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Abstract Classical method of Lyapunov exponents
spectrum estimation for a n-th-order continuous-time,
smooth dynamical system involves Gram–Schmidt
orthonormalization and calculations of perturbations
lengths logarithms. In this paper, we have shown that
using a new, simplified method, it is possible to esti-
mate full spectrum of n Lyapunov exponents by inte-
gration of (n− 1) perturbations only. In particular, it is
enough to integrate just one perturbation to obtain two
largest Lyapunov exponents, which enables to search
for hyperchaos. Moreover, in the presented algorithm,
only very basic mathematical operations such as sum-
mation, multiplication or division are applied, which
boost the efficiency of computations. All these fea-
tures together make the new method faster than any
other known by the authors if the order of the sys-
tem under consideration is low. Correctness themethod
has been tested for three examples: Lorenz system,
Duffing oscillator and three Duffing oscillators cou-
pled in the ring scheme. Moreover, efficiency of the
method has been confirmed by two practical tests. It has
been revealed that for low-order systems, the presented
method is faster than any other known by authors.
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1 Introduction

Depending on a dynamical system type and a kind of
information that is useful for its investigations, differ-
ent types of invariants characterizing system dynamics
are applied. For instance, one may use Kolmogorov
entropy [1,2], correlation dimension [3,4], Lyapunov
energy function [5] to determine the stability of solu-
tions and complexity of system dynamics [6]. How-
ever, in order to predict the influence of perturbations
on solution of a system, Lyapunov exponents (LEs)
are one of the most commonly applied tools. That
is because these exponents determine the exponen-
tial convergence or divergence of trajectories that start
close to each other. The existence of such numbers
has been proved by Oseledec theorem [7], but the first
numerical study of the system’s behavior using Lya-
punov exponents had been done by Henon and Heiles
[8], before the Oseledec theorem publication. Themost
important algorithms for calculating Lyapunov expo-
nents for continuous systems have been developed by
Benettin et al. [9] and Shimada and Nagashima [10],
later improved by Benettin et al. [11] and Wolf [12].
In order to estimate Lyapunov exponents from a scalar
time series, the Takens procedure [13] can be applied.
This approach canbe utilized also in the caseswhendis-
continuities or time delays exist in the analyzed system.
Numerical algorithms for such estimation have been
developed by Wolf et al. [14], Sano and Sawada [15]
and later improved by Eckmann et al. [16], Rosenstein
et al. [17] and Parlitz [18]. Alternative method appli-
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cable to systems with discontinuities or time delays,
based on synchronization phenomena, was elaborated
by Stefanski [19–22].

Nowadays, Lyapunov exponents are employed in
many different areas of scientific research such as:
materials [23,24], electric power systems [25], non-
continuous systems [20,22,26–29], systems with time
delay [21], aerodynamics [30], time series analysis
[31–34], optimal control [35,36], chaotic encryption
and secure communication [37,38], multi-objective
optimization [39], parametric oscillations and fluctuat-
ing parameters [19,40], neuronalmodels investigations
[41].

Thus, there is still need to elaborate fast and sim-
ple methods of LE calculation. Recently, we have pre-
sented our simple and effectivemethod of estimation of
the largest Lyapunov exponent (LLE) from the pertur-
bation vector and its derivative dot product. Themethod
is based on a clear, geometrical reasoning. Its applica-
tion involve only basic mathematical operations such
as summing, multiplying, dividing. The method can be
applied in different aspects of the nonlinear systems
control. We investigated continuous systems [42], syn-
chronization phenomena detection [43], time series in
control systems [44–46].

The method presented previously was limited to
calculation of the Largest Lyapunov exponent. In this
paper, we have revealed that it is possible to apply it
for estimation of the whole Lyapunov exponents spec-
trum too. Moreover, it has been shown that special fea-
tures of the presented method enable to estimate the
whole spectrum of n Lyapunov exponents by integra-
tion of (n − 1) perturbations only. The algorithm has
been tested for three examples: Lorenz system, Duff-
ing oscillator and three Duffing oscillators coupled in
the ring scheme. Selection of the exemplary systems
can be justified by the fact that they exhibit different
types of dynamical behavior depending on the analyzed
parameters. Therefore, correctness of the method has
been confirmed for periodic, quasiperiodic and chaotic
trajectories [47]. Computation times and convergence
rates have been compared with the classical method
[47] that involves Gram–Schmidt orthonormalization
and calculations of perturbations lengths logarithms.
The method presented in [47] uses the same approach
as algorithms described in [9,11]. To authors’ best
knowledge, no algorithms of LE spectrum estimation
for continuous-time, smooth dynamical systems faster
than [9–11,47] have been published. In this paper, it

has been revealed that application of our new algo-
rithm increases the efficiency of the calculations com-
pared to the classical method [47] when the order of
the system is low: 2, 4 or 6. Such acceleration has been
achieved not only due to integration of (n − 1) pertur-
bations instead of n, but also owing to the simplicity
of the algorithm, which involves only the basic math-
ematical operations: addition, multiplication, division.
Compared to the classical method, calculation of log-
arithms and normalization of perturbations after each
iteration can be omitted. Therefore, authors claim that
the method presented in this paper is the fastest one in
the assumed range of applications if the order of the
system is low enough.

2 The method

Assume that a dynamical system is described by the set
of differential equations in the form:

dx
dt

= f (x, t) (1)

where x is the state vector, t is the time and f is a vector
field that (in general) depends on x and t . Evolution of
any perturbation z in such system can be found from
the equation:

dz
dt

= U (x, t) z (2)

where U (x, t) is the Jacobi matrix obtained by differ-
entiation of f with respect to x. As it has been shown
in the previous paper [42], the value of LLE can be
estimated from the following expression:

λ∗
1 =

dz1
dt · z1
|z1|2

(3)

where z1 is a perturbation vector, whose evolution
can be obtained by numerical integration of Eq. (2).
The approximate value of LLE (λ1) is obtained by
averaging values of λ∗

1 from subsequent computation
steps. For time of integration long enough, the aver-
age value of λ∗

1 converges to the LLE. Please note that
formula (3) involves only the most basic mathematical
operations—addition, multiplication and division. On
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Fig. 1 Scheme of
perturbation vectors and
their derivatives

the other hand, the classical method involves calcula-
tion of perturbation length and its logarithm after each
iteration.

According to [47], each LE λi is the average rate
of perturbation contraction or expansion in a partic-
ular subspace near a particular limit set. The LLE—
λ1—is the average rate of perturbation length change
in (almost) whole space in which system (1) is defined.
Let this whole space be named W1.

For a systemof order n, there are n nested subspaces:

W1 ⊃ W2 ⊃ . . . ⊃ Wn (4)

such that the dimension of subspaceWi is n+ 1− i . In
each subspace Wi , a perturbation evolves, on the aver-
age, according toλi . Therefore, i-th LE can be obtained
from evolution of a perturbation in the subspace Wi .

The classical method of LE spectrum estimation
involvesGram–Schmidt orthonormalization and calcu-
lations of perturbations lengths logarithms [47]. In this
approach, n perturbations z1, z2, . . . , zn are integrated.
Orthonormalization procedure assures that each per-
turbation zi evolves in the subspace Wi . Values of LE
are obtained by calculating natural logarithm of pertur-
bations lengths after subsequent integration steps and
averaging these values over time. The crucial fact is
that in order to calculate whole spectrum of n LE, inte-
gration of n perturbations is necessary.

In the presented method, complexity of calculations
is reduced. In order to estimate the whole spectrum of

n LE, it is enough to integrate (n − 1) perturbations.
For clarity, in the next paragraph, the case of a second-
order system is discussed. Authors demonstrate how
integration of only one perturbation z1 enables to esti-
mate both LE:λ1, λ2. The subsequent paragraph covers
the general case, i.e., estimation of a full LE spectrum
of a nth-order system using only (n − 1) integrated
perturbations.

Let us assume that for a 2nd-order system, only one
perturbation z1 is integrated. Obviously, using formula
(3), LLE can be calculated. As z1 evolves according
to (2), it tends to line up with the direction in which
evolution of the perturbation is governed mainly by
the value of λ1, whereas the terms connected with λ2
become negligible [47]. Therefore, throughout its evo-
lution, z1 tends to a direction orthogonal to W2. Let us
also take any random vector z2, the length of which is
nonzero and which is not parallel to z1 (Fig. 1).

Using the orthogonalization formula [47]:

z̃2 = z2 − z1 ∗ z1 · z2
|z1|2

(5)

one obtains a vector z̃2 which is perpendicular to z1.
Therefore, to a good approximation, z̃2 ∈ W2. Notice
that for a 2nd-order system, W2 is simply a line in
W1 space. Thus, z̃2 must have the direction of a per-
turbation in W2 subspace, despite the fact that z̃2 has
no connection with system (1) and the vector z2 was
selected randomly. Moreover, it can be easily checked
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that the length of a perturbation does not affect the value
obtained from formula (2). Summing up, one can use
formula (2) to find the 2nd LE. It is only needed to use
the vector z̃2 which lies inW2 instead of z1. The second
LE can be found from the following expression:

λ∗
2 =

d z̃2
dt · z̃2
|z̃2|2

(6)

The approximate value of λ2 is obtained by averaging
values of λ∗

2 from subsequent computation steps. For
long enough time of integration, the average value of
λ∗
2 converges to the 2nd LE. Consequently, one does

not need to integrate the 2nd perturbation; it is enough
to find a correct direction of the vector z̃2.

Let us now consider a system of order n. Suppose
that (n − 1) perturbations z1, z2, . . . , zn−1 are inte-
grated1. Their time derivatives can be found from for-
mula (2). As z1 evolves, it tends to line up with the
direction in which evolution of the perturbation is gov-
erned mainly by the value of λ1, whereas the terms
connected with subsequent LE λ2, λ3, . . . , λn become
negligible [47]. Therefore, throughout its evolution, z1
tends to a direction orthogonal to W2. The component
z̃2 of the perturbation z2, which is perpendicular to z1,
can be obtained by means of formula (5). To a good
approximation z̃2 ∈ W2. Moreover, z̃2 tends to a direc-
tion which is orthogonal to W3. Consequently, vectors
z̃3, z̃4, . . . , z̃n−1 can be calculated using the following
orthogonalization expression:

z̃k = zk − z1 ∗ z1 · zk
|z1|2

−
k−1∑

i=2

z̃i∗ z̃i · zk|z̃i|2
, k = 3, 4, . . . , (n − 1) (7)

Formula (7) yields a vector z̃kwhich has no components
in directions of z1, z̃2, . . . , z̃k−1. Each of the vectors z̃k,
estimated by means of (7), approximately fulfills the
condition z̃k ∈ Wk and tends to a direction orthogonal
to Wk+1. Therefore, the LE λ2, λ3, . . . , λn−1 can be
estimated from the formula:

λ∗
k =

d z̃k
dt · z̃k
|z̃k|2

, k = 2, 3, . . . , (n − 1) (8)

1 In order to maintain orthogonality of the integrated perturba-
tions, before each integration step the following substitution is
performed: zk := z̃k, k = 2, 3, . . . , (n − 1). The orthogonalized
perturbations z̃k are obtained from formula (7).

The approximate value of λk is obtained by averaging
values of λ∗

k from subsequent computation steps. For
long enough time of integration, the average value of
λ∗
k converges to the kth LE. Now, let us take any ran-

dom vector zn such that its length is nonzero and it is
linearly independent from z1, z̃2, . . . , z̃n−1. Using for-
mula (7), one can orthogonalize the random vector zn
with respect to z1, z̃2, . . . , z̃n−1. In such a manner, z̃n is
obtained. The length of z̃n is random, but owing to the
orthogonalization process, it approximately fulfills the
condition z̃n ∈ Wn . Note that the order of the subspace
Wn is equal to 1, soWn is simply a line in theW1 space.
Therefore, z̃n must have the direction of a perturbation
in the Wn space. Moreover, the value obtained from
formula (8) is independent from the length of z̃k. Con-
cluding, one can apply formula (7) to orthogonalize a
randomly selected random vector zn with respect to the
integrated perturbations z1, z̃2, . . . , z̃n−1 and then use
the result z̃n to estimate the last LE by means of for-
mula (8). In such a manner, it has been shown that it is
enough to integrate (n − 1) perturbations to estimate
the full spectrum of LE of a nth-order system.

3 Numerical simulations

Simulation programs were written in C++ using Code-
Blocks 16.01. Graphs and diagrams were built with
matplotlib library as a tool of Python programming lan-
guage. In order to integrate the system of differential
Eqs. (1)–(2), Runge-Kutta method of the fourth order
was used. The integration step was chosen experimen-
tally for each system.

In order to estimate thewhole spectrumof Lyapunov
exponents, themethod requires to simulate (n − 1) per-
turbations, where n is the order of the system. For
example, for the second-order non-autonomous Duff-
ing oscillator with external excitation [42], one pertur-
bation was calculated. For the third-order autonomous
systemofLorenz equations [48], twodisturbanceswere
observed. For three Duffing systems coupled in a ring
scheme [50], which together constitute a system of the
6th order, five perturbationswere integrated. After each
integration step, subsequent perturbations were nor-
malized and orthogonalized according to Eqs. (5), (7).

After every integration step, values λ∗
i are calculated

for each perturbation. For the value of λ∗
1, formula (3)

is used; for λ∗
2, λ

∗
3, . . . , λ

∗
n , formula (8).
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Fig. 2 Bifurcation diagram
of the Lorenz system (9)

The simulation program remembered subsequent
values of λ∗

i in n buffers of a fixed capacity. When
buffers were full, the program calculated standard devi-
ation of all the values in eachofn buffers. If the standard
deviation of values in any buffer was too high, buffers
were cleared and computations were continued. Other-
wise, if the value of standard deviation for each buffer
was below a fixed threshold, the calculations were ter-
minated. The final value of λi returned by the program
was equal to the average of all values λ∗

i remembered
in the i-th buffer.

4 Results of numerical simulations

In order to verify our method of the Lyapunov expo-
nents spectrum estimation, three systems have been
analyzed: Lorenz equations, Duffing oscillator with
external periodic driving forcing and three Duffing sys-
tems coupled in a ring scheme. Firstly, the Lorenz sys-
tem can be described with the following mathematical
model [49]:
⎧
⎨

⎩

ẋ = σ (y − x) ,

ẏ = r x − y − xz,
ż = xy − βz;

(9)

Jacobi matrix was used to simulate evolution of per-
turbations according to Eq. (2). For the Lorenz system
(9), the Jacobi matrix is described by formula (10).

U (x) =
⎛

⎝
−σ σ 0
r − z −1 −x
y x −β

⎞

⎠ (10)

System (9) is nonlinear and autonomous. The spectrum
of Lyapunov exponents of the system was computed
with two parameters fixed, σ = 10, β = 8/3, while r
was used as the control parameter in the range from 0 to
100. Initial conditions for r = 0 were set as a random
three-element vector of magnitude 1. Initial perturba-
tions were also chosen randomly and normalized to 1.

The bifurcation diagram of the state variable z in
system (9) is shown in Fig. 2. The corresponding graph
of LE spectrum calculated using the new method is
depicted in Fig. 3, whereas the LE spectrum graph
obtained by means of the classical method is shown
in Fig. 4.

The bifurcation diagrampresented in Fig. 2, together
with the LE diagram presented in Figs. 3, 4, demon-
strates that the Lorenz system (9) is periodic for all the
values of r smaller or equal to 24.7,whereas it is chaotic
formost values of r larger or equal to 24.8.However, for
some values of r above 24.8, periodic windows exist.
Detailed information on different kinds of limit sets
in dynamical systems can be found in [47]. It can be
noticed that the graphs in Fig. 3 (the new method) and
in Fig. 4 (the classical method) are in complete agree-
ment. Moreover, both graphs are consistent with [48],
which confirms the correctness of the algorithm pre-
sented in this paper.

The Duffing oscillator can be described by the fol-
lowing mathematical model [42]:

ẍ + β ẋ + αx3 = q cos (ηt) (11)

The linear stiffness in Eq. (11) was skipped as in [42],
which enables to compare the results. Jacobimatrixwas
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Fig. 3 LE spectrum of the
Lorenz system (9),
calculated using the new
method

Fig. 4 LE spectrum of the
Lorenz system (9),
calculated using the
classical method

used to simulate evolution of perturbations according to
Eq. (2). For the Duffing system (11), the Jacobi matrix
is described by formula (12).

U (x) =
(

0 1
−3αx2 −β

)
(12)

The spectrum of Lyapunov exponents for the Duffing
oscillator was computed with such fixed parameters as
β = 0.05, α = 1, η = 0.5. Parameter q was used
as the control parameter in the range from 0.5 to 1.8
[42]. In the simulation, a random vector of length 1 was
used as initial condition. Initial perturbations were also
random and normalized to 1.

The bifurcation diagram of the state variable x of the
Duffing Eq. (11) is shown in Fig. 5. The corresponding
graph of LE spectrum calculated using the newmethod

is depicted in Fig. 6. The LE spectrum graph obtained
by the classical method is presented in Fig. 7. In both
cases, red line corresponds to the largest LE, while blue
line corresponds to the second Lyapunov exponent of
system (11).

Figures 5, 6 and 7 show that the Duffing system is
chaotic for most values of the parameter q in ranges
from 0.693 to 0.738 and from 1.237 to 1.673. How-
ever, some periodic windows exist in these ranges too.
For the values of r between 0.5 and 0.692, from 0.739
to 1.236 and from 1.674 to 1.8, the system is periodic.
For the Duffing system, the generalized divergence of
the flow is constant and equal to −β [49]. Sum of Lya-
punov exponents has to be equal to the generalized
divergence of the flow. Therefore, graphs of the first
and second Lyapunov exponents should be symmetri-
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Fig. 5 Bifurcation diagram
of the Duffing Eq. (11)

Fig. 6 LE spectrum of the
Duffing Eq. (11), calculated
using the new method

Fig. 7 LE spectrum of the
Duffing Eq. (11), calculated
with the classical method
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Fig. 8 Bifurcation diagram
of three Duffing systems in
the ring scheme

Fig. 9 LE diagram of three
coupled Duffing systems
(13) obtained with the new
method

cal with respect to horizontal line λ = −β
2 . This fact

was confirmed in Fig. 6 and in Fig. 7.
Next, we consider a ring of three Duffing systems

[50]. The resulting system is given by:

{
ẋi = yi
ẏi = −dyi − axi − x3i + k

(
xp(i) − xi

) (13)

where i = 1, 2, 3 and p (i) is the index of the pre-
vious oscillator in the ring, i.e., p (3) = 2, p (2) =
1, p (1) = 3. Jacobi matrix of system (13) is described
by formula (14):

U (x) =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
u1 −d 0 0 k 0
0 0 0 1 0 0
k 0 u2 −d 0 0
0 0 0 0 0 1
0 0 k 0 u3 −d

⎞

⎟⎟⎟⎟⎟⎟⎠
(14)

where ui = −a−3x2i −k. System (13) is nonlinear and
autonomous. The spectrum of Lyapunov exponents of
the system was computed with two parameters fixed,
d = 0.3, a = 0.1, while the coupling coefficient k
was used as the control parameter in the range from 0
to 4. Initial conditions for k = 0 were set as a random
six-element vector ofmagnitude 1. Initial perturbations
were also chosen randomly and normalized to 1. Please
note that names of parameters are different in formulas
(11) and (13). This is due to the fact that results of both
simulations can be verified in two different sources.
Results of calculations for system (11) can be checked
in [42], whereas system (13) can be verified in [50].

The bifurcation diagram of the state variable x3 in
system (13) is depicted in Fig. 8. The corresponding
graph of LE spectrum calculated using the newmethod
is shown in Fig. 9. The LE spectrum graph obtained by
the classical method is presented in Fig. 10.
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Fig. 10 LE diagram of
three coupled Duffing
systems (13) obtained with
the classical method

Figures 8, 9 and 10 demonstrate how dynamics of
three Duffing systems (13) changes as the coupling
strength increases [50]. For the values of k smaller than
0.24, one can notice that all the LEs are negative and the
system tends to a stable fixed point. For the values of k
between 0.24 and 0.38, one LE is equal to 0, which cor-
responds to a periodic solution. In the range of parame-
ter k from 0.38 to 1.79, more than one LEs are zero and
a quasiperiodic solution is obtained. Transition to chaos
takes place for k equal to 1.79, followed by transition to
hyperchaos as coupling coefficient reaches 1.9. Please
note that the full spectrum of six LEs was obtained
by integration of five perturbation vectors. However, if
the task is to just detect chaos and hyperchaos, only
one perturbation is necessary when our new method
is applied, whereas integration of two perturbations is
required if the classical method is used.

5 Computation time comparisons

In the previous sections, the novel method has been
explained and results of its application have been
demonstrated. It has been confirmed that the novel
method requires integration of only (n − 1) pertur-
bations to estimate n Lyapunov exponents, which is
expected to increase efficiency of calculations. More-
over, formulae (3) and (8), which are used for LE
estimation in the new method, require only the most
basicmathematical calculations—addition,multiplica-
tion and division. In such a manner, calculation of per-
turbation’s norm logarithm, which is necessary in the
classical method, can be avoided. Therefore, there are

two possible reasons for efficiency of the novelmethod.
Firstly, size of the problem is reduced, because only
(n − 1) perturbations are integrated. However, compu-
tation speed gain due to this feature may vary with the
order of the system. Secondly, application of formu-
lae (3) and (8) instead of estimation of the logarithm
of the perturbation norm can additionally shorten the
computation time.

Firstly, influence of application of formulae (3) and
(8) is analyzed without taking into account the number
of perturbations to be integrated. When the classical
method of LE estimation is applied, each computation
step requires to calculate the norm of a perturbation.
The norm can be treated as the square root of the dot
product of the perturbation vector with itself. Then, the
natural logarithmof the norm is calculated.On the other
hand, formulae (3) and (8) of the new method require
not only the perturbation vector, but also its time deriva-
tive. When both vectors are known, then according to
(3) and (8), the dot product of the perturbation and its
time derivative is divided by the dot product of the per-
turbation vector with itself.

Efficiency of both approaches has been tested by
a C++ program. The program selects 2 ∗ 107 vectors
at random. Then, it checks how much time it takes to
estimate natural logarithm of the norm of each of these
vectors, just as it is done in the classical method of LE
estimation [47]. Afterward, formula (3) is applied for
each vector from the same set and time of these opera-
tions is also measured. In such a manner, efficiency of
both methods of LE estimation can be compared. This
test has been executed 100 times for different vector
dimensions. The average, the minimum and the max-
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Fig. 11 Computation time
of formula (3) divided by
the average computation
time of the classical method
for the best case, when only
one element of U (x) in
each row is nonzero

Fig. 12 Computation time
of formula (3) divided by
the average computation
time of the classical method
for the worst case, when all
elements of U (x) are
nonzero

imum computation time has been recorded for both
methods.

However, an important issue arises: Efficiency of the
novel method of LE estimation can be largely influ-
enced by estimation of the perturbation’s derivative,
which is required by the new method. If the Jacobi
matrixU (x) contains only few nonzero elements, then
calculation of the perturbation’s derivative according
to formula (2) is fast. When most elements ofU (x) are
nonzero, then calculation of the perturbation’s deriva-
tive is slower. Therefore, two separate cases have been
analyzed. In the best scenario, only one element in each
row ofU (x) is nonzero. In the worst case, all elements
ofU (x) are nonzero. Results for both cases with differ-
ent vector dimensions are presented in Figs. 11 and 12.
These figures represent the best case and theworst case,
respectively. In each of these graphs, the computation
time ratio is obtained by dividing computation time of
formula (3) by the average time of calculations with
the classical method, i.e., when the natural logarithm

of the vector’s norm is estimated. Therefore, value 1
in the graph means that the computation time for both
methods is equal. Values below 1 show that the new
method is faster, and values above 1 indicate that the
novel method is slower.

Figures 11 and 12 show that when order of the sys-
tem is less or equal to 4, then evaluation of formula
(3) or (8) is always faster than calculation of the natu-
ral logarithm of the perturbation’s norm. However, for
higher order systems, evaluation of the perturbation’s
norm logarithm can be faster if the Jacobi matrixU (x)
is dense enough. On the other hand, if U (x) is sparse,
then evaluation of formula (3) or (8) is faster than the
classical formula for all vector dimensions under con-
sideration.

Now, as the influence of using the simplified formu-
lae (3) and (8) has been investigated, overall efficiency
of the novelmethod canbe checkedonapractical exam-
ple. To do so, the spectrum of Lyapunov exponents
of Duffing systems coupled in ring scheme (13) has
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Fig. 13 LE spectrum
estimation time for system
(13) using the new method
divided by the average
computation time of the
classical method

been estimated with both methods for different num-
ber of oscillators in the ring, from 1 to 5. Therefore,
systems of orders 2, 4, . . . , 10 have been investigated.
The same coupling strength k = 3.0 has been used in
all tests. For each number of oscillators, the Lyapunov
exponents spectrumhas been estimated 100 times using
bothmethods. The orthonormalization process [47] has
been performed after each iteration of both methods.
The average, minimum and maximum computations
times have been recorded. The results are presented
in Fig. 13. The computation time ratio is obtained by
dividing the calculations time of the novel method by
the average time of calculations of the classicalmethod.
Therefore, just as in previous graphs, values below 1
indicate that the novel method is faster, whereas values
above 1 show that the classical method performs better.

Figure 13 confirms that the novel method, presented
in this paper, is faster than the classical method [47] in
each test case, as long as order of system (13) is smaller
or equal to 4. For the system with three oscillators and
order 6, the novel method is faster in the average, but it
is not faster in each trial. Whenmore than three oscilla-
tors are coupled together, the classicalmethodperforms
better.

6 Conclusions

The presented article shows that from dot products of
perturbations vectors and their derivatives, one can eas-
ily extract the full spectrum of Lyapunov exponents.
We have shown that full spectrum of LE for a sys-
tem of order n can be obtained by integrating only
(n − 1) perturbations. Moreover, due to the fact that

our method is based on very unsophisticated compu-
tations involving only basic mathematical operations
such as summing, subtracting, multiplying, dividing,
it is more efficient than the classical one when the
order of the system is low enough. We have presented
the theoretical description showing the mathematical
simplicity of the method. The correctness and effec-
tiveness of our method has been confirmed by simu-
lations of autonomous and non-autonomous nonlinear
dynamical systems of different orders. These results
have been compared with the ones obtained using the
classical algorithm. The efficiency of the new method
has been compared to the method that involves the cal-
culation of perturbations lengths logarithms andGram–
Schmidt orthonormalization. Firstly, it has been shown
that application of the new, simple formulas for LE
estimation is faster than calculation of the natural log-
arithm of perturbation’s norm for systems of dimen-
sion smaller or equal to 4, even if the Jacobi matrix
of the system is dense. It has been revealed that if the
Jacobi matrix is sparse, then the novel formulas can
perform better even for systems of the dimension 10
or higher. Secondly, efficiency of the novel method
has been verified for Duffing systems coupled in the
ring scheme. It turned out that the novel method is
in average faster if the dimension of the system is
smaller or equal to 6. Obviously, efficiency of both
methods may vary depending on properties of the sys-
tem under consideration. Moreover, implementation of
the method may influence the effectiveness. However,
taking into account the obtained results, it can be stated
that for low-dimensional, continuous-time, smooth sys-
tems, the presented method of LE spectrum estimation
is the fastest one. Thenext step of themethod’s develop-
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ment can be considered in estimation of LE in systems
with discontinuities, with time delays and others.
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