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Abstract Dynamics of magnetized fluids is much
more complex than expected from the standard magne-
tohydrodynamics. Besides chaotic behavior that often
appears in nonlinear dynamical systems, hyperchaotic
motions are also possible on new strange attractors,
with bifurcations which could result in turbulent irreg-
ular behavior. Surprisingly, all this complexity can be
studied by analyzing a simple set of four ordinary dif-
ferential equations describing hydromagnetic convec-
tion, which is the generalization of the famous Lorenz
system for the case of turbulent convection in a fluid
layer with the embedded magnetic field. This provides
a novel contribution to chaos theory that could be of
interest to the dynamical systems community.
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1 Introduction

Dynamics of irregular flows in a viscous fluid belongs
to the classical still unsolved open questions in math-
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ematical physics, which notwithstanding of many
efforts, including many numerical simulations, is as
yet not sufficiently clear. Therefore, simplified mod-
els for some special cases, as for example for a fluid
heated from below in a gravitational field with a
vertical temperature gradient, are still very useful to
grasp essential features of nonlinear dynamics. In this
case of the Rayleigh-Bénard convection, the break
through is attributed to Lorenz, who half a century ago,
starting from complex basic hydrodynamic equations,
obtained three simple but nonlinear ordinary differen-
tial equations [14]. As is well known, this famous paper
has revealed complexity of nonperiodic deterministic
flows, including strange attractors, chaotic behavior,
bifurcations, and intermittency (see e.g., Ref. [27] for
areview).

However, the standard Lorenz system does not take
into account the influence of the anisotropy induced by
the magnetic fields that can be embedded in some vis-
cous flows appearing in nature. Several years ago, we
have finally succeeded to generalize the Lorenz model
for a horizontally magnetized fluid, with a new vari-
able responsible for the induced magnetic field [16].
Admittedly, there is a huge difference between the hor-
izontal and vertical directions of the magnetic fields
and it seems that the later case is much more compli-
cated to cope with and is still waiting for a reasonable
approximated methods of solution. But in our next pub-
lished letter we have shown that even in the case of
horizontally magnetized layer the behavior of the solu-
tions of our model could be quite complex and interest-
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ing [17]. Admittedly, to be applied in different regimes
this model still requires much deeper analysis of var-
ious cases for broad range of parameters appearing in
nature. Therefore, we hope that this new model could
shed new light on chaos theory, nonlinear dynamics,
and hopefully on hydromagnetic convection. In par-
ticular, the magnetohydrodynamical numerical codes
used for real systems must reproduce the results of the
generalized Lorenz model under the respective approx-
imations.

Surprisingly, even such a deterministic simply mag-
netized system can exhibit rather complex behav-
ior of solutions. It appears that by changing control
parameters the system can easily go from equilibrium
(described by a fixed point) or from periodic (limit
cycles) to nonperiodic (chaotic) behavior; the influ-
ence of the applied magnetic field is not trivial. Nat-
urally, besides the transitions induced by the changes
in the parameters, all these types of behavior can be
intertwined due to intermittent character of dynamics.
Namely, within the theory of dynamical systems tran-
sitions from fixed points to periodic or nonperiodic
flows often occur in a given system through bifurca-
tions, intermittency, resulting in a turbulent irregular
behavior of the nonlinear system. In fact, we have iden-
tified type I and III intermittency [20] in the general-
ized Lorenz model of hydromagnetic convection, as
also discussed in the previous conference paper [15].
It would be interesting to look for the remaining basic
type II intermittency and the respective Hopf bifurca-
tion in this model.

Further, we know that two types of such nonperiodic
flows are possible, namely chaotic and hyperchaotic
motions. As first discovered by Lorenz in 1963, deter-
ministic chaos exhibits sensitivity to initial conditions
leading to unpredictability of the long-term behavior
of the system, popularized as the so-called butterfly
effect [14]. Hyperchaos is another type of a more com-
plex nonperiodic flow, which has been for the first time
identified in the generalized Lorenz model previously
proposed by us in 2010 in Ref. [16]. More specifically,
hyperchaos is defined as a complex nonperiodic behav-
ior, where at least two Lyapunov exponents are posi-
tive in contrast to standard chaotic dynamics that is
characterized by one positive Lyapunov exponent [22].
Admittedly, hyperchaotic behavior is only possible in
at least four-dimensional systems, as discussed, e.g., in
Ref. [12]. We have already identified such a behavior
in our new model for hydromagnetic convection [17].
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Please note that the aim of the previous work was
simply the generalization of the Lorenz model and we
have used the Prandtl number o equal to 10 (which is
indeed standard for the classical Lorenz case), but is
too high to be realistic. Therefore, in the present paper,
we investigate the value of o = 1, which should be more
appropriate for plasmas. Moreover, we discuss in detail
mathematical and physical aspects of the derivation of
the generalized Lorenz model and address thoroughly
the physical character of underlying approximations.
The results of this paper show how all these complex
motions can be studied by analyzing our simple four-
dimensional model. In particular, we discuss in detail
irregular behavior of the system including new strange
attractors, also in a hyperchaotic regime, and new types
of bifurcations leading to turbulent irregular behavior
of the nonlinear dynamical system.

2 The convection equations
It is known that viscous magnetized fluids should

evolve according to three basic partial differential equa-
tions [11]:

dv 1 B? (B-V)B )
— = ——V<p+—)+—+vV v+,
dr P 2p0 Kop

()
dB )
a=(B-V)v+nv B, 2)
dr
_— = KVZT, (3)
dr

where v, 1, and « denote, respectively, kinematic vis-
cosity, magnetic diffusive viscosity (resistivity), and
thermal conductivity of a given fluid. Besides the
Navier—Stokes basic law, the second and third equation
describe the magnetic advection-diffusion and the heat
conduction, respectively. As usual for standard convec-
tion models, viscous diffusion is included in the term
last but one in Eq. (1), magnetic resistivity in the last
term in Eq. (2), and in Eq. (3) only thermal conductiv-
ity is retained, while the terms related to Ohmic and
viscous heating are neglected, see, e.g., Ref. [3,26].
But even these somewhat simplified magnetohydrody-
namical (MHD) equations are difficult to solve directly
because both time and space changes, (;]_z = % +v-V,
of the velocity v of the flow, the temperature T together
with mass density p and pressure p, and the magnetic

field B are considered. It is usually convenient to define
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Fig.1 Schematic of
geometry for
hydromagnetic convection

To

To+ 6T,

Alfvénic velocity va = B/(1o 0)'/% with the constant
magnetic permeability of free space .

In Eq. (1) f denotes the volume density of additional
external forces. In particular, for the Rayleigh-Bénard
problem [21] under the vertical gravitational field with
a constant acceleration g this results in the buoyancy
term f = pg. The schematics of this standard scenario
of a horizontal (x axis) viscous fluid layer of height
h and aspect ratio a is shown in Fig. 1 (no variations
in y direction), cf., e.g., Appendices to Refs. [3,26].
The fluid is heated from below with an applied vertical
(z axis) temperature gradient, §7. As usual, taking a
constant coefficient 8, we take into account the volume
expansion for f term, p = po[l — B(T — Tp)], but
except that the fluid is treated as incompressible, p =
po (the Oberbeck—Boussinesq approximation) [4,19].

But now in comparison with classical Rayleigh—
Bénard problem in our derivation, we take into con-
sideration the effect of the magnetic field embedded
in the fluid. Naturally, in the case of an incompressible
fluid we can use a stream (potential) function W defined
by v =V x W, and similarly a vector potential A for
the magnetic field, B = V x A, satisfying naturally
besides Eq. (2) the conditions V-v=0and V-B = 0.

One can expect that in the case of a thin hori-
zontal layer, the influence of an external horizontal
magnetic field should be important. If we apply an
initial magnetic field By (along the x direction) by
adding the Alfvén velocity vag = Bo/(11000)'/%, while
neglecting a possible vertical field, we can write the
perturbed respective potentials in the forms: ¥ =
{0, ¥(x, z,1), 0} and A/(rop0)'/* = {0, ar(x, z,1) —
vA0Z, 0}. Asusual 6(x, z, t) describes a deviation from
the linear temperature profile, 7(x,z,t) = Ty +
8To(1 — %) +6(x, 2. 1) in Eq. (3).

In the case of two-dimensional flow, following
the derivation by Saltzman [24], by taking rotation

T X
h/a —
Bo

\J

of Eq. (1), both the thermal and isotropic part of
the magnetic pressure are obviously eliminated, but
the anisotropic tension of the magnetic field lines
(B - V)B/(uopp) should still be important. Next, it
should be noted that the first term (B - V)v on the
right-hand side of Eq. (2) is responsible for changes
of the flow velocity v in space at a given time along the
convected magnetic field B. This is apparently more
important than a possible advection term (v - V)B, as
justified, e.g., in Ref. [6] (for a constant magnetic field
By this term vanishes). Therefore, for the case of the
convective movement of the magnetic field frozen-in
a fluid only the convection term (B - V)v is used here,
as argued in Ref. [16]. In this way, using curl operator
of the basic equations (1)—(3) one obtains the follow-
ing equations for the stream potential 1, the magnetic
perturbed potential ¢, and the departure from linear
temperature profile 6 (i.e., with no convection rolls):

avzw— (Y, V) 1 d(a, VZa)
ot B d(x,7) mop  9(x,z)
By 9
+22 vy
Hop dx
4 20
+ Vi + gB—, 4)
0x
] Ay, V2 (e, V2 9
g2, _ (Y, Vea) | d(a I/’)+Bo—v2w
ot A(x, 2) A(x, z) dx
2y 9% 0%«
Vi 42 — - —
Tave st axaz<ax2 az2)
o %Yy 9y
—— (25 - 5%), 5)
0x0z \ dx 0z
and
9 Ay, 0) 8Ty d
— 0 =— . 6) _O_W V20, (6)
ot d(x, 2) h 0x
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where the Jacobian operator is defined by

d(a,b) 0dadb da db

S @)
d(x,z) dx dz 0z dx
and the fourth-order operator is given by
AR a*
Vi=(V)Y = — +— +2—5— 8
v ax* 9zt 0x2072 ©

(note an error in the formula given in Appendix of Ref.
[26]). Third and fourth terms on the right-hand side of
Eq. (4) result from the second term of Eq. (1), Eq. (5)
is new, and Eq. (6) is the same as for unmagnetized
fluid, see Ref. [14]. We use free boundary conditions,
similarly as for the standard classical Lorenz model,
i.e., all three functions ¥, «, and 6, and their Laplacian
operators should vanish at both z = 0 and z = h.

3 The generalized Lorenz model

Because both the velocity and the magnetic field in Egs.
(1) and (2) satisfy the same conditions V - v = 0 and
V-B = 0, the Fourier representations should be similar
for both velocity and magnetic potentials. Therefore,
following Rayleigh [21] we can look for solutions of
the potentials ¥ and « for both the bulk and the Alfvén
velocities, in the double asymmetric (taken into account
by parameter a) Fourier representation [24]

vx,z,t) = I—Zaz K \fZX(t) sin <%x> sin <%z)
)
a(x,z,t) = l—l;az K «/EW(I) cos (T;l—ax) sin (%z)

(10)

Certainly, as seen in Eq. (3) the temperature is of some-
what different character, and for the corresponding
function 6 we retain the same first and second order
terms as originally used by Lorenz [14].

R
O(x,2,1) = —8Tov/2
TR

a

(Y(t) cos (nh_ax) sin (%z)
_zamm(%;a> ()

In the well-known three-dimensional Lorenz model,
besides a time-dependent variable X proportional to
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the intensity of the convective motion, the other two
variables Y and Z describe the temperature profile in
Eq. (3), see Ref. [14]. In addition, in the case of the mag-
netized fluid we have introduced a new time-dependent
variable W describing the profile of the magnetic field
induced in the convected fluid according to Egs. (1) and
(2) as described in Eq. (10).

Using the approximation (B - V)v & (Bg - V)v in
Eq. (2), we have obtained from the general hydromag-
netic Eqgs. (1)—(3) a model described by four ordinary
differential equations [16]:

X=-0X+40Y—awW, (12)
Y =—XZ+rX—Y, (13)
7 =XY—-bZ, (14)
W = woX — omW, (15)

where dots denote derivatives with respect to the nor-
malized time t' = (1 4+ a®)k (7w/ h)? t, while 0 = v/k
is the Prandtl number (ratio of the kinematic viscosity
to the thermal conductivity), and b = 4/(1 + a?). As
usual r = R,/R. is a control parameter of the sys-
tem proportional to the temperature gradient §7p, or a
Rayleigh number R, = gB8h38Ty/(vk) normalized by
a critical number R, = (1 + a2)3(712/a)2.

In addition to the standard Lorenz system [14],
we have introduced another control parameter propor-
tional to the initial magnetic field strength By = |By]|
applied to the system, along the x axis in Fig. 1, that
is defined here as a basic dimensionless magnetic fre-
quency wg = vao/vo, With vg = 4wk /(abh). The last
term in Eq. (12) comes from the anisotropic tension
of the magnetic field lines (B - V)B/(rop) in Eq. (1).
Similarly, the first term of Eq. (15) results from (B - V)v
on the right-hand side of Eq. (2), describing the flow
changes along the convected magnetic fields, see Ref.
[16]. Naturally, besides the Prandtl number o = v/x,
the properties of the magnetized fluid are character-
ized by an analogue parameter of resistive viscosity
om = 1/« (ratio of resistivity and conductivity) appear-
ing now in Eq. (15), and resulting from the last terms in
Egs. (2) and (3). It is worth noting that coupling the first
and fourth equations of the generalized Lorenz system,
Egs. (12) and (15), and the second and third Eqs. (13)
and (14), gives two pairs looking very similar and are
mutually interconnected by single variables (W, X) and
(Z, Y). Therefore, the four-dimensional system seems
to be even more symmetric than the classical three-
dimensional Lorenz model.
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Admittedly, we have verified that in the case for the
inclusion of any higher order terms, one would need
to consider a wider spectrum of modes certainly not
limited to Eqgs. (9-11). Following a basic derivation by
Saltzman [24], a number of truncated nth-order models
of convection has been studied. However, one should
bear in mind fundamental difficulties in detecting low-
dimensional behavior in experimental/observational
data for the correlation dimension greater than approxi-
mately five [23]. For dynamical systems of dimension-
ality above this threshold, time series analysis meth-
ods do not allow to distinguish properly between low-
dimensional dynamics and random data, especially in
the presence of observational dynamical noise [28,29].
Therefore one can expect fundamental problems with
falsifiability of five-and-more dimensional models. In
this context, the low-dimensional model proposed in
our paper provides an interesting falsifiable alterna-
tive exhibiting surprisingly rich dynamical behavior
already in the four-dimensional phase space [16].

4 Analysis of the model

By using the generalized Lorenz system we can write
Egs. (12) and (15) as given in Ref. [16]

X+ oX+(or—od)X =—-0( +XZ) + omwoW,
(16)
W+ onW + 0dW = cwp(Y — X). (17)

We see that both variables X and W satisfy the equa-
tions of two coupled damped linear oscillators. How-
ever, the terms on the right-hand side of Eqgs. (16) and
(17) may be interpreted as nonlinear driving forces.
But now the coupling between X, W and Y, Z is
enhanced owing to the magnetic field B. In particu-
lar, when wy = 0 this coupling ceases and the variable
W is damped by the magnetic viscosity, see Eqs. (12)
and (15).

4.1 Stability of the fixed points and bifurcations

The fixed points of the generalized Lorenz system,
Egs. (12)—(15), can be obtained similarly as for the
standard Lorenz system reported in Appendix B in
Ref. [26]. As usual we start with a trivial zero fixed
point C 0 — (0,0, 0,0) and two nonzero fixed points
C*. Now, defining the quantity e = a)% /(o o) for the

magnetic control parameter a)(z), and the values charac-
terizing the usual kinetic and magnetic properties of the
fluid o and oy, we see that the fixed point C 0 is stable
for 0 < r < rp, where the critical value ro = 1 + e can
be interpreted as a characteristic value of the Rayleigh
number for the onset of convection at the pitchfork
bifurcation. Besides that there is another value of rr,
so-called the Takens—Bogdanov point [30], satisfying
the condition

g = 02(1+0)/(1 —om)rr = (0 +0m)/0/(1 — om)
(18)

at which, if a)g is greater than the value given in Eq.
(18), the fixed point C° undergoes a Hopf bifurcation,
that can be responsible for chaotic solutions.

On the other hand, the nonzero fixed points are given
by

CE={+d/V1+e,£dJ(+e),r—(+e),
+ (o/wp)de/~/1 + e}, (19)

with d = +/b[(r — 1) — e] [16]. The additional fixed
points C¥ are stable forrg < r < ry, where r = ry is
a critical value at which the system looses stability and
a Hopf bifurcation takes place. Naturally, the critical
number rg for the onset of convection increases with the
applied magnetic field By, thus the magnetic field can
stabilize the convection as regards to the appearance
of convective rolls. However, if we consider oscilla-
tions of the convection rolls as described by the model
of Egs. (12)—(15), the influence of the induced mag-
netic field on the fluid motion is much more complex
than only suppressing of dynamics as expected from
the standard textbooks of magnetohydrodynamics, cf.,
e.g., [6,11].

Also Hopf bifurcation of trivial equilibrium is inter-
esting compared to classical case. Admittedly, stability
of the generalized four-dimensional Lorenz system can
be analyzed by looking for roots of the characteristic
equation, which is a fourth-order polynomial

PO) =2 +asn’ +ar* +aih+ag =0 (20)

with the following coefficients depending on the
parameters of the model: ay = 2b((r — )oo — wo?),
ar =blo(r—14c)+om(oc+1+c) +a)02(1 —2/om)),
ar = blom+0+c+1)+om(o+1)+wo2(1—1/om),
anday = oy +0 +b+ 1, where c = (oo (r — 1) —
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woz)/(oma + wo?) = r/ro — 1. The system is sta-
ble as long as the real parts of all the eigenvalues (1,
i =1,...,4) are smaller than zero.

In principle, even in this more complicated case
the solution for the Hopf bifurcation rg, where the
polynomial has a pair of pure imaginary eigenvalues
(M1,2 = £iw), can be obtained analytically. However,
for any given control parameter wy, the obtained gen-
eral form for r appears to be a very long and tedious
expression depending on the other three parameters of
the model, i.e., the magnetic Prandtl number oy, the
Prandtl number o, and the geometric parameter b. Only
given fixed standard values (usually o = 10 and b =
8/3 are used) this formula for g as a function of oy,
can somewhat be simplified to several lines. Obviously,
one can immediately notice that for unmagnetized fluid
(with wg =0 and o1, =0) wehavec = r — 1 andag = 0,
and hence Eq. (20) is reduced to the third-order poly-
nomial (with a; = 2bo(r — 1), ap = b(o + r), and
a3z = o +b+1). In this way we can verify that the well-
known simple formulary = o (0 +b+3)/(c —b—1)
for the standard three-dimensional Lorenz system can
be recovered, with a value of rg = 24.74 foro = 10, b
= 8/3, Ref. [26]. When the control parameter r exceeds
this value, the real parts of the eigenvalues are posi-
tive and the fixed points looses stability, resulting in a
chaotic behavior of the solutions of the classical Lorenz
system.

On the other hand, in the generalized Lorenz system
this direct transition to chaos is possible only for a cer-
tain range of the embedded magnetic field described by
the magnetic control parameter wg, which includes also
the particle density of the fluid. Namely, as is illustrated,
e.g., in Fig.1 of [16], for a given magnetic Prandtl
number, oy, = 1, three different regions of long-term
dynamical behaviors are possible, namely fixed (equi-
librium) points, periodic (limit cycles), and nonperiodic
(chaotic) motions. The Hopf bifurcations are expected
at the horizontal line limiting the fixed point solutions;
the vertical line separates periodic from nonperiodic
(chaotic) solutions.

We see that for small wp (< 4) we can have a direct
transition from a fixed point to chaotic dynamics, but
for somewhat higher magnetic field, e.g., for wg =5, our
model predicts a transition to periodic behavior at some
value of the Rayleigh number (related with the temper-
ature gradient included in the control parameter r), and
next a transition from periodic to chaotic behavior for
some larger value of r = rg. It is somewhat surprising
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that for a fixed temperature gradient (e.g., for r = 20),
by increasing the strength of the embedded magnetic
field one can induce a chaotic behavior, but the stronger
magnetic fields can damp again this behavior, accord-
ing to Eq. (16), when the last term in the left-hand
side changes sign. We can hence expect that various
types of the Hopf bifurcations are possible in the gen-
eralized Lorenz system [ 16]. Obviously, when the fixed
points loose stability, the bifurcation diagrams becomes
extremely complex with intertwined chaotic and vari-
ous periodic regimes, including period three windows,
which as is known could imply chaos [13,25]. This
is, however, beyond the scope of this basic paper, and
should be subject of another detailed studies in the near
future.

4.2 Long-term behavior

In Refs. [16,17] the behavior of the dynamical system
of Egs. (12)—(15) was discussed in detail in the space
of dimensionless control parameters wg and r for the
Prandtl number o = 10. The analysis revealed a variety
of possible dynamical behavior including chaos, hyper-
chaos and intermittency. References [16,17] are aimed
at possibly direct comparison of dynamical properties
of the hydromagnetic Lorenz model with the standard
Lorenz equations. Therefore, the Prandtl number was
assumed o = 10, which is a common value used in
the literature for the standard Lorenz model. However
for real plasmas o = 1 is a more realistic assump-
tion [7,9,10]. For ¢ = v/k & 1 the kinematic vis-
cosity v and thermal diffusivity « are approximately
equal, which implies comparable diffusion rates of the
heat and the momentum. Physically this new case is
significantly different from previously analyzed case
(o0 = 10), where the diffusive transfer of momentum
was dominant as compared to the heat transfer.

In Fig.2 we present plots of the largest Lyapunov
exponent in the space of dimensionless control param-
eters wo and r for o = 1. The plots illustrate long-
term (asymptotic) behavior of the dynamical system of
Egs. (12)—(15) in the parameter space. The Lyapunov
exponents are computed for solutions of Egs. (12)—(15)
using the QR decomposition method (discussed thor-
oughly in Sec. VC of Ref. [8]) that provides reliable and
accurate estimation of the full spectrum of the expo-
nents when differential equations are explicitly known.
The method requires long time series (that naturally
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Fig.2 Dependence of the largest Lyapunov exponent A (color-
coded) on wy and r parameters of the generalized Lorenz model
for a o, = 0.1, b oy, = 1, and ¢ o, = 3. Other parameters
of the system have fixed values: 0 = 1, b = 8/3. Regions of
convergence of the solutions of Eqs. (12)—(15) to fixed points
(X1 < 0) are shown in color scale from black to blue, to periodic
solutions (A1 = 0)—in blue, to chaotic solutions (A; > 0)—in a
color, consistently with the color bar scale, from blue to yellow.
White circles for » > 300 and wg & 2 in panel (a) show weakly
chaotic solutions (A; > 0.1) for oy, = 0.1

appear in the case of periodic or chaotic solutions);
thus a preparatory step has been applied to detect con-
vergence of a given solution to a fixed point. Depending
on the sign and value of the calculated largest Lyapunov
exponent, various regions of convergence are shown in

different colors. Namely, fixed points (lack of long-
term limit cycle oscillations, negative exponent) are
indicated in color scale from black to blue, periodic
solutions (zero value)—in blue, and chaotic dynamics
(with positive exponent)—in a color, consistently with
the color bar scale, from blue to yellow, respectively.
Three cases of the parameter o, = 1/k = o/Pry
(where Pry, = v/n is the magnetic Prandtl number)
are considered here as related to different magnitude
of resistive dissipation affecting the system. We are
aware that the range of these values is rather broad
both for laboratory and space plasmas. Therefore, the
results obtained for chosen values from 0.1 to 3 are only
shown here for illustration.

For o, = 0.1 (Fig.2a) the most part of the plot
is black or dark blue, which means that the solutions
converge to fixed points corresponding to equilibria,
and long-term limit cycle oscillations are not possible.
The region of periodic (limit cycle) and nonperiodic
(chaotic) solutions seen in light blue is located mostly
in the left top part of the plot. Weakly chaotic solu-
tions (A1 > 0.1, marked by white circles) are found for
r > 300 and wg ~ 2. Note that when we move from
weakly chaotic or periodic dynamics for small values
of wo (light blue region) to equilibria region (dark blue
and black), the transition is smooth for increasing wy.
For o, = 1 (Fig.2b) the structure of the plot is signif-
icantly different. Solutions converge to equilibria for
both small and large values of wyp. When we move
to the region of periodic solutions starting from large
values of wo, the transition between equilibria black
region and periodic solutions is sharp. On the other
hand, when we move from equilibria to periodic solu-
tions starting from small values of wyq, the transition is
smooth. In the region of periodic solutions we can see
stripes of chaotic behavior (a color from light blue to
yellow, consistently with the color scale). More detailed
inspection of the plots reveals complicated structure
of the stripes, where chaotic solutions are intertwined
finely with domains of periodic solutions. For oy, = 3
(Fig.2c) the plot is generally similar to Fig. 2b. How-
ever, when we move to the region of periodic solu-
tions starting from large values of wy, the transition
between equilibria (black region) and periodic solu-
tions is smooth for Fig.2c, whereas sharp change is
seen for Fig. 2b as discussed above. Another difference
concerns the presence of a blue strip along the diago-
nal of Fig.2c, which is not seen in Fig.2b. Note that
the fine structure in the chaotic region of the parameter
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space seen for oy, > 1 implies interesting properties
of the dynamics as regards to regularity of convective
motions, when affected by changing boundary condi-
tions related to control parameters r and wp used in the
model.

The influence of the external magnetic field By on
the dynamics in the model can be studied for fixed value
of r by changing the control parameter wg, which is
related to By. As seen in Fig. 2a for small magnetic dif-
fusivity we generally observe a transition from chaotic
(or periodic) dynamics to fixed point solutions for the
increasing wq parameter. This suggests purely damping
influence of the increasing external magnetic field. For
larger magnetic diffusivity (Fig.2b and c) we observe
a more complicated scenario of transitions. For small
wy the solutions converge to fixed points, for larger val-
ues of wp we can see intertwined periodic and chaotic
regions. For even larger values of wq the transition is
seen from periodic dynamics to fixed points conver-
gence. Except for this general dynamical pattern in the
control parameters wp and r space, we can see a fine
structure of the chaotic regions. The external tempera-
ture gradient §7y also influences the dynamics in an
intricate manner for some range of values of wg as
seen in Fig.2 analyzing the dependence of solutions
on r  §Tp for fixed values of wy.

Similar analysis as presented above was done for
o = 10 in Ref. [17], which allows us to compare the
case for large diffusive momentum transfer (o = 10)
with the case of comparable diffusion rates of the heat
and the momentum (o = 1). The following differences
are seen when we compare the two cases. For o = 10
and wo = 0 periodic or chaotic dynamics is observed
in wide range of r parameter values [17]. This kind of
behavior is seen for o = 1 but only for small magnetic
diffusivity implying o, = 0.1 (Fig.2a), whereas for
om = 1 and o, = 3 (Fig. 2b and c) solutions converge
to fixed points for wg ~ 0. Moreover for o = 10
the region of periodic or chaotic solutions extends for
wider range of wg in comparison with o = 1 case. The
structure of chaotic regions is more striped in the case of
o = 1 than for o0 = 10. Another difference concerns
transitions in the control parameters wo and r space
between regions of periodic solutions and convergence
to fixed points. For o = 10 the transitions are sharp
[17], whereas more gradual changes are observed for
o = 1 as discussed in this paper.

@ Springer

4.3 Chaotic strange attractors

Integrating Egs. (12)—(15) of the system for hydromag-
netic convection and projecting the four-dimensional
solutions onto the three-dimensional subspace spanned
by X, Y, and W axes, we can get some imagination
about the complex structure of dynamically interesting
strange attractors of the system. Some of the typical
calculated shapes are presented in Fig. 3. Naturally, the
obtained set should depend on the values of the assumed
five parameters. For simplicity, we take here the stan-
dard values of the classical Lorenz model parameters:
r = 28,0 = 10, and b = 8/3. Now, with a mag-
netic field, wp = 1, and a small magnetic viscosity,
om =~ 0, we can verify that the obtained butterfly-
shaped structure strongly wanders along the W axis,
case (b), as taken from [16, Fig. 2a]. Asis known that for
dissipative systems the volume in phase space shrinks
rapidly due to both kinematic and magnetic viscosi-
ties, V= —(0 +om + b+ 1)V; the attractor is strange
because it has a measure zero. Therefore, as Lorenz
underlines because of dissipation the trajectories only
appears to merge, but they actually remain distinct [14].
Here the shrinking of volume is only enhanced owing
to magnetic viscosity op,.

We recall a structure for w, = 6 in the presence of
some magnetic viscosity, o, = 2, which is presented
in Fig.3c taken from [16, Fig.2b]. It is interesting to
note that this strange attractor appears when changing
the magnetic control parameter in some narrow range
near wyg = 6. We see that trajectories in the phase
space describing the perturbed magnetic vector poten-
tial merge and separate again resulting in irregularly
reappearing ‘islands’. This merging is related to a spe-
cial (hyper)-surface, which separates small oscillations
around one of two fixed points, C*, from large oscil-
lations that encircle all fixed points, including a zero
unstable fixed point, C°. Therefore, in the vicinity of
this value a periodic motion is interrupted with chaotic
bursts, as shown in Fig.2 of Ref. [15]. If the magnetic
field strength is further increased so that the last term in
the left-hand side of Eq. (16) changes sign, a)g > or,
the oscillations are depressed and the system will tend
to a fixed point as shown in Fig. 1 of Ref. [16]. Here
another new interesting strange attractor for wy = 5,
om ~ 0 1is also depicted in Fig.3 (d).
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Fig. 3 The three-dimensional projection of the attractor for a wy = 1, oy =20, bwg =1, 0y ® 0,c wy = 6, oy, = 2,and d wy = 5,

om ~ 0, respectively

4.4 Hyperchaotic strange attractors

According to the Liouville theorem the sum of all Lya-
punov exponents cannot be positive (for any continu-
ous system one of the local exponents is zero), hence
two positive Lyapunov exponents can only appear for at
least four-dimensional systems. In this case the dynam-
ics is called hyperchaotic. It is obvious that this is not
possible for the classical standard three-dimensional
Lorenz system.

However, in the four-dimensional generalized
Lorenz system for convection in the magnetized fluid,
hyperchaotic solution is, in principle, possible owing to
a new variable describing the induced magnetic field.
In fact, we have identified hyperchaos only for some
limited range of values of the external temperature gra-
dient r and the applied magnetic field (with parame-
ter wp = 5.95), for fixed other parameters o = 10,
om = 0.1, b = 8/3, see Fig.2 of Ref. [17]. Namely,
it appears that the largest Lyapunov increases abruptly
becoming positive for r > 454.7 (except of a gap for
461.8 < r < 462.4 with periodic solutions), while at

the same onset value the second Lyapunov exponent
becomes positive, increasing smoothly.

This exhibits a clear transition to hyperchaotic
dynamics. One can expect that in the generalized
Lorenz system this transition results from nonlinear
coupling between the anisotropic tension of the mag-
netic field lines and the magnetic viscosity. In this paper
in Fig.4 we show the three-dimensional projections
of the hyperchaotic attractor to four subspaces of the
phase space. The parameter values for the hyperchaotic
attractor are taken accordingly to the values reported in
Ref. [17]: r =480, wp = 5.95,0 = 10,01y = 0.1, and
b=28/3.

These results may request an experimental identi-
fication of hyperchaotic dynamics in laboratory and
also space plasmas, including magnetoconfined plas-
mas in nuclear fusion devices or tokamaks [1], pos-
sibly in nanotechnology, and also solar sunspots [18]
and planetary or stellar fluid interiors [5]. However,
it could rather be difficult to identify such a system
in nature because of some specific experimental prob-
lems. Namely, at least some trajectories of any hyper-
chaotic system must diverge in two different direc-
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v 100 200

Fig. 4 The three-dimensional projections of the hyperchaotic attractor to the subspaces a XYZ, b XYW, ¢ XZW, and d YZW for

r =480, wp =5.95,0 =10, 0 =0.1,and b = 8/3

tions providing a much more complex picture than in
case of a standard chaotic system with only one unsta-
ble direction. Moreover, investigations of real systems
are usually based on single scalar time series mea-
surements. When such a time series is used to infer
about higher dimensional dynamics, we can have some
problems with the embedding procedure. For exam-
ple, one should cope with a spurious folding appearing
in projection from higher dimensional space to one-
dimensional subspace, as discussed, e.g., in Ref. [12].

5 Conclusions

We have shown that the generalized four-dimensional
Lorenz system for convection in a horizontally magne-
tized viscous fluid layer exhibits quite intriguing fea-
tures. It is rather surprising that this simple model can
be derived from the full set of partial differential equa-
tions. Despite this, the complex behavior of the solu-
tions results from nonlinearity and not from compli-
cated laws. More specifically, depending on two con-
trol parameters of the model, by increasing the tem-
perature difference and the magnetic field strength ini-
tially applied along the layer, one can switch-on and -

@ Springer

off between nonperiodic chaotic, periodic (limit cycle),
and equilibrium (fixed point) asymptotic solutions. In
addition, because of fine structure illustrated in the
space of both control parameters, the influence of the
induced magnetic field on the properties of the fluid
could be much more intricate than a simple stabilizing
effect predicted by simplified analysis of influence of
the magnetic field on convective motion discussed in
standard textbooks (see, e.g., Ref. [6]). This is con-
firmed by identification of some physical situations
where a weak field may have strong destabilizing effect
on the fluid [2].

It is important to note that besides of the chaotic
behavior well known for the Lorenz model with unmag-
netized fluid we have also identified in the general-
ized Lorenz system a hyperchaotic dynamics, with two
positive Lyapunov exponents appearing for some spe-
cific intervals of the values of the temperature gradient
for some intensity of the applied magnetic field [17].
Therefore, in this paper, we have obtained new strange
attractors, also in a hyperchaotic regime. Admittedly,
this new type of chaos is only possible in at least four-
dimensional systems; hence this results here from cou-
pling between the anisotropic tension of magnetic field
lines and magnetic viscosity.
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In fact, our analysis is able to grasp characteristic
signatures of the hydromagnetic convection that can
be relevant for observational identification of com-
plex dynamical behavior, resulting in some intermit-
tent energy bursts predicted by the generalized Lorenz
model. Therefore, this new hyperchaotic analytical
low-dimensional system characterized by both types
I and III of intermittent energy release may provide
an explanation of irregular convective dynamical pro-
cesses, observed often in various plasmas in laboratory
(fusion devices) and space, which will hopefully be
analyzed in the future studies.

There is a general agreement that the value of the
magnetic Prandtl number for plasma can range from
very small (o, < 1), for terrestrial turbulent flows
(geodynamo), liquid metals (laboratory dynamos), and
stars (~ 1077), to rather high both for astrophysi-
cal objects (galaxies and clusters, ~ 10%?) and fusion
devices. Although a direct assessment of such parame-
ter is difficult in many situations, it would be useful to
examine such cases using our model as some examples
shown in Fig. 2, before going into numerical modeling
magnetoconvection. Following these results one can
expect that the actual behavior can be extremely com-
plicated for the highest magnetic Prandtl numbers in
laboratory and space plasmas.

Therefore, the obtained results could be important
for explaining the processes leading to appearance of
irregular nonperiodic dynamics in nature. In addition,
in future it would be useful to perform numerical MHD
simulations to recover some special cases described by
the analytical generalized Lorenz model. Admittedly,
itis plausible that still in order to get information about
some phenomena described by the model from direct
numerical simulations, one would require long time
of instantaneous computations using available com-
putational resources. Because the generalized Lorenz
system exhibits complex behavior resulting from non-
linearity, it certainly provides a novel contribution to
chaos theory that could hopefully still be of interest to
the dynamical systems community.
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