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Abstract Hidden attractor can be found in some
dynamic systems. More commonly, it can be excited
by the stabilized equilibria, or be generated from the
systems without equilibria. The generalized Lorenz
system transformed from the Rabinovich system is
researched by detecting the generating mechanism
under different parameters and initial values, and then
we have the good fortune to discover that the hidden
attractor is coexisting with the states of stabilization,
period, chaos, and even transient chaos. At the same
time, the Hamilton energy function of the system is
given to discuss the energy transform when the system
undergoes a series of oscillations. The compositional
principle can be used to design a new chaos control
method, which is called Hamilton energy control. By
numerical simulating, the feedback gain in the present
control method is assigned and then controls the sys-
tem with hidden attractor to expected states effectively.
The feature of the control method can be indicated that
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the Hamilton energy can be detected during the oscil-
lation control processes.
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1 Introduction

Over the past half-century, painstaking research has
been done about chaotic motions, and people have com-
prehended quite profoundly its characteristics, laws,
and application in some fields. It was the effect of sys-
tems parameters; the nonlinear systems can show some
rich dynamic characteristics such as the transition
among period, chaos and hyperchaos [1-3], and crisis-
induced intermittency [4,5].

With research moves along, the relationship between
chaos and engineering technology becomes tighter and
tighter. Moreover, chaos has been applied in many
important fields, so the construction of chaotic sys-
tems purposely has become a key subject. In the
past some years, many nonlinear systems with inter-
esting attractors were designed [6-11]; for exam-
ple, Qi et al. [6] found new four-dimensional chaotic
system, in which each equation contains a cubic
term. This system displays two coexisting double-wing
chaotic attractors [7]. In paper, Wei et al. [8] estab-
lished a bending-torsion-shaft coupling multi-degree-
of-freedom dynamic analysis model and then analyzed
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comprehensively the impact of system parameters on
nonlinear dynamic. Some multi-scrolls attractor sys-
tems were also found by using all kinds of technical
means. In paper [9], the multi-scrolls chaotic system
was proposed by combining in a hand. In paper [10],
the time-delay sampled-data chaotic system was intro-
duced to product multi-scrolls chaotic attractor, which
can lead to a more complex nonlinear system with
richer chaotic behavior. In paper, Chen et al. [11] pro-
posed a new chaotic system that could generate multi-
scroll attractors by combining the two nonlinear func-
tion. In paper [12], two 3D chaotic systems without
equilibrium were constructed Sprott A system, which
could appear multi-scroll hidden attractors. In paper
[13], a 3D fractional-order chaotic system was pro-
posed; furthermore, the chaotic system had only one
stable equilibrium and exhibited the hidden attractors.
In paper [14], a new nonlinear system with hidden
attractor was introduced, the cause of existing of hidden
attractor was the lack of equilibrium. The researches
about all types of chaotic attractors enrich the nonlin-
ear theory and provide abundant materials for chaos
secure communication.

The attractors mentioned above are excited by the
unstable equilibrium points of systems, we call it self-
excited attractor. However, there is a kind of unpre-
dictable attractor, which is called hidden attractor. The
basin of attraction does not touch unstable equilib-
ria and is located far away from such points; mean-
while, the form of hidden attractor can be periodic or
chaotic attractors. In recent years, some works have
been done about the algorithms for finding hidden
attractors [15-21] and analyses briefly [22-26]. Due
to the generating mechanisms of hidden attractors, it
is impossible to recognize and compute the special
attractors using traditional methods. Meanwhile, the
very small attraction basin and dimensions of hid-
den attractors result in failure to compute their inte-
gral curve by adopting random initial values. The find-
ing of hidden attractor is proposed in classical Chua
system in 2010 [15]. Kuznetsov et al. provided a way
of using analytic numerical method to study hidden
attractors and found the periodic solutions or hidden
attractors by iteration calculating the initial values of
harmonic linearized system. In paper, Zhao [20] located
the hidden attractors in the Van der Pol-Duffing system;
numerical results show that there are some interesting
phenomenon, for example, the coexistence of hidden
attractors and stable equilibria, the coexistence of hid-
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den attractors and stable periodic solution, the coexis-
tence of hidden attractors and chaotic attractors excited
by the unstable equilibrium points. In paper, Dud-
kowski et al. [22] discussed some hidden attractors
generating from Hilbert’s 16th problem, flows without
fixed equilibria, flows with stable fixed equilibrium,
flows with a line of fixed equilibria, electromechanical
system without equilibria, electromechanical model of
the drilling system, Rabinovich system, Glukhovskii—
Dolzhanskii system and Rabinovich—Fabrikant system,
respectively. In paper, Chen et al. [23] constructed
anew memristive chaotic circuit, and the hidden attrac-
tors were found in the specific parameters setting. In
paper, Zhang et al. [24] studied the complete synchro-
nization between two nonlinear systems with hidden
attractors, which was used to describe the local kinetic.
Hidden attractors have some own unique dynamical
characteristics, which are entirely different from self-
excited attractors. Because of the undesirable dynam-
ical behavior generating from hidden attractors when
some practical nonlinear system is applied in engineer-
ing field, the research of coexisting hidden attractors
has both physical meaning and high project application
worth. From the viewpoint of applications, the hidden
oscillate may cause unnecessary losses to our life and
production, so it is necessity extremely to understand
its mechanism and properties in order to grasp the most
desirable chaotic motion better, and further lower the
risk of the sudden jump to undesired behavior.

In the nonlinear chaotic circuit, a certain amount of
energy is essential, and its release and storage between
electric field and magnetic field are synchronous with
the charge or discharge and the electromagnetic induc-
tion. According to mean field theory and Kirchhoff’s
law, the energy exchange can be described by the
dynamic equation of nonlinear oscillating circuits. Fur-
thermore, for the actual oscillating circuits, the pro-
cess of nondimension transform can be used to trans-
form the electromagnetic field equations into dimen-
sionless nonlinear dynamic equations that expect to be
employed to estimate the energy exchange. At the same
time, the state changes of the nonlinear dynamic sys-
tems are accompanied by the process of absorb and
release of energy.

Next, it is an interesting job to look for an appro-
priate tool to detect the energy in a nonlinear sys-
tem. Sarasola et al. [27] pointed out to us that the
energy of a system can infer the dynamics process, but
they developed an opposite approach and investigated
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a kind of variables function as the energy function to
the given chaotic system. It is so exciting that Sarasola
employed the Hamilton function as the energy func-
tion in a Hamilton system or general Hamilton system
[28-30], and then calculated the Hamilton energy func-
tion for some classical chaotic systems. Torrealdea et
al. [31,32] found the average energy consumption of
a Hindmarsh—Rose neuron and evaluated the energy
consumption of the neuron during its signaling activ-
ity. Additionally, they analyzed whether a commonly
accepted mathematical model of a neuron provides
room for such a kind of trade-off. Moujahid et al. [33]
studied the energy implications of synchronization phe-
nomena in a pair of structurally flexible coupled neu-
rons. Further, according to the Helmholtz theorem [34],
Wang et al. [35] discussed the computing problems of
Hamilton energy in a class of differential dynamic sys-
tem and explained the physical interpretation of Hamil-
ton energy function from the point of force fields work.
In the method, they generalized the Helmholtz theo-
rem in electromagnetic field theory to dimensionless
dynamic systems. These studies are beneficial for us to
extract the energy adopting the characteristic of expres-
sion, quantization, and awareness, and can help in the
chaotic control greatly. In paper, Song et al. [36] calcu-
lated the Hamilton energy function for a Hindmarsh—
Rose neuron and estimated the energy change induced
by transition of electric modes. It was concluded that
chaotic state consumes vast amounts of energy, whereas
spiking state or bursting state and the energy func-
tion depended on external forcing. In paper, Ma et al.
[37] discussed three kinds of attractors, that is, infi-
nite attractors, attractors without equilibria and hidden
attractors. Moreover, their Hamilton energy functions
are designed and energy modulation on attractors is
studied. They summarized that the Hamilton energy is
dependent on all variables and initial values; mean-
while, the nonlinear dynamic systems need enough
energy to keep various dynamic behaviors. In paper,
Li and Yao [38] designed a new chaotic system with
multi-scrolls attractors based on Chua circuit [39]; the
mechanism is that a similar sine function induces the
production of multi-scrolls attractors. In the meantime,
the Hamilton energy of the new systems is discussed to
analyze power consumption and found that energy is
decreased when the number of attractor increases. The
more complex dynamic behavior certainly consumes
more energy, and then the value of Hamilton energy
becomes low than before. In addition, we can design

controllers by detecting the energy transport and aim
to make the controllers reach the expected control goal
associating with a minimum energy consumption.

Encouraged by those statements above, in this paper,
we will discuss a generalized Lorenz system with a
hidden attractor which is located in the given initial
values. The period motion, chaos state, and transient
chaos phenomenon can be found under different ini-
tial values, so the generalized Lorenz system depends
on system parameters and initial values. The Hamilton
energy function is given by a series of computations and
analyzed the energy transform among different motion
states. At last, a new control method is designed based
on the Hamilton energy function and is used to control
the system to different motion by a feedback gain.

We organized the paper as follows. In Sect. 2, the
generalized Lorenz system with hidden attractors is
discussed. In Sect. 3, the Hamilton energy of gener-
alized Lorenz system with hidden attractors is defined.
In Sect. 4, the new control method based on Hamilton
energy is designed. Conclusion is given in Sect. 5.

2 The generalized Lorenz system with hidden
attractors

Definition 1 [19,40]. An attractor is called a self-
excited attractor if its basin of attraction intersects with
any open neighborhood of an unstable fixed point. Oth-
erwise, it is called a hidden attractor.

Self-excited periodic and chaotic oscillations can-
not cover all possible vibration types, for example,
the types of hidden attractors that are moving away
from unstable equilibrium, or come from the systems
without equilibrium, or with no unstable equilibrium.
Next, we will discuss the hidden attractors generated
by the generalized Lorenz system.

2.1 The self-excited attractor from generalized
Lorenz system

The generalized Lorenz system can be transformed
from the Rabinovich system [41], and its dynamic
equation is described as

X =—a(x —y)—byz
y=cx—y—xz ) ey
z=—dz+xy
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where a, b, c, d are constants, which can hold the sys-
tem (1) different states.

2.1.1 Symmetries

System (1) is symmetric under the transformation
of (x, y, 20 = (—x, —y, z2), that is, system
(1) is symmetric about z axis, and this characteristic
remains the same to all the system parameters.

2.1.2 Dissipative

For this system, one has
ax dy 0z
=g 2 X
ax dy 0z
Therefore, to ensure system (1) being dissipative, it is
required that

—a—1—-d <0.

=—a—1-d.

In this paper, in order to keep chaos characteristic,
all the system parameters being selected will satisfy
this condition.

2.1.3 Lyapunov dimension

The Lyapunov dimension can be defined as [42]

Y

|1j41

do=j+

3

where [y > --- > [, j is the largest integer to meet the
conditions of =1 1; > 0.and Y"'=/*" 1; < 0. For the
system (1), we have the following rules:

(1) dp = 0, leading to stable equilibrium.

(2) d, = 1, leading to limit cycle.

(3) dp = 2, leading to quasiperiodic attractor

(4) dyis a fraction, leading to chaos.

In the following, the above rules will be a computa-
tional tool to analyze the system (1).

2.1.4 The classical Lorenz system

Whena = 10,5 = 0, c = 28, and d = 8/3, system
(1) becomes the classical Lorenz system and has three
equilibria

So = (0, 0, 0)

S = (—8.4853, —8.4853, 27)
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S> = (8.4853, 8.4853, 27).

For the zero equilibrium, we linearize the system (1)
at the origin and get the Jacobian matrix:

—a a 0
J(S,) = c -1 0
0 0 —d

and the characteristic equation can be given by
det(Md — J(S,)) = 2% + (@ + ¢+ DA?

+(@—ac—ad+d)r—ad(c—1)=0;
therefore, the three eigenvalues are calculated as
A = —2.6667, 2 = 11.8277, 19 = —22.8277.

Obviously, Sp is unstable equilibrium (red dots in
Fig. 1). Similarly, S; and S, are also unstable equi-
libria (red dots in Fig. 1) for the set of parameters,
precisely because that

A = —13.8546, 157
= 0.0940 + 10.1945i, 13
= 0.0940 — 10.1945i.

By numerical simulation, system (1) exhibits the
classical Lorenz attractor like a butterfly [43], with
respect to three equilibria. The equilibria S; and $;
attract the unstable separatrices of the saddle zero equi-
librium, as shown in Fig. 1, where the blue curve and
green curve are all self-excited attractors.

2.1.5 Coexistence of point attractor and strange
attractor

With given parameters, the diverse attractors formed
by triggering the nonlinear systems into different tra-
50
40
30

20

z(t)

ot -l 50
= 10 30
}8 =10 0 10 20 —50—30 =10
x(t) y(t)

Fig. 1 Attractors excited by the equilibria Sp, Sy, S> (the ini-
tial values are x(0) = 0.1,y(0) = 0.2,z(0) = 0.3 (the
blue curve)and x(0) = —0.1, y(0) = —0.1, z(0) = —0.1 (the
green curve)). (Color figure online)
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jectories under different initial values are called coex-
isting attractors. The coexistence attractors present a
rich diversity of stable states of nonlinear systems and
have become a key research subjects recently. As you
know, symmetric systems generally have coexisting
attractors[44—46] because the attractors must appear in
pairs or symmetrically. So the coexistence of different
attractors can be found succeeded.

Now, the different parameters are set as a = 10,
b =0,c =245, and d = 8/3; system (1) exhibits
chaotic attractors as shown in Fig. 2a, accompanied by
the three Lyapunov exponents:

LE; =0.7988, LE; =0, LE3 = —14.4641

and according to Kaplan—Yorke conjecture, the Lya-
punov dimension is

ALl + AL

[AL3]

0.7988 + 0
oy 228840 5 550
|—14.4641|

—24

which dominates the chaotic state of system (1) too.
The three equilibria of system (1) are calculated as
the following:

So = (0, 0, 0)
S1 = (=7.9162, =7.9162, 23.5)
Sy = (7.9162, 7.9162, 23.5).

In the same way, the three sets of eigenvalues corre-
sponding to the equilibria Sy, S1, S2 can be calculated,
respectively.

A = —21.7865, A = 10.7865, .3 = —2.6667
At = —13.6523, )7 = —0.0072+9.5814i,
A% = —0.0072 — 9.5814i

So for the sets of parameters a = 10, b = 0, ¢ = 24.5,
and d = 8/3, Sy is unstable equilibrium, but S and
S, are stable equilibria (red dots in Fig. 2a). Figure 2a
shows the attractors (the green curve and blue curve)
excited by So (starting from the neighborhood of Sp)
which coexists with the stable equilibria.

a 50

2(t)

self-excited attactor  self-excited attactor

b‘lz_
10|
8«
— 6‘
N,
2~
0‘
-2 10
-10 5 5 0
10 -10 x(t)
y(t)
Cc 1

Lyapunov Exponents

Fig. 2 Coexisting attractors and the Lyapunov exponents of
system (1). a Coexistence of self-attractors and the stable
equilibria, the initial values are selected as: the blue curve:
x(0) = 0.01,y(0) = 0,z(0) = 0; the green curve: x(0) =
—0.01, y(0) = 0,z(0) = 0. b Coexistence of self-attractors
and hidden attractors, the initial values are selected as: the
green curve: x(0) = 0.1, y(0) = 0.001, z(0) = 0; the purple
curve: x(0) = —0.1, y(0) = 0.001, z(0) = 0; the blue curve:
x(0) = 0.3, y(0) = 0.1, z(0) = 0.6. ¢ The Lyapunov exponents
of system (1) when ¢ € [0, 10]. (Color figure online)

2.2 The hidden attractor from the generalized Lorenz
system

Whena = —be, b = —0.5,¢c = 6.8, and d = 1, the
three Lyapunov exponents are:
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LE; =0.2894, LE; =0, LE3; = —5.6889

and the Lyapunov dimension is di, = 2.0508, so the
systems (1) display chaotic state.

The three equilibria of system (1) can be calculated
by

So = (0, 0, 0) (2)
a/g aJ/g a
Sl= - [ s T \/_ s & (3)
a+bg a+bg a+bg
_(avs avs _ag @)
2 a+bg a+bg at+bg)’

where

g =a/2b*(b(c —2) —a ++/(a — bc)? + 4ab).

Further, one can get

So = (0, 0, 0)
S1 = (—3.4756, —3.4756, 6.2801)
S2 = (3.4756, 3.4756, 6.2801).

We use the same method to calculate corresponding
three eigenvalues of each equilibrium point:

A = —1,19 = —7.1558, 19 = 2.7558
Al = —6.4481, 1) = 0.5240 + 4.1138i,
Ay = 0.5240 — 4.1138i

AT =4.3988, 13 = —4.8994 4 2.3193i,
A3 = —4.8994 4 2.3193i.

For the three equilibria, there are eigenvalues with pos-
itive value or positive real parts; obviously, Sp, S, and
S, are unstable equilibria (red dots in Fig. 2b).

The unstable equilibria S; and S, attract the unsta-
ble separatrices of the equilibrium Sy, and the different
attractors are simulated as shown in Fig. 2b. At two
different sets of initial values, S| and S> excite the two
attractors (the green curve and purple curve), whose tra-
jectories all meet the equilibrium Sp. Meanwhile, under
the initial value of x (0) = 0.3, y(0) = 0.1, z(0) = 0.6,
the system (1) displays a hidden attractor (the blue
curve) that motions around the unstable equilibria S
and S, and exclude certainly by the saddle zero equi-
librium Sp. Obviously, the chaotic attractor’s basin of
attraction does not intersect with small neighborhoods
of the unstable equilibria Sg, S, and $> and is located
far away from such points. At the same time, there is
a complex change with the different parameter c, due
to the identical equation @ = —bc, so parameter ¢ has
a large impact on the dynamic evolvement of system
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(1); the Lyapunov exponents calculated by choosing
different ¢ are shown in Fig. 2c.

Now, the impacts of parameters ¢ on the hidden
attractor will be discussed. Lyapunov exponents reflect
the average emissivity between adjoining dots, so it can
be employed to characterize the sensitivity of chaotic
motion to initial condition. At the same time, Lyapunov
exponents contain rich dynamic information, which
results in one can master the systems dynamic char-
acteristics of convergence or divergence when the Lya-
punov exponent spectrum of a system is known. It is
well known that the positive maximum Lyapunov expo-
nent shows certain chaos features, while the other ones
show stability or period features. According to Fig. 2c,
we can easily find that the system (1) can transition
among the three different states (stability, period, or
chaos). For example, the system locates in the stability
range in the region ¢ € [1, 6.6558) (three Lyapunov
exponents take negative values) and then transit to the
chaotic range in the region ¢ € (6.6558, 10] (one Lya-
punov exponent takes positive values). At point ¢ =
6.6558, we will discuss the state below.

In more detail, the system (1) can display the fol-
lowing dynamical behavior varying ¢ € [0, 10].

(a) We fix the parameter as ¢ = 3; the three Lya-
punov exponents of system (1) are all less than 0
(Fig. 2¢); here, the following Lyapunov exponents can
be calculated as:

LE; = —0.3539, LE, = —0.3543, LE3 = —2.7918.

So system (1) is in a stable state, as shown in Fig. 2b.
At this point, we have the following equilibria:

So = (0, 0, 0)
Si = (—=2.1094, —2.1094, 2.4495)
Sy = (2.1094, 2.1094, 2.4495)

which can be easily verified to be unstable.

Due to the three unstable equilibria, there are self-
excited attractors that occur in a state of stability. It
can be seen that steady attractors (the blue curve) are
“attracted “by one equilibrium. Figure 3 shows that
the trajectories starting from initial values asymptoti-
cally approach the equilibria S and S, respectively.
At the same time, time responses are given and x con-
verge to a fixed point(2.1094 or -2.1094, respectively).
It is interesting that there is no hidden attractor using
the above given parameters.
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Fig. 3 Phase orbits and 4
time responses of system (1)
when ¢ = 3 (initial values of a 4,
steady attractors are selected S 1 3
as:ax(0) =0.1,y(0) = 3
0.001,z(0) =0,b
x(0) = —0.5, y(0) = N S, .
—0.1,z(0) = —0.1) L;‘L 2+ £ 2
14 So
1
0
-5_ 9
3 -1 ] ] 0 5
xt) 5 -y 0 20 40 60 80 100
t
0
b 4- s,
-1
S 1
24
— So Loy
® I % 2
0+
-3
=2
BRI e S
x(®) 575y 0 20 40 t 60 80 100

(b) When the parameter is chosen as ¢ = 6.6558,
the three Lyapunov exponents can be calculated as:

LE; =0, LE; = —0.0225, LE3 = —5.3082,

which suggests that the system (1) shows a routine
limit cycle for the fixed parameters a —bc, b =
—0.5, ¢ = 6.6558, d = 1. At the same time, the
two nonzero equilibria S; > = (£3.4338, £1.7868,
6.1355) are stable focus nodes corresponding to the
following eigenvalues

—5.2786, A3% = —0.0246 + 3.776i,
—0.0246 — 3.7765i.

1,2
)‘1

1,2
)“3

The limit cycle with period-1 generated from the fixed
initial values can be approximatively calculated as
shown in Fig. 4. Fortunately, in that time frame of the
3rd time unit to 30th time unit, it can be seen clearly that
system (1) has period-1 hidden attractor around the two
stable equilibria S 2, respectively (the initial value of

x(0) = =3.8, y(0) = —2.1, z(0) = —3.1 is employed
for the blue curve and x(0) = 3.8, y(0) = 2.1,
z(0) = —3.1 is employed for the green curve).

(c) When taking the point ¢ 6.8, system (1)
displays the interesting phenomenon that the hidden
attractor coexists with the self-excited attractor as
shown in Fig. 2b.

In addition, when b € [—2, 0], the Lyapunov expo-
nents calculated by choosing different b are shown in
Fig. 5. For the boxed part, we can see the enlarged part
in Fig. 5b more clearly.

(a) We fix the parameter as b = —0.2; the three
Lyapunov exponents of system (1) are all less than 0 as
shown in Fig. 5, so system (1) is in steady state. At this
point, the three equilibria are calculated as follows:

So = (0, 0, 0)
S1 = (—3.4756, —1.8069, 6.2801)
Sy = (3.4756, 1.8069, 6.2801).
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Fig. 4 Phase orbits and
time responses of system (1)
when ¢ = 6.6558

-]

z(t)

=2t

4t

—8f

-10f

Lyapunov Exponents
|
o

=12r

-14f

-16 n . .
-2 -1.5 -1 -0.5 0

Fig. 5 Lyapunov exponents of system (1) when b € [—2, 0]

By numerical simulation, the system (1) displays
steady attractors as shown in Fig. 6. The trajectories (the
green curve and the blue curve) starting from different
initial values asymptotically tend to the equilibria S

Fig. 6 Phase orbits and S
time responses of system (1) 10 - L
when b = —0.2

(initial values of steady

attractors are selected as: 81

the green curve: x(0) =

16, y(0) = 17, z(0) = 18; 67

the blue curve: 3-,:’ :
x(0) = —16, y(0) = 4 S
—17, z(0) = 18). (Color

figure online) 2

-10"

S, 20

WAV

1
y(t) 0O 5 10 15 20 25 30

t

and S, respectively. At the same time, time responses
are given and x converges to a fixed point (-3.4756
or 3.4756, respectively). Similarly, by using the above
given parameters, there is no hidden attractors when
system (1) is in stable state.

(b) When the parameter is chosen as b = —0.4261,
system (1) has a zero Lyapunov exponent (the purple
curve) as shown in Fig. 5, and the three Lyapunov
exponents can be calculated as: LE; = 0, LE, =
—0.0225, LE3 = —5.3082; this implies that there
exists limit cycle attractor (the purple curve and the
green curve) as shown in Fig. 7; the corresponding ini-
tial values are x(0) = —0.01, y(0) = —0.02, z(0) =
0.03 and x(0) = 0.01, y(0) = 0.02,z(0) = 0.03)
in system (1), and we will analyze the limit cycle
attractor detailedly in Fig. 8. Fortunately, a hidden
chaotic attractor (the blue curve, the corresponding
initial value, and the three Lyapunov exponents are
x(0) = 1.63, y(0) = 2.25,z(0) = 3.16 and LE; =

10

x(t)
o
=

-2 — : : :
2 610 -53 yp 0 20 40 60 80 100
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self-excited attractor self-excited attractor

x(t) 10 -10

Fig.7 Attractors of the system (1) under different initial values

0.2508, LE, = 0, LE3 = —11.9511) can be detected
coexisting with the self-excited limit cycle attractors as
shown in Fig. 7.

Further analyzed by numerical simulation, the self-
excited attractors plotted in Fig. 7 have finally evolved to
the periodic states versus time t; the results of find-
ing periodic attractor are described in Fig. 8. Never-

theless, the limit cycle with period-1 is approached by
employing the gradually decreased amplitude. One can
observe that the state variable x evolves from the irreg-
ular period to stable periodic state gradually; the cor-
responding phase diagrams are described in Fig. 8a—f
(the purple curve and the green curve). In Fig. 8e, we
can see that the purple trajectory from the initial of
x(0) = =0.01, y(0) = —0.02, z(0) = 0.03 stabilize
to a limit cycle, and the final period-1 trajectory in the
time unit t+ € [160, 200] is shown in Fig. 8f. Addi-
tionally, there is the same case for the other coexisting
self-excited attractors (the green curve).

Now, we continue to analyze the chaos characteris-
tics of system (1) when b = —0.4261. The attractor and
time response are plotted in Fig. 9 when the initial val-
ues are given as x(0) = 10, y(0) = 10, z(0) = 10;
obviously, the transient chaos phenomenon appears as
the evolution of system (1). According to Fig. 9, system
(1) displays chaotic state when time unit ¢ € [0, 70]
and corresponds to the twin-scroll attractor TS (the
blue curve in Fig. 9a), whereas, as time goes on, the

Fig. 8 Time responses of 10 10
x(t) in system (1) (c and d a b
are the part d
enlarged picture) 5 — 5 )
I_
c c A\ g
= 0 ﬂ‘. "/ \ f,\\l }ﬂ, ll(\l = 0
| | 'I | | | Il m
5 l1! [ l’ "| f| ll. ll’ "n ‘|' ”;‘WN!W“W’“"" II:
= | L -
\v' ARR!
-10 -10
0 50 100 150 200 0 50 100 150 200
x(t) x(t)
3 2
e f
25 1.9
e 2 218
1.5 1.7
1 1.6
25 3 35 4 4.5 3 35 4
x(t) x(t)
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Fig. 9 Transient chaos
phenomenon and time
response of system (1) when
b = —0.4261 (c is the part
enlarged picture)

z(t)

Fig. 10 Two kinds of
attractors and

time responses of system (1)
with different initial values
There can also observe that
system (1) has a transient
chaos phenomenon when
the initial values are given
as x(0) =23, y(0) =

24, z(0) = 25, shown in
Fig. 11, just like Fig. 9

time response of system (1) appears periodic state PS
and corresponds to the contraction (the green curve
in Fig. 9a) revolving around the equilibrium Sj. Fur-
thermore, Fig. 9b presents the time response of x,
which can describe the evolution of transient chaos
more clearly and exactly. The above-mentioned pro-
cess can be described as the system (1) changes from
chaotic state into periodic state with time (the mecha-
nism is the same to the above analysis in Fig. 8), that
is, transient chaos phenomenon. The generating mech-
anism is that the twin-scroll chaotic attractor touches
on an unstable periodic orbit near a critical value and
leads to the happening of border crisis.

(c) When the parameter is chosen as b = —0.46,
a positive Lyapunov exponent (the purple curve) can
be seen in Fig. 5, so there exists a chaotic attractor in
system (1). Here, the three equilibria are calculated as
follows:

So = (0, 0, 0)

@ Springer
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S1 = (—3.4756, —1.8069, 6.2801)

S, = (3.4756, 1.8069, 6.2801).

Numerical simulations are used to detect the chaotic
behaviors when the different initial values are given. In
Fig. 10, we can find that the hidden attractor and the
periodic attractor are coexisted, just like Fig. 2b.

3 The Hamilton energy of generalized Lorenz
system with hidden attractors

In this section, we will seek a variable function in
the phase space as the Hamilton energy function. So in
order to do that, the dynamic system (1) can be rewrit-
ten as

X =f), &)
where x € R", f(x)is a smooth function.

By the Helmholtz theorem, the system (2) can be
also regarded as the vector field to discuss the energy
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problems and be decomposed into the conservative
field f.(x) and dissipative field f;(x) inevitably[26,
27], that is,

J @) = fe(x) + falx). (6)

The change in energy comes from work done by electric
field, and one can employ H (x, y, z) as the Hamilton
energy function, which meets the following equations:

VH" f.()=0 (7)
0= _vnt 0. ©)
dr
For the system (1), one has
ay — byz —ax
fe)=|cx—xz |, fa)=| -y |. ©)
Xy —dz

According to Eq. 6, the Hamilton energy function
H (x, y, z) can be written as the following:

oH oH oH
(ay —byz)— + (cx —xz7)— +xy— = 0. (10)
ox ay 0z
Then, a general solution of Eq. (10) is obtained as
1
H= =%+ (b-2)2] (1
2 c c

and its differential coefficient versus time can be
described as

Heltioe il @ 0y
= —.2X-X - — - .
2 20 Y

(P ) g
2 2 ) F

. a . a .
c c

= x[—a(x —y) — byz]

a
——-y(ex —y —xa)
c

Fig. 11 Transient chaos
phenomenon and time 15+
response of system (1) when
b= —-0.46

z(t)

a
+ b - ;) ~z(—=dz + xy)
= —ax’ + axy — bxyz —axy
a a
+ —y? + —xyz — dbz®
c c
ad a
+bxyz + —z2 - —Xyz
c ¢
a ad
= —ax’+ —y* + (dbz2 + —) 22
c ¢
a
=x- (a0 +(=%y) - (=)
a
+ (b— —) 2+ (=d2)
c
=VHT f,.

Now, we will discuss the energy shift of system (1)
by the Hamilton energy defined in Eq. (11).

(a) Parameter selection: a = 10, b = 0, ¢ = 24.5,
d =8/3.

For the system (1), we choose the parameters as
a =10,b = 0, ¢c = 245, and d = 8/3; the
simulations are shown in Figs. 14 and 15. It can be
found in Fig. 12 that the curve starts from initial value
and displays a periodic motion (the blue curve) when
time unit + € [0, 39], which can also be seen in
Fig. 13 about the time response of state variable x.
The curve continues to extend and crossovers to the
negative value region and then goes back to the peri-
odic orbitals after a period of chaotic motion (shown
in Fig. 12a). From this beginning, the curve repeti-
tive oscillates between the motions of periodicity and
chaos (shown in Fig. 12b). In Fig. 11, the correspon-
dence of time response and Hamilton energy is given.
Obviously, some peaks emerge and smooth the shift
to slower growth in the periodic orbitals. Once the

30

20

200 400
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301
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t[0,39 ——>1€[39,63]
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= 1
0 . ) ) ) A
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Fig. 12 Evolution of chaotic attractors in system (1)

x(t)

20

x(t)
|
S o

= MM/\/\/\/\MM il
= WU U 1

t

Fig. 13 Time response of state variable x(¢) and Hamilton
energy H

chaos occurs (the green curve), some sharp peaks for
the energy and time response are located concurrently
dramatically. But, more remarkable, the larger val-
ues of the amplitude correspond to the smaller energy
value just because that the dramatic chaos oscillation
consumes large amounts of energy; for example, the
sharp peaks p* and g share the smaller energy value,
whereas the mean peak m™ shares the larger energy
value. The three dots (p™, g+, and m™) in Fig. 13a cor-
respond to the three dots (p—, ¢, and m ™) in Fig. 13b,
respectively.

(b) Parameter selection: a = 1.5, b = —0.5, ¢ = 3,
d=1.

We choose the parameters and initial values
employed by Fig. 3, and the time response of state vari-
able x and Hamilton energy H are calculated in Fig. 14.
The attractor and time response plotted in Figs. 3 and 14
conform that system (1) is stable ultimately. If the sta-
bilization line fixed on the constant 2.1094 is regarded
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Fig. 14 Time response of state variable x(¢) and Hamilton
energy H
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Fig. 15 Time response of state variable x(#) and Hamilton
energy H

as the baseline, state variables go through a sharp peaks
at the 5th time unit, and then the energy function under-
goes quick shift by reducing its value at the same time.
After a period of state evolution, system (1) begins to
stabilize gradually at the 15th time unit; correspond-
ingly, the energy function stabilized around the fixed
value. The phenomenon can be explained in the mech-
anism that system (1) needs a certain amount of energy
to maintain steady state.

(c) Parameter selection: a = 2.98,b = —0.438, ¢ =
6.8, d = 1. We employ x(0) = 10, y(0) = 10, z(0) =
10 as the initial values and analyze the change of Hamil-
ton energy of the system (1). The time response of
state variable x and Hamilton energy H are plotted
in Fig. 15. Intuitively, one can find the transient chaos
process that the trajectory starting from a periodic-like
motion (the green curve) moves around one equilib-
rium until the 35th time unit, then undergoes the chaos
oscillation (the red curve) around the two equilibria
between the time unit 35 and 62, and finally reaches sta-
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variables when the
Hamilton energy is
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bilization (the blue curve) from periodic state at the
62nd time unit. The evolution process of transient chaos
phenomenon is observed in Fig. 16e, in which the col-
ors of curve are consistent with the ones in Fig. 15a.
As the enlarged picture, Fig. 16d presents the energy
change when system (1) takes different motions. At
the 35th time unit, the curve breaks the periodic-like
state and then enters chaotic state accompanied by the
more consume of energy at the critical moment of state
transform, as shown in the dot p' (corresponding to
the dot 01). At the 58th time unit, the motion trajec-
tory has relative minimum amplitude, so the relative
less energy is consumed, as shown in the dot p? (cor-
responding to the doto?). At the critical moment, the
rapid jump occurs in energy by adding it value as seen
in the dots p> and p*. At last, the energy has a stability
value when system (1) achieved steady state gradu-
ally.

-1t

=3F

—4}

Lyapunov Exponents

-6

03 0.4 0.5 06 0.68
k

0.1 0.2

Fig. 18 Lyapunov exponents of system (1) when k € [0, 0.68]

From these observations and the law of the conser-
vation of energy, the energy oscillation is accompa-
nied by the large amplitude when system (1) has more
complex oscillation. For example, the chaos motion
consumes more energy than periodic motion with the
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0.65 0.68

5 n s s n "
0.35 0.4 0.45 0.5 0.55 0.6
k

Fig. 19 Bifurcation diagrams of system (1) when k € [0.35,
0.68]

smaller amplitude value, and the smoother amplitude
is embodied in energy function. It is interesting to find
that the transient chaos phenomenon has more changes
in the oscillation of energy function.

4 The new control method based on Hamilton
energy

In this section, we present a new control method, that
is, Hamilton energy control. According to Eq. 11,
the energy function is dependent on all the vari-
ables and parameters of the system (1), so the evo-
lution of different states for the system has great influ-
ence on energy function, as shown in Figs. 12, 13, 14,
15, and 16. On the contrary, the change of energy func-
tion should also affect the dynamical behavior of the
chaotic system (1), as shown in Fig. 17.

In order to verify the conclusion, we will design a
controller and introduce into system (1); the dynamic
function is set as follows:

X =—a(x —y)—byz
y=cx—y—xz

z——dz+xy kH

H = —ax®+a/cy?* + (—bd + ad /c)Z*

12)

Fig. 20 Evolutions of the 0.8 T .
feedback gain &, the time
response of z(¢), the 0.6

Hamilton energy H
=~ 04
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Fig. 21 Attractors of a 15 b 15 c15
system (1) ak =0.1; b
k=0.39;¢ck=0.66 N
10 10 of N
N N N [ ‘ \
5 5 st L))
\ ,// \/
0 0
-10 10 =10 0 10 -10 0 10

y(t)

where £ is the feedback gain, H is the Hamilton energy
of system (1), and we call the control method Hamilton
energy control (or HE control for short). In the follow-
ing, the state changes of system (1) will be investigated
by using the feedback control. Firstly, the Lyapunov
exponents are calculated when the value of feedback
gain k ranges from 0 to 0.68, and the bifurcation dia-
grams with the value from 0.35 to 0.68, as exhibited in
Figs. 18 and 19. It can be observed intuitively that the
feedback gain k holds the system (1): the chaotic states
at the interval k € [0, 0.38] and the periodic motion at
the interval £ € [0.38, 0.68]. So on the whole, system
(1) holds the motion process of evolution from chaotic
state to periodic state, that is, the classic inverse period-
doubling bifurcation.

It is found that the Hamilton energy in the system
(1) changes greatly with increasing the feedback gain
k. If we fix the parametersk = 0.1, k = 0.39, and
k = 0.66, the three different motion states of chaos
(the blue curve), multi-periodic motion (the red curve),
and period-1 motion (the purple curve) are shown in
Figs. 20b and 21. The corresponding Hamilton ener-
gies are presented using different colors in Fig. 20c.
By adjusting the feedback gain &, as shown in Fig. 20a,
the system (1) can be controlled in different states effec-
tive; moreover, the energy transform is an essential part
of dynamics system oscillation.

5 Conclusions

In this paper, the generating mechanism of hidden
attractors in a generalized Lorenz system has been ana-
lyzed by numerical simulation. It is found that the hid-
den attractors are depending on the system parameters
and initial values. According to the discussion about the
motion states, the generalized Lorenz system has coex-

y(t) y(t)

istence phenomena, including chaos, period, and tran-
sient chaos phenomenon. Then, the Hamilton energy
function is calculated based on the Kirchhoff’s law and
is said to relate to system parameters and initial val-
ues. Energy function is affected by parameters and
initial values of the system (1) and can suppress the
chaotic behavior in turn. Atlast, anew Hamilton energy
control method is presented by the feedback gain. The
advantage of the control method is that energy trans-
form can be detected when controlling the system to
the expected state.
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