, β = 1

4 in the operator L . The general soliton
solutions of the coupled system (1) were constructed
by DT method [24], such as bright–dark soliton, dark–
anti-dark soliton, breather-like soliton and multi-bright
(or dark) soliton. In [22], the authors obtained soli-
ton, breathers and RWs for the coupled FL equations.
As pointed out in [23], the coupled FL system (1) is
equivalent to the coupled FL system in [22] by a gauge
transformation. Higher-order RWs of the coupled FL
equations were constructed by DT method [33]. Using
two integration schemes, optical solitons of the cou-
pled FL equations with differential group delay were
given in [34]. The initial boundary value problem for
the coupled Fokas–Lenells equations on the half-line
was considered by the Riemann–Hilbert approach in
[35].

Baronio et al. [11] reported that there existed some
semirational solutions in the coupled NLS system,
which include the first-order RW interacting with one
bright or dark soliton and one breather interacting
with the first-order RW. Meanwhile, the experimen-
tal conditions to observe these kinds of semirational
solutions were given in [11]. RWs on a multi-soliton
were obtained in the vector NLS equations by Darboux
dressing method [32]. As far as we know, there have
not been any reports on semirational solutions of the
coupled FL equations (1). It is very necessary to investi-
gate some novel semirational solution of Eq. (1), which
includes high-order RWs interacting with multi-bright
(or dark) solitons and multi-breathers interacting with
high-order RWs.

From the special vector solutions of the Lax pair of
the coupled FL equations (1), the concrete expressions
of the high-order semirational solutions are given in
determinant forms by DT technique [36]. When γ = 0
(the free parameter in the vector solutions of the Lax
pair), the semirational solutions degenerate to the ratio-
nal ones and they are all RWs. When γ �= 0, the semi-
rational solutions can bemainly classified as two types:
(1) One component is high-order RWs interacting with
multi-bright solitons, and the other one is high-order
RWs interacting with multi-dark solitons; (2) two com-
ponents are all high-order RWs interacting with multi-
breathers. By increasing the absolute values of γ , dif-
ferent nonlinear waves can merge with each other.

The paper is organized as follows. In Sect. 2, the
Lax pair and DT of the coupled FL equations are
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constructed. In Sect. 3, the special vector solutions of
the Lax pair are skillfully given; then, some semira-
tional solutions are obtained by DT method. Besides,
some dynamics of the first- and second-order semira-
tional solutions are discussed in detail. The last section
includes several conclusions and discussions.

2 Lax pair and Darboux transformation for the
coupled FL equations

The Lax pair of the coupled FL equations (1) can be
given as [21–24]

Φx = (iλ−2 J + λ−1Px )Φ = UΦ, (2)

Φt = i

(
1

4
λ2 J + 1

2
J

(
P2 − λP

))
Φ = VΦ, (3)

with

J =
⎛
⎝1 0 0
0 −1 0
0 0 −1

⎞
⎠ , P =

⎛
⎝0 u∗ σv∗
u 0 0
v 0 0

⎞
⎠ ,

U = iλ−2 J + λ−1Px , V = i(
1

4
λ2 J

+1

2
J (P2 − λP)).

Here, “i” is the imaginary unit and the symbol “∗” indi-
cates the conjugation of a vector or matrix. Besides,
Φ(x, t) = (ψ(x, t), χ(x, t), φ(x, t))T (“T ” denotes
the transposition of a vector or matrix) and λ is a spec-
tral parameter. The above-mentioned U, V, P and J
are all 3 × 3 matrices. Additionally, we can derive the
coupled FL system (1) through the following compat-
ibility relationship Ut−Vx+UV−VU = 0.

Based on the DT constructed in [23,24], the first-
step fundamental DT of the coupled FL equations (1)
can be expressed as follows

T [1] = I + B1

λ − λ∗
1

− J B1 J

λ + λ∗
1
, (4)

u[1] = u[0] + 2χ1ψ
∗
1

Γ1
, (5)

v[1] = v[0] + 2φ1ψ
∗
1

Γ1
, (6)

with

Γ1 = 2[λ1|ψ1|2 − λ∗
1(|χ1|2 + |φ1|2)]

λ∗2
1 − λ21

,

B1 = L1|y1><y1|K ,

L1 = diag(−Γ ∗−1
1 , Γ −1

1 , Γ −1
1 ),

K = diag(1,−1,−σ),

where σ = ± 1 and the vector function Φ1(x, t) =
(ψ1(x, t), χ1(x, t), φ1(x, t))T is the special solution of
Lax pair (2)–(3) with λ = λ1. Here, u[0] and v[0] are
the seed solutions of Eq. (1); thus, u[1] and v[1] denote
the first-step solutions of Eq. (1) through the above
first-step fundamental DT. In the above expressions, I
is the 3 × 3 identity matrix, and B1 is a 3 × 3 matrix
which is written as B1 = L1|y1><y1|K and |y1> =
Φ1(x, t) = (ψ1(x, t), χ1(x, t), φ1(x, t))T . Addition-
ally, ψ∗

1 (x, t) and Γ ∗
1 are the complex conjugations of

ψ(x, t) and Γ , respectively. Here, the symbol “(x, t)”
is omitted in the expression φ. In the whole contents,
the symbol “diag” denotes 3 × 3 diagonal matrix and
“| >” represents a column vector; then, “< |” indicates
the Hermite conjugation of the corresponding column
vector. For example, |y1> = Φ1 = (ψ1, χ1, φ1)

T and
<y1| = |y1>† = (ψ∗

1 , χ∗
1 , φ∗

1 ); the symbol † denotes
Hermite conjugation.

Based on the related results received in [23,24], the
inverse of Darboux matrix T [1] can be written as

T [1]−1 = I + K B†
1K

λ − λ1
− J K B†

1K J

λ + λ1
, (7)

where B†
1 = (L1|y1><y1|K )† and † represents Her-

mite conjugation in the whole contents. Enlightened by
themethod to construct the N -stepDT for the derivative
NLS equation PROPOSITION 2. and THEOREM2. in
[36], we give the following proposition and theorem.

Proposition 1 The N-step DT for the coupled FL
equations (1) can be written as follows

TN = T [N ]T [N − 1] . . . T [1] = I

+
N∑
i=1

(
Ci

λ − λ∗
i

− JCi J

λ + λ∗
i

)
, (8)

and the corresponding N-step inverse of DT for the
coupled FL equations (1) can also be written as

T−1
N = T [1]−1T [2]−1 . . . T [N ]−1 = I

+
N∑
i=1

(
K D†

i K

λ − λi
− J K D†

i K J

λ + λi

)
. (9)

Here, Ci and Di are all 3 × 3 undermined matrices,

T [i] = I + Bi
λ − λ∗

i
− J Bi J

λ + λ∗
i
,

T [i]−1 = I + K B†
i K

λ − λi
− J K B†

i K J

λ + λi
,
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Bi = Li |yi><yi |K ,

Γi = 2[λi |ψi |2 − λ∗
i (|χi |2 + |φi |2)]

λ∗2
i − λ2i

,

Li = diag(−Γ ∗−1
i , Γ −1

i , Γ −1
i ) (1 ≤ i ≤ N );

the column vector |yi> = Φi = (ψi , χi , φi )
T is the

special solution of Lax pair (2)–(3) with λ = λi and
<yi | = |yi>† = (ψ∗

i , χ∗
i , φ∗

i ). In Proposition 1, the
N-stepDT and the corresponding N-step inverse of DT
are only written in compact formats using the under-
mined matrices Ci and Di . Utilizing the formulas (8)
and (9), these two matrices Ci and Di can be deter-
mined in the following contents.

Proof From the N -step iterative formula, the expres-
sion of TN can be directly written as

TN = T [N ]T [N − 1] . . . T [1]
=

(
I+ BN

λ−λ∗
N

− J BN J

λ+λ∗
N

) (
I+ BN−1

λ−λ∗
N−1

− J BN−1 J

λ+λ∗
N−1

)
. . .

(
I+ B1

λ−λ∗
1
− J B1 J

λ+λ∗
1

)

= I +
N∑
i=1

(
Ci

λ − λ∗
i

+ Fi
λ + λ∗

i

)
, (10)

Taking the residues for both sides of Eq. (10) with
λ = λ∗

i and λ = −λ∗
i , respectively, we can get the two

expressions of residues as

Res|λ=λ∗
i
TN =

(
I+ BN

λ∗
i −λ∗

N
− J BN J

λ∗
i +λ∗

N

)
. . .

Bi . . .

(
I+ B1

λ∗
i −λ∗

1
− J B1 J

λ∗
i +λ∗

1

)
= Ci , (11)

and

Res|λ=−λ∗
i
TN = −

(
I+ BN

−λ∗
i −λ∗

N
− J BN J

−λ∗
i +λ∗

N

)
. . .

J Bi J . . .

(
I+ B1

−λ∗
i −λ∗

1
− J B1 J

−λ∗
i +λ∗

1

)
= Fi . (12)

Here, the symbol “Res” indicates residue of a matrix.
From Eq. (12), we can directly calculate that −J
Res|λ=−λ∗

i
TN J = Res|λ=λ∗

i
TN ; namely, Fi = −JCi J ,

and Eq. (8) is proved. Similarly, Eq. (9) can be also
proved.

This completes the proof. ��
Setting Φi = (ψi , χi , φi )

T is the special solutions
of Lax pair (2)–(3) with u = u[0], v = v[0] and

λ = λi (1 ≤ i ≤ N ), besides, Φi , ψi ,χi and φi

are all complex functions of x and t . Furthermore, the
transformations between the new potential functions
u[N ], v[N ] and the seed solutions u[0], v[0] can be
constructed by the N -step DT TN , which is shown in
the following theorem.

Theorem 1 The transformations for thepotential func-
tions in the N-stepDT can be expressed in the following
determinant forms

u[N ] = u[0] − 2

∣∣∣∣M Y †
1

Y2 0

∣∣∣∣
|M | ,

v[N ] = v[0] − 2

∣∣∣∣M Y †
1

Y3 0

∣∣∣∣
|M | , (13)

where M = (mi j )N×N ,

Y1 = (ψ1, ψ2, . . . , ψN ), Y †
1 =(ψ∗

1 , ψ∗
2 , . . . , ψ∗

N )T ,

Y2 = (χ1, χ2, . . . , χN ),Y3 = (φ1, φ2, . . . , φN ),

mi j = Φ
†
i KΦ j

λ∗
i − λ j

−Φ
†
i K JΦ j

λ∗
i + λ j

(1 ≤ i, j ≤ N ),

where Φi = (ψi , χi , φi )
T and Φ j = (ψ j , χ j , φ j )

T

are the corresponding column vector solutions of the
Lax pair (2)–(3) with λ = λi and λ = λ j , respectively.

Proof Proposition 1 indicates thatCi = Res|λ=−λ∗
i
TN

= (I+ BN
λ∗
i −λ∗

N
− J BN J

λ∗
i +λ∗

N
) . . . Bi . . . (I+ B1

λ∗
i −λ∗

1
− J B1 J

λ∗
i +λ∗

1
),

and the ranks of Ci admit the following inequality
1 ≤ r(Ci ) ≤ min(r(Bi ), r(I+ Bj

λ∗
i −λ∗

j
− J B j J

λ∗
i +λ∗

j
)) ( j �=

i, 1 ≤ i, j ≤ N ); here the symbol “r” represents the
rank of a matrix. Since Bi = Li |yi><yi |K , we can
directly calculate that r(Bi ) = 1 and then r(Ci ) = 1.

From r(Ci ) = 1 and Eq. (11), we can directly cal-
culate that Ci = |xi><yi |, where |xi> is an unde-
termined 3-tuple column vector and <yi | = |yi>† =
(ψ∗

i , χ∗
i , φ∗

i ). We consider the conjugate form of the
linear system (2)–(3), which can be written as

Ψx = −ΨU, Ψt = −Ψ V . (14)

Here,Ψ is a 3-tuple row vector andU, V own the same
forms of the ones in the Lax pair (2)–(3).

It can be directly calculated thatU and V in the Lax
pair (2)–(3) have the following symmetry:

U (λ) = −KU (λ∗)†K , V (λ) = −KV (λ∗)†K . (15)
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From Eqs. (14) and (15), we can find that if Φi is a
solution for the Lax pair(2)–(3) with λ = λi , thenΦ

†
i K

is a solution for the conjugated system (14) with λ =
λ∗
i .
Additionally, the equality holds TNT

−1
N = I , then

we can have the following residue of TNT
−1
N that

Res|λ=λ∗
i
TN T

−1
N = 0. It can be rewritten as follows

<yi |T−1
N |λ=λ∗

i
= 0. (16)

Besides, Φ†
i K is the special solution of (14) with λ =

λ∗
i and admits the following equality

Φ
†
i K T−1

N |λ=λ∗
i

= 0. (17)

Comparing Eqs. (16) and (17), we can choose that
<yi | = Φ

†
i K .

In order to calculate the concrete expressions of
Ci = |xi><yi | = |xi>Φ

†
i K , we shouldfirst derive out

the undetermined 3-tuple column vector |xi>. Since
TN |λ=λ j Φ j = 0 (1 ≤ j ≤ N ), one can get the follow-
ing equality by N -step DT formula (8)

Φ j +
N∑
i=1

(
|xi>Φ

†
i KΦ j

λ j − λ∗
i

− J |xi>Φ
†
i K JΦ j

λ j + λ∗
i

)
= 0

( j = 1, 2, . . . , N ). (18)

Solving (18), we can get

(|x1>, |x2>, . . . , |xN>)1 = (ψ1, ψ2, . . . , ψN )H−1,

(|x1>, |x2>, . . . , |xN>)2 = (χ1, χ2, . . . , χN )M−1,

(|x1>, |x2>, . . . , |xN>)3 = (φ1, φ2, . . . , φN )M−1,

with

H = (hi j )N×N , hi j = Φ
†
i KΦ j

λ∗
i − λ j

+Φ
†
i K JΦ j

λ∗
i + λ j

,

M = (mi j )N×N , mi j = Φ
†
i KΦ j

λ∗
i − λ j

−Φ
†
i K JΦ j

λ∗
i + λ j

,

where these subscripts “1,” “2” and “3” stand for the
first, second and third rows of the 3-tuple columnvector
|xi> (1 ≤ i ≤ N ), respectively.

Since TN is the N -step DT for the coupled FL equa-
tions (1), we can get

TN ,x + TNU = U [N ]TN . (19)

Multiplying both sides of Eq. (19) by λ and letting
λ → 0, we arrive at

P[N ] = P[0] +
N∑
i=1

(Ci − JCi J ), (20)

and here Ci = |xi><yi | = |xi>Φ
†
i K , the capital let-

ters U [N ] and V [N ] denote the N -step transformed
matrices ofU and V in the Lax pair (2)–(3) through the
N -step DT, respectively. Additionally, the small letters
u[N ] and v[N ] indicate the N -step transformed solu-
tions of Eq. (1) with the seed solutions u[0] and v[0]
through the N -stepDTseparately.Hence, the P[N ] and
P[0] are the results that the elementsu,v in thematrix P
are replaced by u[N ],v[N ] and u[0],v[0], respectively.

Substituting the above concrete expressions of |xi>
and <yi | into Eq. (20), it follows that

u[N ] = u[0] +
N∑
i=1

(Ci − JCi J )21 = u[0]

+ 2(χ1, χ2, . . . , χN )M−1

⎛
⎜⎜⎜⎝

ψ∗
1

ψ∗
2
...

ψ∗
N

⎞
⎟⎟⎟⎠

= u[0] − 2

∣∣∣∣M Y †
1

Y2 0

∣∣∣∣
|M | , (21)

v[N ] = v[0] +
N∑
i=1

(Ci − JCi J )31 = v[0]

+ 2(φ1, φ2, . . . , φN )M−1

⎛
⎜⎜⎜⎝

ψ∗
1

ψ∗
2
...

ψ∗
N

⎞
⎟⎟⎟⎠

= v[0] − 2

∣∣∣∣M Y †
1

Y3 0

∣∣∣∣
|M | , (22)

where

Y1 = (ψ1, ψ2, . . . , ψN ), Y2 = (χ1, χ2, . . . , χN ),

Y3 = (φ1, φ2, . . . , φN );
besides, the subscripts “21” and “ 31” denote the second
row of the first column of a matrix and the third row of
the first column of a matrix, respectively.

To construct the uniform formulae (21) and (22),
the following identities have been used. Suppose M is
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a N × N matrix and φ and ψ are N -tuple row vectors,
then the following identities hold

φM−1ψ† =

∣∣∣∣ M ψ†

−φ 0

∣∣∣∣
|M | .

This completes the proof. ��

3 High-order semirational solutions for the
coupled FL equations

In order to utilize a limiting process for constructing
semirational solutions of Eq. (1), the appropriate solu-
tion of the Lax pair (2)–(3) should be derived first. The
seed solution of Eq. (1) can be directly chosen as

u[0] = a1e
iη, v[0] = a2e

iη, (23)

where η = 1
a21+σa22

x , a1 and a2 are all real constants

(a1 �= a2). Considering the above seed solution Eq.
(23) and the spectrum parameter λ, a special vector
solution of the Lax pair (2)–(3) can be constructed as
follows

Φ =
⎛
⎝ψ

χ

φ

⎞
⎠=

⎛
⎜⎜⎝

(K1eH1 − K2e−H1)e− i
2 η

l1(K2eH1 − K1e−H1)e
i
2 η − γ σa2eH2

l2(K2eH1 − K1e−H1)e
i
2 η+γ a1eH2

⎞
⎟⎟⎠ ,

(24)

where

H1 =
i
√

λ4 + 4(a21 + σa22)
2

4λ2(a21 + σa22)

[
2x + (a21 + σa22)λ

2t

+
N∑
i=1

Siε
2i

]
, H2 = − i(4x + λ4t)

4λ2
,

l1 = a1√
a21 + σa22

, l2 = a2√
a21 + σa22

, Si = mi + ini ,

K1 =

[
λ2 + 2(a21 + σa22) +

√
λ4 + 4(a21 + σa22)

2

] 1
2

√
λ4 + 4(a21 + σa22)

2
,

K2 =

[
λ2 + 2(a21 + σa22) −

√
λ4 + 4(a21 + σa22)

2

] 1
2

√
λ4 + 4(a21 + σa22)

2
.

Here, mi , ni and γ are three arbitrary real constants.
For convenience, the parameter σ in the coupled FL
equations (1) is chosen as σ = 1 in the following con-
tents.

For deriving the solution (24), the variable coeffi-
cient differential expressions in the Lax pair (2)–(3)
with the seed solution Eq. (23) should be transformed
to constant coefficient ones by the gauge transforma-
tion Φ = NΨ . The transformed Lax pair reads as

Ψx = U0Ψ = (N−1UN − N−1Nx ),

Ψt = V0Ψ = (N−1V N − N−1Nt ),

and N = diag(e− 2i
3 η

, e
i
3 η

, e
i
3 η

). In this paper, we
consider the case that the characteristic equation ofU0

owns a double root. Under this condition, the spectrum

parameterλ should be chosen asλ0 = (1+i)
√
a21 + a22 .

Substituting λ = λ1 = (1 + i + ε2)

√
a21 + a22 (the

parameter ε is a complex infinitesimal) into the vector
solution (24), the Taylor expansion of Φ1 = Φ|λ=λ1

can be expanded as

Φ1 = (ψ1, χ1, φ1)
T = Φ|λ=λ1 =

N−1∑
j=0

Φ
[ j]
1 ε2 j

+O(ε2N ), (25)

where Φ
[ j]
1 =(ψ

[ j]
1 , χ

[ j]
1 , φ

[ j]
1 )T = 1

(2 j)!
∂ jΦ1

∂ε j
|ε=0.

Here, we only give the concrete expressions of the
first two terms Φ

[0]
1 and Φ

[1]
1 in Eq. (25) as follows

ψ
[0]
1 = x + i x − ρ2t + iρ2t + ρ

ρ
√

(2 + 2i)ρ
e
− i x
2ρ , (26)

χ
[0]
1 = a1(x + i x − ρ2t + iρ2t − ρ)

ρ2
√
2 + 2i

e
i x
2ρ

− γ a2e
− x
2ρ +ρt

2 , (27)

φ
[0]
1 = a2(x + i x − ρ2t + iρ2t − ρ)

ρ2
√
2(1 + i)

e
ix
2ρ

+ γ a1e
− x
2ρ +ρt

2 , (28)

ψ
[1]
1 =

√
2(1 + i)

48ρ
7
2

(2i x3 − 2x3 − 6iρ2x2t − 6ρ2x2t

− 6iρ4xt2+6ρ4xt2+2iρ6t3+2ρ6t3+6iρx2

− 12ρ3xt−6iρ5t2−15ρ2x+21iρ2x+3ρ4t

+ 9iρ4t−3ρ3+6iρ3+12ρ2m1

+ 12iρ2n1)e
− i x
2ρ , (29)
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χ
[1]
1 = ia1

24
√
2(1 + i)ρ4

�e
ix
2ρ

+a2γ (i x − x + iρ2t − ρ2t)

2ρ
e
− x
2ρ +ρt

2 , (30)

φ
[1]
1 = ia2

24
√
2(1 + i)ρ4

�e
ix
2ρ

−a1γ (i x − x + iρ2t − ρ2t)

2ρ
e
− x
2ρ +ρt

2 , (31)

with

� = 4i x3 − 12ρ2x2t − 12iρ4xt2 + 4ρ6t3 − 6ρx2

− 6iρx2 + 12ρ3xt − 12iρ3xt + 6ρ5t2

+ 6iρ5t2 + 6ρ2x + 36iρ2x + 6iρ4t + 12ρ4t

− 9iρ3 − 12iρ2m1 + 12iρ2n1 + 12ρ2m1

+ 12ρ2n1 − 3ρ3, ρ =
√
a21 + a22 .

Moreover, it is easy to find that mi j in Theorem 1
can be expressed as

mi j |(λi = λ1, λ j = λ1)

=
(

Φ
†
i KΦ j

λ∗
i − λ j

Φ
†
i K JΦ j

λ∗
i + λ j

)
|(λi=λ1,λ j=λ1)

= −2[(1+i+ε2)|ψ1|2−(1−i+ε∗2)(|χ1|2+|φ1|2)]√
a21+a22(2+ε2+ε∗2)(2i+ε2−ε∗2)

=
N∑

j,l=1

m[ j,l]ε2(l−1)ε∗2( j−1) + O(|ε|4N ), (32)

where

m[ j,l] = lim
ε,ε∗→0

1

(2( j−1))!(2(l−1)!)
∂2( j+l−2)mi j |(λi=λ1,λ j=λ1)

∂ε2(l−1)∂ε∗2( j−1)
.

In what follows, taking the limit approach of the N -
step DT in Theorem 1, one can construct the N th-order
semirational solutions for the coupled FL equation (1)
as

u[N ] = u[0] − 2

∣∣∣∣M Y †
1

Y2 0

∣∣∣∣
|M | , (33)

v[N ] = v[0] − 2

∣∣∣∣M Y †
1

Y3 0

∣∣∣∣
|M | , (34)

with

M = (m[ j,l])1≤ j,l≤N ,Y1 = (ψ
[0]
1 , ψ

[1]
1 , . . . , ψ

[N−1]
1 ),

Y2 = (χ
[0]
1 , χ

[1]
1 , . . . , χ

[N−1]
1 ),

Y3 = (φ
[0]
1 , φ

[1]
1 , . . . , φ

[N−1]
1 ).

Choosing N = 1 in the general expressions of
N -order semirational solutions (33) and (34), we can
straightway derive the explicit expressions for the first-
order semirational solutions of the coupled FL equa-
tions (1) as

u[1] = a1e
ix
ρ

− 16a1L1e
ix
ρ + 16a2γ L2e

ix
2ρ − x

ρ
+ρt

2

4(1 − i)(a1 + ia2)(ia2 − a1)ργ 2e
ρt− x

ρ + L3

,

(35)

v[1] = a2e
ix
ρ

+ −16a2L1e
ix
ρ + 16a1γ L2e

ix
2ρ − x

ρ
+ρt

2

4(1 − i)(a1 + ia2)(ia2 − a1)ργ 2e
ρt− x

ρ + L3

,

(36)

where

L1 = 2i x2 + 2iρ4t2 − 2ρx − 2ρ3t − iρ2

√
2 − 2i

√
2 + 2iρ2

,

L2 = −x − i x − ρ2t + iρ2t − iρ√
2 − 2i

,

L3 =
√
2(1 + i)

ρ3 (2ρx2 + 2ia21x
2 + 2ia22x

2

+ 2iρ4a21 t
2 + 2ρ5t2 + 2iρ4a22 t

2 − 2iρa21x

− 2iρa22x + 2ρ2x + 2iρ3a22 t + 2iρ3a22 t − 2ρ4t

+ iρ2a22 + ρ3 + iρ2a21).

From the above formulae (35) and (36), we can
find that these solutions are combinations of rational
and exponential functions, which is called semirational
solutions in many documents [11,13,19]. When the
free parameter is chosen as γ = 0, the above semi-
rational solutions are reduced to rational ones and they
are all first-order RWs. When γ �= 0, various inter-
actional solutions can be generated in the coupled FL
equations (1), which include RWs + bright solitons
(‘+’ stands for interaction among different nonlinear
waves), RWs + dark solitons and RWs + breathers.

(1) If γ �= 0, one of the two parameters a1 and a2
is zero, and the semirational solutions including soli-
ton and RW can be constructed in Eq. (1). It is shown
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Fig. 1 a, b First-order
semirational solutions of
case (1) with parameters
chosen by
γ = 1

200 , a1 = 1, a2 = 0

Fig. 2 One dark and bright
soliton merges with the
first-order RW in case (1)
with parameters chosen by
γ = 1, a1 = 1, a2 = 0: a, b
the three-dimensional plots;
c, d the corresponding plane
evolution plots

that one component is the first-order RW + one bright
soliton, and the other one is the first-order RW + one
dark soliton in Figs. 1 and 2. One first-order RW exists
at t = 0 on one dark soliton background, see Fig. 1a;
one first-order RW appears on one bright soliton back-
ground, see Fig. 1b. It is shown that the first-order RW
on the left of one bright soliton in Fig. 1b is only a
small bump, because the RW is generated on a plane

with almost zero amplitude. Besides, the first-orderRW
and one dark (bright) soliton separate in u and v com-
ponents with a small value of |γ |, respectively.

It demonstrates that the first-order RW merges with
one dark or one bright soliton by increasing the value
of |γ | in Fig. 2a, b. At this point, we can easily find the
first-orderRWon the topof onebright soliton inFig. 2b,
because the RW is generated on a plane with almost 1
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Fig. 3 First-order
semirational solution of
case (2) with parameters
chosen by a1 = 1, a2 = 1

2 :
a, b a first-order RW and a
breather separate in two
components with
γ = 1

100000 : c, d a
first-order RW merge with a
breather in two components
with γ = 1

10

amplitude. The evolutionary processes of these hybrid
solutions at different moments are shown in Fig. 2c, d.
In Fig. 2c, only one dark soliton propagates if t < 0,
and a first-order RW exists at t = 0. Then, the RW dis-
appears and one dark soliton is still preserved if t > 0.
Additionally, it demonstrates that the collision process
in Fig. 2c is not elastic, because the amplitude of the
right dark soliton is bigger than the amplitude of the
left one. However, the collision between the first-order
RW and one bright soliton is elastic, as shown in Fig.
2d.

(2) When γ �= 0 and a1a2 �= 0, we can obtain the
second kind of interactional solutions where the first-
order RW interacts with a breather for the coupled FL
equations (1). As shown in Figs. 3a, b, the first-order
RW and one breather separate in both u and v compo-
nents. Moreover, the breathers in these two figures are
very different. In Fig. 3a, we can find that the ampli-
tudes of the breather above the background plane are
smaller than ones under the background plane. Never-
theless, the corresponding amplitudes of the breather
are inverse in Fig. 3b. By increasing the values |γ |, the

first-order RWmerges with one breather obviously, see
Figs. 3c, d.

Analogously, fixing N = 2 in the universal formulae
(33) and (34), the second-order semirational solutions
for the coupled FL equations (1) can be directly given
as

u[2] = a1e

i x

a21 + a22 − 2

∣∣∣∣∣∣∣
m[1,1] m[1,2] ψ

[0]∗
1

m[2,1] m[2,2] ψ
[1]∗
1

χ
[0]
1 χ

[1]
1 0

∣∣∣∣∣∣∣∣∣∣∣m
[1,1] m[1,2]

m[2,1] m[2,2]
∣∣∣∣

, (37)

v[2] = a2e

i x

a21 + a22 − 2

∣∣∣∣∣∣∣
m[1,1] m[1,2] ψ

[0]∗
1

m[2,1] m[2,2] ψ
[1]∗
1

φ
[0]
1 φ

[1]
1 0

∣∣∣∣∣∣∣∣∣∣∣m
[1,1] m[1,2]

m[2,1] m[2,2]
∣∣∣∣

. (38)

Here, ψ
[0]∗
1 and ψ

[1]∗
1 stand for the complex conju-

gations of ψ
[0]
1 and ψ

[1]
1 , respectively. The concrete

expressions of ψ
[0]
1 , χ

[0]
1 , φ

[0]
1 and ψ

[1]
1 , χ

[1]
1 , φ

[1]
1 are

given in Eqs. (26)–(31). Additionally, the expressions
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Fig. 4 a, b Second-order
semirational solutions
including the fundamental
second-order RW
interacting with two dark or
bright solitons for case (1)
with parameters chosen by
a1 = 5

4 , a2 = 0, γ = 1
100000

Fig. 5 Second-order
semirational solutions
including the second-order
RW of triangular pattern
interacting with two solitons
for case (1) with parameters
chosen by a1 = 5

4 , a2 =
0, m1 = 100, n1 = −100:
a, b three first-order RWs
and two solitons are
separated with γ = 1

100000 ;
c, d three first-order RWs
and two solitons are fused
with γ = 1

100

ofm[ j,l] (1 ≤ j, l ≤ 2) are calculated out byEq. (32). If
γ = 0, the second-order semirational solutions become
rational ones and they are the second-order RWs. Simi-
lar to the first-order case, the second-order semirational
solutions are also classified as two types with γ �= 0.

(1) If γ �= 0, a1 �= 0 and a2 = 0, we can get
the first kind of the second-order semirational solutions
consisted of the second-order RWand two dark (bright)

solitons. It is shown that a second-order fundamental
RW + two dark solitons exists in u component, and a
second-order fundamental RW + two bright solitons
appears in v component, see Fig. 4. Similar to Fig. 1b,
the second-order RW is not easily seen in Fig. 4b for
the reason that the amplitude of background plane on
which RW appears are almost zero.
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Fig. 6 Second-order
semirational solution
consisted of the
second-order RW of
triangular pattern and two
breathers for case (2) with
parameters chosen by
a1 = 1, a2 = −1: a, b these
two kinds of nonlinear
waves are separated with
γ = 1

1000000 ; c, d they
merge with each other with
γ = 1

100

The patterns of the high-order RWs in these semi-
rational solutions are determined by the parameters
Si (Si = mi + ini ) in Eq. (24). Choosing S1 �= 0, the
second-order fundamental RW in Fig. 4 is decomposed
into three first-order ones in Fig. 5. Compared to Fig.
5a, b, these three first-order RWs merge with two dark
or bright solitons in Fig. 5c, d through increasing the
value of |γ |. These first-order RWs are easily observed
in Fig. 5d, because they are generated on significant
nonzero plane.

(2) If γ �= 0 and a1a2 �= 0, the second kind of the
second-order semirational solutions is exhibited,which
includes the second-order RW and two breathers. As
shown in Fig. 6a, b, a second-order RW of triangular
pattern and two breathers coexist in both u and v com-
ponents. Furthermore, the breathers in these twofigures
are same. Similar to the first-order case, it is shown that
these three first-order RWs merge with two breathers
through increasing the value of |γ | in Fig. 6c, d.

FromEqs. (33)–(34), somemuch higher-order semi-
rational solutions to the coupled FL equations (1) can
be derived. Similar to the first- and second-order cases,
these much higher-order semirational solutions can
also be classified as two types with γ �= 0: (1) One
component is high-order RW + multi-dark solitons,
and the other one is high-order RW + multi-bright
solitons; (2) two components are all high-order RW
+ multi-breathers. Moreover, various patterns of high-
order RWs in these semirational solutions can be gen-
erated by choosing different combinations of mi and
ni . Here, we only discuss the first- and second-order
semirational solutions in detail. We find that these
semirational solutions can not be generated in single-
component FL equation. It is shown that the solutions
in coupled systems are more abundant and interesting
than ones in uncoupled systems. Besides, we expect
that these semirational solutions can be observed in the
physical experiments in the future.
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4 Conclusion

A special vector solution of the Lax pair (2)–(3) and the
DT for the coupled FL equations (1) are constructed,
respectively. Using the limiting technique, some novel
interactional solutions to Eq. (1) are exhibited. Dur-
ing the computational processes of the vector solution
(24), all solutions in the fundamental solution of the
transformedU0 are reserved and it is very important to
generate various semirational solutions. Additionally,
the parameter γ in Eq. (24) plays an important role
in generating these semirational solutions. If γ = 0,
these semirational solutions are reduced to rational
ones RWs; these hybrid solutions exist only if γ �= 0.

Moreover, these semirational solutions are mainly
classified as two types: (1) One component is RWs
+ dark solitons, and the other one is RWs + bright
solitons; (2) two components are all RWs + breathers.
Here, the dynamics of the first- and second-order semi-
rational solutions are discussed in detail. It is shown
that these different nonlinear waves can merge with
each other significantly by increasing the value of |γ |.
Actually, wave dynamics are superposition of various
kinds of nonlinear waves [11,13,32]. It is necessary
to investigate the interactional solutions of nonlinear
models becausewe believe the experimental conditions
for observing hybrid solutions among first-order RW,
one bright (dark) soliton and one breather in [11] in the
future could depend on high-order semirational solu-
tions of coupled FL equations.
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