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Abstract Approximate analytical methods, such as
themultiple scales (MS) and direct normal form (DNF)
techniques, have been used extensively for investigat-
ing nonlinear mechanical structures, due to their ability
to offer insight into the system dynamics. A compar-
ison of their accuracy has not previously been under-
taken, so is addressed in this paper. This is achieved
by computing the backbone curves of two systems:
the single-degree-of-freedom Duffing oscillator and a
non-symmetric, two-degree-of-freedom oscillator. The
DNF method includes an inherent detuning, which can
be physically interpreted as a series expansion about
the natural frequencies of the underlying linear system
and has previously been shown to increase its accuracy.
In contrast, there is no such inbuilt detuning for MS,
although one may be, and usually is, included. This
paper investigates the use of the DNF detuning as the
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chosen detuning in the MS method as a way of equat-
ing the two techniques, demonstrating that the two can
be made to give identical results up to ε2 order. For the
examples considered here, the resulting predictions are
more accurate than those provided by the standard MS
technique. Wolfram Mathematica scripts implement-
ing these methods have been provided to be used in
conjunction with this paper to illustrate their practical-
ity.
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1 Introduction

In recent years, there has been substantial interest
in the study of backbone curves, due to their util-
ity in studying lightly damped nonlinear vibrations in
multi-degree-of-freedom (MDOF) mechanical struc-
tures. The motivation for this paper comes from obser-
vationsmade by the authorswhen comparing backbone
curves found using the multiple scales (MS) method
(see, for instance, [1]) and those found using the nor-
mal form method, defined in [2].

The normal form method in [2] was developed as
a technique that can be applied directly to systems
of weakly coupled second-order nonlinear differential
equations. This concept is not entirely uncommon, hav-
ing previously been proposed in [3], but it is the matrix
formulation proposed in [2] that is considered particu-
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larly beneficial to the current work.Wewill call this the
“direct” normal form (DNF) method1 in order to dif-
ferentiate it from the “classical” method described, for
example, by Jezequel and Lamarque [4], Arnold [5],
Murdock [6], Kahn and Zarmi [7] and Nayfeh [8]; the
latter is not investigated here, as similar comparisons
have previously been made, for example, in [2].

In recent years, the DNF method (and other nor-
mal form methods similar to this) has been used exten-
sively to capture the responses of nonlinear systems.
This includes, but is not limited to, describing modal
interactions and bifurcations in backbone curves [9–
12], recognising out-of-unison resonance in a taut
cable [13], reduced-order modelling [14], nonlinear
system identification [15,16], investigating aeroelas-
tic systems under fluid flow [17,18], exploring appli-
cability conditions for nonlinear superposition [19],
and quantifying the significance of nonlinear normal
modes [20]. In contrast with the recent development of
the DNF method, the MS method is well established
in the literature, with thorough discussions regarding
its development readily available, for example, in [21–
26].

Perturbation methods require the repeated applica-
tion of a number of steps, building up an increasingly
accurate solution by addressing smaller terms in each
repetition. In the practical application of thesemethods,
the steps can require significant computational effort
and produce increasingly complex expressions, which
can, arguably, hide the mathematical insight gained
from employing such a technique. In this paper, we
consider the “accuracy” of these methods by assessing
the result after one or two repetitions of their respective
steps. It is generally recognised that these techniques
converge to the correct solution with many repetitions,
so can ultimately be considered as precise as each other.

A contributing factor in the accuracy of the DNF
method, as shown in [27], is the frequency detuning
which arises in its formulation. In physical terms, this
can be interpreted as a series expansion around the nat-
ural frequency of the underlying linear system. This
is not naturally present in the MS technique; however,
several examples of alternative detunings, applied to
MS technique, can be found in the literature [28–33].
The attempt that most closely resembles the detuning

1 In some previous papers, this method is called “second-order
normal form”, which is a phrase that is open to more than one
possible meaning, so we choose to avoid it here.

of the DNF method is found in [32], although this pro-
posed detuning is only employed in a small number
of papers, such as [34,35]. In [32], an ε-expansion is
applied, not only to time, as is standard, but also to
frequency. The paper presents the updated frequency–
amplitude relationships and suggests that they appear
more accurate, although it was not possible for this
to be verified with numerical data. The motivation for
expanding the frequency is solely to remove the secular
terms in the response, and so the technique lacks the
physical motivation that is present in the DNF method,
as described in detail in the current paper.

Further attempts to detune theMSmethod have been
proposed, though a number of these focus on the forced
case in which it is common practice to perturb the forc-
ing frequency [28,29]. A more thorough investigation
is given in [30], and a comparison of the MS method
and the generalised method of averaging can be found
in [31]. Additionally, the detuning applied in [32] has
also been applied to the Lindstedt–Poincaré method of
strained parameters and the generalisedmethodof aver-
aging, with these detuned methods producing identical
truncated results [33].

In this paper, a comparison on theDNFandMS tech-
niques is provided, with emphasis placed on the detun-
ing used. Specifically, in Sect. 2, the two techniques are
briefly outlined and compared using the Duffing oscil-
lator as an example system, a system which is adopted
in [27,31–33]. The two techniques are equated by intro-
ducing a detuning step, which is physically interpreted
as a perturbation about the response frequency rather
than the linear frequency, into the MS technique in
Sect. 3. The detuning approach employed in the DNF
method will be applied in the MS method, and it will
be shown that doing so allows the two methods to be
equated. By considering a more general detuning, it is
shown that usingMS both the fundamental and the har-
monic response predictions are affected by the detun-
ing. This is in contrast to the DNF technique, in which
only the harmonic response changes. In Sect. 4, the
techniques are compared for a two-mode system,where
it is shown that the techniques give the same results if
the MS method is modified to include the detuning.
Conclusions are drawn in Sect. 5.

2 Approximate methods

This section introduces the DNF and MS techniques,
giving an overview of how they are applied to a single-
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degree-of-freedom (SDOF) oscillator of the following
form

ẍ + ω2
nx + εnx (x) = 0. (1)

Here, x denotes the displacement, ωn represents the
linear natural frequency, and nx (x) is a nonlinear term.
For both techniques, the nonlinear term is assumed to
be small. Here, this is indicated by ε, which may be
thought of as a bookkeeping parameter that allows the
relative size of terms to be tracked [8]. As such, ε is
taken to have a value of unity, such that it does not
alter the equations. The application of the techniques is
described as a series of steps,with theDuffingoscillator
(nx (x) = αx3) being used as an example.

2.1 Direct normal form

The normal form approach is typically used to find peri-
odic solutions to the equation of motion of a system.
The objective of this approach is to apply a transform
to the equation of motion to give a resonant form, in
terms of transformed coordinate u, that can be solved
exactly by using the following form for the solution,
which assumes that system will respond as a single
harmonic

u = u p + um = Ac

2
ei(ωr t−φ0) + Ac

2
e−i(ωr t−φ0). (2)

where u p and um are used to denote the positive and
negative parts of the exponents, respectively, and Ac

and ωr represent the initial amplitude and nonlinear
natural frequency, respectively. Time is denoted by t
and φ0 denotes the phase of the response. Once u has
been found, the harmonics of the response can be recov-
ered using the transform equation.

TheDNF approach is applied to equations ofmotion
that are expressed in the linear modal coordinates, q,
where q = x for SDOF systems. This means that x
could be used instead of q in the following equations.
However, q has been kept to allow easier comparison
with the MDOF case discussed in Sect. 4. The trans-
form may be summarised as

q̈ + ω2
nq + εnq(q) = 0

q = u + εh1u∗
1 + ε2h2u∗

2−−−−−−−−−−−−−−−−−−→
ü + (ω2

r + εδ)u + εnu1u∗
1 + ε2nu2u∗

2 = 0.

(3)

Here, nq(q) represents the small nonlinear terms of
the untransformed equation and, as q = x for a one

degree-of-freedom system, nq(q) = nx (q). In addi-
tion, the detuning ω2

n = ω2
r + εδ, which will later be

utilised in the MS method, is applied. The harmon-
ics are now captured by the product of h1, a 1 × �

vector of coefficients, and u∗
1, an � × 1 vector consist-

ing of all the combinations of u p and um that arise in
nq(u p + um); these harmonics are also assumed to be
small. The method of finding the harmonics, h1u∗

1, and
the transformed nonlinear terms nu1u∗

1 require three
steps. These are now discussed, along with their appli-
cation to the Duffing oscillator. An explanation of how
both the steps and the detuning are derived is given in
Appendix A, together with an indication of how they
may be modified for MDOF systems.

By eliminating q from the original differential equa-
tion in Eq. (3) using the transform and then simplifying
using the transformed equation of motion, the εi bal-
ance equation is given by the homological equation:

εi : −hi ü∗
i − ω2

r hiu
∗
i = neiu∗

i − nuiu∗
i . (4)

The excitation of these equations, which defines the
vectors u∗

i , is given as

ε1 : ne1u∗
1 = nq(u), (5)

ε2 : ne2u∗
2 = δh1u∗

1 + D{nq(u)}h1u∗
1, (6)

where D{nq(u)} represents the Jacobian of nq(u) and
arises from the Taylor expansion of n(q) = n(u +
εh1u∗

1 + ε2h2u∗
2). These equations are solved using

the following steps (which can be followed in Online
Resource 1), first for the ε1 equation, as illustrated
below, and then for the ε2 terms by making the nec-
essary modification to the first step.

Step 1NF The substitution q = u = u p+um ismade
in the nonlinear term to give nq(q) = nq(u p + um) =
ne1u∗

1. Here, ne1 contains coefficient values and u∗
1 is

defined above.
For the Duffing oscillator, nq(u p + um) = α(u p +

um)3, giving

nq(u p + um) = ne1u∗
1 = [

α 3α 3α α
]

⎡

⎢⎢⎢
⎣

u3p
u2pum
u pu2m
u3m

⎤

⎥⎥⎥
⎦

.

(7)

Step 2NF Using Eq. (2), the variables u p and um in
u∗
1 are written as a series of complex exponentials in

time. The resulting vector is double differentiated with
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respect to time. The second derivative with respect
to time can be expressed as a Hadamard product (◦);
d2u∗

1/dt
2 = −dd◦u∗

1. Further details on this are given
in Appendix A.

For the Duffing example, using Eqs. (2) and (7), u∗
1

may be written as

u∗
1 =

⎡

⎢⎢
⎣

u3p
u2pum
u pu2m
u3m

⎤

⎥⎥
⎦ = A3

c

8

⎡

⎢⎢
⎣

ei3(ωr t−φ0)

ei(ωr t−φ0)

e−i(ωr t−φ0)

e−i3(ωr t−φ0)

⎤

⎥⎥
⎦ , (8)

and so

d2 u∗
1

d t2
= −dd ◦ u∗

1, where dd = ω2
r

[
9 1 1 9

]ᵀ
.

(9)

Step 3NF Now, h1 and nu1 may be found using

(ddᵀ − ω2
r 11,�) ◦ h1 = ne1 − nu1, (10)

where 11,� is a 1 × � row vector with every element
being one. This expression is derived in Eq. (A.7) in
Appendix A. For each nonzero element in the brack-
eted term, the corresponding value in nu1 is set to zero
and the value in h1 is selected to satisfy the equation.
For the zero elements in the bracketed term, the corre-
sponding terms in nu1 are set to match those in ne1 and
the h1 terms are set to zero. The result of this is a series
of coefficients representing resonant terms in nu1 and
harmonic (i.e. non-resonant) terms in h1.

For the Duffing oscillator, Eq. (10) becomes

(
ω2
r

[
8 0 0 8

])
◦ h1=

[
α 3α 3α α

]
− nu1.

(11)

This allows us to find the required vectors

h1 =
[

α

8ω2
r

0 0
α

8ω2
r

]
, nu1 =

[
0 3α 3α 0

]
.

(12)

Note that the zeros on the left-hand side of Eq. (11)
correspond to the resonant terms in Eq. (7) being set
to zero, a feature that will also be observed in the MS
method. Furthermore, it is important to note that there
is some freedom of choice between the h1 and nu1
coefficients in Eq. (11). However, one of the advantages
of this method is that the non-resonant terms, and only
the non-resonant terms, in u∗ are removed from the
transformed equation of motion.

The near-identity transform to order ε1 may now be
written as
q = u + εh1u∗

1

= Ac

2
(ei(ωr t−φ0) + e−i(ωr t−φ0))

+ ε

[
α

8ω2
r

0 0
α

8ω2
r

]
u∗
1

= Ac cos(ωr t − φ0)

+ ε
α

32ω2
r
A3
c cos(3(ωr t − φ0)).

(13)

From Eq. (3), along with Eq. (12), the transformed
equation of motion may be written as

ü + ω2
nu + ε3α

(
u2pum + u pu

2
m

)
= 0. (14)

To get the frequency–amplitude relationship for the
backbone curve, we substitute the base solutions for u p

and um into Eq. (14) and then exactly balance either
the ei(ωr t−φ0) or e−i(ωr t−φ0) terms (there are no non-
resonant terms as these have been removed) to give

ωr =
√

ω2
n + ε

3α

4
A2
c . (15)

This solution can be refined by repeating these steps,
addressing the terms with increasing powers of ε in
turn.While each repetition leads to amore refined solu-
tion, they becoming increasingly onerous to perform
algebraically. Thus, it is desirable to approach the true
solution in the smallest possible number of iterations.
This basis will be used to compare the DNF and MS
methods in later in the paper.

To illustrate this refinement, if the ε2 terms are
included in the near-identity transform by repeating
the steps a second time, the following, more precise,
solution can be obtained:

q = Ac cos(ωr t − φ0)

+ ε
α

32ω2
r
A3
c

(
1 + ε

3α

32ω2
r
A2
c

)
cos(3(ωr t − φ0))

+ ε2
α2

512ω4
r
A5
c cos(5(ωr t − φ0)). (16)

As a result, the frequency–amplitude relationship will
now be given by

ω2
r = ω2

n + ε
3α

4
A2
c + ε2

3α2

128ω2
r
A4
c . (17)

2.2 Multiple scales

The method of multiple scales is an established tech-
nique that is discussed at length in the literature (for
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example, see [22,23,26,31,32] and references therein),
and here we provide a brief summary of this technique
to form a basis onwhichmodifications can be discussed
later.

Following this review of the method, in Sect. 2.3,
solutions found using the frequency detuning proposed
in [32] will be presented; amore thorough investigation
is given in Sect. 3, in which a comparison will be made
between this detuning and that used in theDNFmethod.

The approach builds on the standard perturbation
method in which the response is split into a series of
terms with reducing significance x = X0 + εX1 +
ε2X2+· · · . In MS, each of these time-dependent com-
ponents are treated as functions of multiple timescales.

If these timescales are used, this response is assumed
to be of the form

x(t) = X0(τ, T, Ts) + εX1(τ, T, Ts)

+ ε2X2(τ, T, Ts) + · · · (18)

Here, the prescribed timescales are fast time overwhich
oscillations occur, τ = ωt , a slower time over which
the amplitudes evolve, T = εt , and a timescale which
is slower still, given by Ts = ε2t . This definition of τ ,
which incorporates frequency, is more typically associ-
atedwith theLindstedt–Poincarémethod, but is applied
here to allow a simpler comparison with the DNF
method. These times, τ , T , and Ts , are treated as inde-
pendent variables, such that derivatives with respect to
t can be expressed

dx

dt
= ω

∂x

∂τ
+ ε

∂x

∂T
+ ε2

∂x

∂Ts
,

d2x

dt2
= ω2 ∂2x

∂τ 2
+ 2ωε

∂2x

∂T ∂τ
+ ε2

( ∂2x

∂T 2 + 2ω
∂2x

∂Ts∂τ

)
.

(19)

Note that fast time–frequency, ω is typically set to the
linear natural frequency ωn , such that τ = ωt = ωnt .
It is this selection of fast time that is now considered,
and which gives the result listed in Table 1.

Substituting Eq. (19) into a general representation of
an undamped, unforced nonlinear oscillator and using
ω = ωn , gives

ẍ + ω2
nx + εnx (x) = 0

x = x(τ, T )−−−−−−−−−→
ω2
nx

†† + ε2ωnx
†‡ + ε2(x‡‡ + 2ωnx

†∗)
+ ω2

nx + εnx (x) = 0,

(20)

where •† = ∂•
∂τ
, •‡ = ∂•

∂T , and •∗ = ∂•
∂Ts

. Now, substi-
tuting Eq. (18) into the right-hand equation in Eq. (20),

removing the terms of order ε3 and higher, and balanc-
ing for ε lead to

ε0 : ω2
n X

††
0 + ω2

n X0 = 0,
ε1 : ω2

n X
††
1 + ω2

n X1 = −2ωn X
†‡
0 − nx (X0),

ε2 : ω2
n X

††
2 + ω2

n X2 = −2ωn X
†‡
1 − X‡‡

0 − 2ωn X
†∗
0

−D{nx (X0)}X1.

(21)

To find the solution for the components of x , firstly the
ε0 order balance in Eq. (21) is solved to give

X0 = A(T, Ts) cos(τ + φ(T, Ts)), (22)

where A(T, Ts) and φ(T, Ts) are slow time-varying
amplitude and phase functions, respectively, which are
defined by the initial conditions of the system. This
allows the ε1 equation of Eq. (21) to be written as

ω2
n X

††
1 + ω2

n X1 = 2ωn A(T, Ts)
‡ sin(τ + φ(T, Ts))

+ 2ωn A(T, Ts)φ(T, Ts)
‡ cos(τ + φ(T, Ts))

− nx (X0).

(23)

From Eq. (23), A(T, Ts), φ(T, Ts), and X1 may be
calculated using the following steps (as demonstrated
in Online Resource 2), written at ε1 order. These steps
may then be reapplied to the ε2 balance in Eq. (21), to
find the ε2 solution.

Step 1MS The resonant terms, i.e. those that respond
at τ = ωnt in Eq. (23), are removed and equated,
writing

2ωn A(T, Ts)
‡ sin(τ + φ(T, Ts))

+ 2ωn A(T, Ts)φ(T, Ts)
‡ cos(τ + φ(T, Ts))

= Res{nx (X0)},
where Res{nx (X0)} represents the resonant terms in
nx (X0). This equation is then solved to find A(T, Ts)
and φ(T, Ts).

For the Duffing oscillator example, we can write

2ωn A(T, Ts)
‡ sin(τ + φ(T, Ts))

+ 2ωn A(T, Ts)φ(T, Ts)
‡ cos(τ + φ(T, Ts))

= Res
{
αA(T, Ts)

3 cos3(τ + φ(T, Ts))
}

= 3α

4
A(T, Ts)

3 cos(τ + φ(T, Ts)).

(24)

Balancing the sin(τ + φ) and cos(τ + φ) terms gives

A(T, Ts)
‡ = 0, and

2ωn A(T, Ts)φ(T, Ts)
‡ = 3α

4
A(T, Ts)

3,
(25)
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2924 A. J. Elliott et al.

respectively. These can be solved to give

A(T, Ts) = Ac(Ts),

φ(T, Ts) = 3α

8ωn
Ac(Ts)

2T + φc(Ts),
(26)

whereφc is an integration constant representing a phase
offset at t = 0. Hence, using Eq. (22), we can write

X0 = Ac(Ts) cos (ωr t + φc(Ts)) ,

with: ωr = ωn + ε
3α

8ωn
Ac(Ts)

2, (27)

where we have recalled that τ = ωnt and T = εt such
that τ + ε 3α

8ωn
Ac(Ts)2T = ωr t .

Step 2MS The remaining terms in Eq. (23),

ω2
n X

††
1 + ω2

n X1 = −NRes{nx (X0)},
where NRes{nx (X0)} represents the non-resonant
terms in nx (X0) are now considered. Here the right-
hand side may be viewed as an “excitation” of a linear
dynamic system in X1 which can be solved to generate
harmonic responses terms in x .

For the Duffing oscillator example, we have

ω2
n X

††
1 + ω2

n X1 = −NRes{nx (X0)}
= −α

4
Ac(Ts)

3 cos (3(ωr t+φc(Ts))) .

(28)

where Eq. (27) has been used. Solving this linear dif-
ferential equation gives

X1 = α

32ω2
n
Ac(Ts)

3 cos (3(ωr t + φc(Ts))) . (29)

Hence, the order ε1 solution, x = X0 + εX1, is given
by

x = Ac(Ts) cos(ωr t + φc)

+ α

32ω2
n
A3
c cos(3(ωr t + φc))

with: ωr = ωn + ε
3α

8ωn
A2
c .

(30)

Here, we have written Ac(Ts) = Ac and φc(Ts) = φc

as the timescale Ts is not used to find the ε1 frequency–
amplitude relationship.

As with the DNF methods, these steps can be
repeated for higher-order ε terms. Applying these to
the ε2 terms, the refined solution is given by

x = Ac cos(ωr t + φc)

+ ε
α

32ω2
n
A3
c

(
1 − ε

21α

32ω2
n
A2
c

)
cos(3(ωr t + φc))

+ ε2
α2A5

c

1024ω4
n
cos(5(ωr t + φc))

with: ωr = ωn + ε
3α

8ωn
A2
c − ε2

15α2

256ω3
n
A4
c .

(31)

Again, Ac and φc are now a constants, though these
would be functions of higher-order timescales if a
higher ε-order solution was being sought.

2.3 Duffing oscillator backbone curves

It is now possible to compare the expressions for the
frequency–amplitude relationship derived using two
repetitions of the steps in each method. These are given
by

DNF : ω2
r = ω2

n + ε
3α

4
A2
c + ε2

3α2

128ω2
r
A4
c,

MS : ωr = ωn + ε
3α

8ωn
A2
c − ε2

15α2

256ω3
n
A4
c .

(32)

At this point, it is apparent that theDNFmethoddetunes
around the square of the response frequency, whereas
the MS method directly detunes ωr . The correspond-
ing higher harmonic response amplitudes are given in
Table 1. Figure 1 presents the fundamental and third
harmonic backbone curves for the Duffing oscillator at
ε1- and ε2-order, along with the results found using the
numerical continuation software Auto 07p [36]. In this
figure, the influence that the type of detuning has on the
results can be clearly seen. Both at ε1- and at ε2-order
the DNF curve remains close to that of the numeri-
cal solution, whereas the backbone derived from the
MS method diverges from this at higher amplitudes.
Considering panels (a) and (c), it is evident that the ε2-
order solution remains close to the numerical curve for
a greater range of amplitudes, though this introduces
a hardening-to-softening behaviour at higher values of
A1. Further, the harmonic components are poorly cap-
tured by the MS method in both panels (b) and (d).

The results displayed in Fig. 1 demonstrate the dif-
ferences that can occurwhen a detuning is applied to the
square of ωr , as opposed to directly to the linear term,
and provide motivation for the application of the DNF
detuning in the MS method, as described in Sect. 3.2.
In particular, in contrast to the explicit form for the
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Table 1 Summary of
approximate solutions and
expressions for backbone
curves for the undamped,
unforced Duffing oscillator

Technique Amplitude of
fundamental

Amplitude of
third harmonic

Amplitude of
fifth harmonic

Direct normal form Ac ε
α

32ω2
r
A3
c

(
1 + ε

3α

32ω2
r
A2
c

)
ε2

α2

512ω4
r
A5
c

Multiple scales Ac ε
α

32ω2
n
A3
c

(
1 − ε

21α

32ω2
n
A2
c

)
ε2

α2

1024ω4
n
A5
c

Fig. 1 Comparison of
first-order accurate (ε1)
response curves found using
approximate methods and
numerical continuation for
the undamped Duffing
oscillator in terms of a the
fundamental amplitude, b
the third harmonic and c
other harmonics, using
ωn = 1 and α = 0.5

Numerical Continuation
Direct Normal Form
Multiple Scales

(a)

(c)

(b)

(d)

MS relationship, the DNF method gives an implicit
equation in ω2

r . This can be easily rearranged to give
a quadratic equation in ω2

r which is easily solved and
square rooted to give an explicit equation for ωr . This
process becomes more complicated at higher orders of
ε, atwhich point it is possible that either aTaylor expan-
sion or numerical continuation would need to be used.
That being said, the accuracy of the curves in Fig. 1 sug-
gests that it is unlikely that these higher orders would
be necessary to obtain a strong approximation of the
true solution.

3 Equating the techniques

In this section, we compare the derivations of the DNF
and MS approaches. To do this, we first consider fre-
quency detuning. The importance of this step for the
DNFmethodwas assessed in [27], inwhich theDuffing
oscillator was used to demonstrate that it is this detun-

ing which increases the accuracy of the technique in
comparison with the classical normal form method. In
light of the fact that perturbation methods repeat a spe-
cific set of steps to find a solution, as demonstrated in
Sect. 2, we consider whether the same approachmay be
used in the MS method to improve the agreement with
the DNF method at the same number of repetitions.

It should be noted that it is possible to introduce the
intrinsic time-dependent amplitudes of the MSmethod
to the DNF technique to allow transient behaviour to be
captured. This is not investigated further here, as this
paper focuses on the unforced, undamped behaviour of
systems.

3.1 Detuning the MS method

In the derivation of the DNF technique, a frequency
detuning is applied, in which the square of the natural
frequency is assumed to be detuned from the square of
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the response frequency such that the substitution ω2
n =

ω2
r+εδ canbemade,where δ is introduced as adetuning

parameter. This is discussed in Appendix A where, for
multiple degrees of freedom, the equation is written
� = � + εΔ. This allows the linear natural frequency
to be replaced with the response frequency, ωr , and a
detuning term, δ, in the ε1 relationship, Eq. (A.3), and
results in coefficients in (ddᵀ −ω2

r 11,�) expression that
are exactly zero, see Step3NF .

This detuning has been discussed in [37], where
it was shown that the detuning does not affect the
frequency–amplitude relationship, but does improve
the prediction of the third harmonic. The physical inter-
pretation of this is associated with how the underlying
linear system is defined—normally we consider the
Duffing oscillator to have a linear stiffness term ω2

nx
(and hence a natural frequency of ωn), but the same
result can be achieved by treating the linear stiffness
term as ω2

r x and modifying the nonlinear term to com-
pensate for this, giving αx3+δx , where δ is a detuning
parameter. Adopting the second approach can result in
a smaller nonlinear term which more closely meets the
key assumption that the non-linearity is of order ε1.
Note that this interpretation of the detuning does not
specifically rely on the assumption that δ is small, pro-
vided the new nonlinear term, αx3+δx , remains small.

3.2 Detuned multiple scales

Now let us consider how frequency detuning, whichwe
will view as a means to express the equation of motion
in terms ofωr , may be used in aMS approach, resulting
in the detuned multiple scales approach (dMS). Firstly,
when selecting the timescales we set the fast time as
ω = ωr and hence τ = ωr t . The result of this is that
Eq. (20) is modified to

ẍ + ω2
nx + εnx (x) = 0

x = x(τ, T )−−−−−−−−−→
ω2
r x

†† + ε2ωr x
†‡ + ε2x‡‡ + ω2

nx + εnx (x) = 0,

(33)

where, now, τ = ωr t , whereas previously, in Eq. (21),
τ = ωnt .

Now, we apply a frequency tuning to remove the ωn

terms. This tuning can take a number of forms, but let us
select the same detuning as used in the DNF approach,
with its link to modifying the linear and nonlinear stiff-
ness terms, and use ω2

n = ω2
r + εδ. Substituting this

and Eq. (18) into Eq. (33) and balancing for εi give

ε0 : ω2
r X

††
0 + ω2

r X0 = 0,

ε1 : ω2
r X

††
1 + ω2

r X1 = −δX0 − 2ωr X
†‡
0 − nx (X0),

(34)

which may be compared with Eq. (21) for the standard
MS approach.

The solution to the ε0 equation is the same as before,
namely Eq. (22), although note that now τ = ωr t ,
whereas, previously, τ = ωnt . The ε1 equation may
be solved using the steps outlined previously. Step1MS

involves balancing the resonant termusing themodified
equation

− δA(T ) cos(τ + φ(T ))

+ 2ωr A(T )‡ sin(τ + φ(T ))

+ 2ωr A(T )φ(T )‡ cos(τ + φ(T )) = Res{nx (X0)},
(35)

and for the Duffing oscillator this results in

A(T )‡ = 0,−δA(T ) + 2ωr A(T )φ(T )‡

− 3α

4
A(T )3 = 0.

(36)

These can be solved to give

A(T ) = constant = Ac, φ(T ) = φc, δ = −3α

4
A2
c .

(37)

Note here, that the frequency shift is captured using
δ, as δ is defined as the detuning parameter, and so
φ(T ) is set to a constant. Using this and recalling that
ω2
n = ω2

r + εδ result in a frequency response equation
given by

ωr =
√

ω2
n + ε

3α

4
A2
c . (38)

This is identical to the expression obtained by the DNF,
as shown in Eq. (15) and Table 1.

Now, Step 2MS is applied to find the harmonics cap-
tured by X1. With the resonant terms removed, the ε1

balance may be expressed as

ω2
r X

††
1 + ω2

r X1 = −NRes{nx (X0)}
= −α

4
A3
c cos (3(ωr t + φc)) ,

(39)

where X0 = Ac cos(τ + φc) and τ = ωr t has been
used. Solving this differential equation gives

X1 = α

32ω2
r
A3
c cos (3(ωr t + φc)) . (40)
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Hence the order ε1 solution, x = X0 + εX1, is given
by

x = Ac cos(ωr t + φc) + α

32ω2
r
A3
c cos(3(ωr t + φc))

with: ω2
r = ω2

n + 3α

4
A2
c . (41)

This is identical to the response predicted using the
DNF approach, see Table 1.

As previously mentioned, a similar detuning of the
MS technique is considered in [32], which introduces
an ε perturbation, ω2 = ω2

0 + εω1 + ε2ω2 + · · · , to
resolve the issues of secular terms in the response.2

Once truncated to order ε1, this expansion can be
seen to be the same as that in the DNF method, though
without the physical interpretation of a series expansion
about the underlying natural frequency. It should be
noted that, in [32], the first term is given as a square
simply because it is convenient.

Note that the steps for the dMSmethod are illustrated
in Online Resource 3.

3.3 Comparison of detuned multiple scales and direct
normal form

It has been shown that the predicted response using the
DNFmethod can bematched by the dMSmethod. Now
we compare these two techniques in more detail for the
case where the amplitude of response is assumed to be
fixed, i.e. A(T ) = Ac. As with all the discussions up
to this point, we will consider the ε1 accuracy case for
a SDOF system.

The form of the response for the methods may be
written as

dMS: x = X0 + εX1

DNF: x = q = u + εh1u∗
1,

(42)

where the ε0 term on the right-hand side of both equa-
tions represents the resonant response and the ε1 term
the harmonic response. The resonant response takes the
form

dMS: X0 = Ac cos(τ + φc), τ = ωr t

DNF: u = Ac

2
ei(ωr t−φc) + Ac

2
e−i(ωr t−φc)

= Ac cos(ωr t + φc).

2 Interestingly, it can be seen that ω0 = ωn , even though the ωi
terms are arbitrary in [32].

Here we have set φ(T ) = φc as discussed in the pre-
vious section. In both cases, the expression for the
response frequency is derived by considering the reso-
nant terms in the ε1 equation.

For MS, for the case where A(T ) = Ac and φ(T ) =
φc, Eq. (35) can be simplified to give

− δAc cos(ωr t + φc) = Res{nx (Ac cos(ωr t + φc))},
(43)

and hence, applying this in the dMS method and using
ω2
n = ω2

r + εδ, we get

ω2
r = ω2

n + 1

Ac cos(ωr t + φc)

Res{nx (Ac cos(ωr t + φc))}.
(44)

In the case of the DNF approach, the transformed
dynamic equation is ü + ω2

nu + εnu1u∗
1 = 0 where

nu1u∗
1 is determined using Step3NF . This step solves

(ddᵀ − ω2
r 11,�) ◦ h1 = nq1 − nu1 by consider-

ing the elements term by term. For elements where
(ddᵀ−ω2

r 11,�) = 0, the resonant terms, the equation is
satisfied by setting the corresponding elements in nu1
equal to those in nq1. This is equivalent to stating that
nu1u∗

1 = Res{nqu∗
1} = Res{nq(q)}. By substituting

this, along with the solution for u into the transformed
equation ofmotion and noting that, for a SDOF system,
nq = nx , we can write
(
−ω2

r + ω2
n

)
Ac cos(ωr t + φc)

+ Res{nx (Ac cos(ωr t + φc))} = 0,
(45)

to obtain to the same expression as dMS, Eq. (43).
Now, considering the harmonic contribution, from

Eq. (39), we have

ω2
r X

††
1 + ω2

r X1 = −NRes{nx (X0)}. (46)

Recalling for the dMS technique that fast time is
defined as τ = ωr t , the double derivative of X1 with
respect to τ may be written as X††

1 = (1/ω2
r )Ẍ1, hence

dMS:
d2

dt2
{X1} + ω2

r X1 = −NRes{nx (X0)}. (47)

In the case of the DNF method, the harmonic terms are
found in Step 3NF where (ddᵀ −ω2

r 11,�)◦h1 = ne1 −
nu1 is considered. For the non-resonant, or harmonic,
elements this equation is satisfied by setting the left-
hand side of the equation equal to the values in ne1
on an element-by-element basis. From the derivation
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in Appendix A, it can be seen that this solution arises
from Eq. (A.3) and may be expressed as

− h1ü∗
1 − Γ h1u∗

1 = NRes{ne1u∗
1} = NRes{nx (u)}.

(48)

Recalling that, for a SDOF system, Γ = ω2
r and that

h1 is a coefficient matrix, we can rewrite Eq. (48) as

DNF:
d2

dt2
{h1u∗

1} + ω2
r h1u

∗
1 = −NRes{nx (u)}. (49)

It can be seen that this is the same as the harmonic
expression for the direct MS approach, Eq. (46), by
following the relationship in Eq. (42) and setting u =
X0 and h1u∗

1 = X1.
From this, we can conclude that, at an accuracy level

of ε1, the prediction of periodic oscillations using the
DNF and MS methods can be made the same. This
requires the MS technique to use τ = ωr t , as in the
DNF method, for fast time and to remove ωn from the
equations of motion using the frequency tuning ω2

n =
ω2
r + εδ. As discussed in [37], this is justified based

on the idea that the system can be linearised about a
stiffness ω2

r x rather than ω2
nx to potentially reduce the

size of the nonlinear term. This may be substituted into
Eq. (41) to give the full solution to order ε1.

3.4 Alternative frequency tunings

So far in this section, we have shown that the MS
and DNF techniques are equivalent, to order ε1, under
the special conditions that the fast time is set to τ =
ωr t and the stiffness term, ω2

nx , in the equation of
motion is rewritten as (ω2

r + εδ)x , where δ can still
be viewed as a detuning parameter. However, this fre-
quency tuning approach raises the question about the
predicted response when a different detuning parame-
ter is selected.

For the case of the DNF method, this has been
addressed in [37] for both single- and multi-degree-of-
freedom systems. Consider the arbitrary frequency tun-
ing ω2

n = ω2
d + δd , where ωd is the detuned frequency

with ωd = ωr for the standard technique described in
2.1. In the MDOF notation used in Appendix A, the
equivalent expression is � = �d + Δd . In [37], it was
shown that the prediction of the response at the funda-
mental frequency is independent of the chosen detuning
at order ε1. The reason for this is that the only change to
the ε1 balance, Eq. (A.3), is that �d , a diagonal matrix

of ω2
ri terms, is replaced by a diagonal matrix of ω2

di
terms. The result is that, in Step3NF , h1 and nu1 are
now found using Eq. (10).

When satisfying Eq. (10) using the arbitrary fre-
quency tuning, we apply the rule defined in Step3NF

to entries that are approximately zero in the brackets,
rather than looking for values which are exactly zero.
The corresponding terms in nu1 are still set to those
in nq1. As these terms are the same as those for the
case where ωd = ωr , the resulting nonlinear function
in u, nu1, also remains the same. Hence, the ε1 order
equation of motion in u, and the subsequent response at
the resonant frequency, is independent of the selection
of ωd . However, the harmonic response prediction is
affected, as each term in this is dependent on the non-
near-zero value of the bracketed term in Eq. (10). The
result is that, for the Duffing oscillator, the vector for
h1 becomes

h1 =
[

α

9ω2
r − ω2

d

0 0
α

9ω2
r − ω2

d

]
(50)

which may be compared to Eq. (12) for the case where
the standard frequency tuning, ωd = ωr , is used. Thus,
in contrast to the fundamental frequency response,
which is not a function of the detuning parameter, the
prediction for the third harmonic amplitude is depen-
dent on the choice of detuning frequency and is given by

A3 = αA3
c

4(9ω2
r − ω2

d)
. (51)

Figure 2 shows the DNF prediction of the response of
the Duffing oscillator in terms of the first and third har-
monics for a range of frequency tuning frequencies,
ωd = ωr + (ωn − ωr )γ , from γ = 0, corresponding
to the standard detuning used in DNF (i.e. ωd = ωr )
to γ = 1, where no detuning is used (i.e. ωd = ωn).
Figure 2a shows that the prediction of the response at
the resonant frequency is robust to the choice of detun-
ing parameter; however, the third harmonic response is
affected by its choice and is better captured using the
standard DNF detuning (γ = 0) than with no detuning
(γ = 1).

Now, consideringMS, we have already seen that the
selection of the fast time–frequency and the subsequent
frequency tuning equation (for the case where this fre-
quency did not match ωn) does affect both the resonant
response and that of the harmonics at order ε1 accu-
racy. In general, if we write the fast time as τ = ωd t ,
where for dMS ωd = ωr , the ε balance equations [see
Eq. (21) for MS and Eq. (34) for dMS] become
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Fig. 2 a Fundamental and
b third harmonic amplitude
response curves for the
undamped Duffing
oscillator, using ωn = 1,
α = 0.5, and γ ∈ [0, 1]
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ε0 : ω2
d X

††
0 + ω2

d X0 = 0,

ε1 : ω2
d X

††
1 + ω2

d X1 = δd X0 − 2ωd X
†‡
0 − nx (X0),

(52)

where the εiω2
n Xi terms have been rewritten as

εiω2
d Xi + εi+1δd Xi prior to the balancing using the

ω2
n = ω2

d + δd frequency tuning expression. In addi-
tion, the Taylor series expansionωn = ωd +εδd/(2ωd)

has been used to remove ωn in the slow dynamics term
2ωn X

†‡
0 .

Following this approach results in X0 =
A(T ) cos(τ+φ(t)) = A(T ) cos(ωd t+φ(t)) and, using
the ε1 equation, we find that, for the Duffing oscillator,

A(T )‡ = 0,−δd A(T ) + 2ωd A(T )φ(T )‡

− 3α

4
A(T )3 = 0,

(53)

which may be compared to Eqs. (25) and (36) for the
MS and dMS techniques, respectively. Solving the dif-
ferential equations in φ(T ) and A(T ) and substituting
the solutions into the X0 expression give

X0 = A(T ) cos(ωd t + φ(t))

= Ac cos

([
ωd + δd

2ωd
+ 3α

8ωd
A2
c

]
t + φc

)
,
(54)

where Ac and φc are the values of A(T ) and φ(T ) at
t = 0. Recalling that δd is defined in ω2

n = ω2
d + δd ,

this gives the response frequency ωr = ω2
n/(2ωd) +

ωd/2+ 3αA2
c/(8ωd). Writing ωd = ωr + (ωn − ωr )γ

results in the response frequency equation

(1 − γ 2)ω2
r + (2ωnγ

2)ωr

−
(

ω2
n(1 + γ 2) + 3αAc

4

)
= 0,

(55)

and, from solving the ε1 expression, the resulting har-
monic response amplitude is

A3 = αA3
c

32ω2
d

= αA3
c

32(ωr + γ (ωn − ωr ))2
(56)

Figure 3 demonstrates that varying γ from 0 to 1 trans-
forms the response from the DNF/dMS to the stan-
dard MS response. For the MS technique, δd = 0 and,
hence, the frequency shift away form ωn is captured by
φ(T ). However, for the dMS technique, ωd = ωr and
soφ(T ) = φc represents the fact that the X0 response is
at response frequency ωr . These represent two special
cases, for a general frequency tuning with fast time
τ = ωd t ; the thin, green curves in Fig. 3 represent
a continuum between these two cases. Note that the
accuracy of the DNF method is only reached when the
detuning from that method is used. Interestingly, the
fundamental response is independent of the detuning
for the DNF method, whereas this is not the case for
MS.

4 Example: non-symmetric, two-mass oscillator

A 2DOF system is considered in this section, allowing
the two methods to be compared using a more com-
plex system, as well as examining the robustness of the
frequency tuning methods.

The system under consideration is the same as that
in [38]. It consists of a two-mass oscillator with a sym-
metric underlying system of linear springs; two cubic
nonlinear springs are added in parallel with the corre-
sponding linear springs, one grounding the first mass
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Fig. 3 a Fundamental and
b third harmonic amplitude
response curves for the
undamped Duffing
oscillator, using ωn = 1,
α = 0.5, and γ ∈ [0, 1]
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and one connecting the two masses. Therefore, the
force-deflection equation for the grounding of the first
mass is F = k1(Δx) + κ1(Δx)3 and the relationship
is similar for the springs connecting the masses, given
by F = k2(Δx) + κ2(Δx)3. Here, ki and κi are the
spring constants of the linear and nonlinear springs,
respectively. As in [38], both techniques are applied
directly to the modal equations of motion to ease the
comparison of solutions. These are given by

q̈ + �q + Nq(q) = 0 (57)

where � is a diagonal matrix of the squared natural
frequencies of the underlying linear system, ω2

ni , and

Nq(q) = κ1

2m

(
(q1 + q2)3

(q1 + q2)3 + βq32

)
, (58)

with β = 16 κ2
κ1
.

The application of the methods is largely the same
as for the Duffing oscillator considered in previous
sections, so only a brief overview is given below. For
brevity, solutions will only be considered to order ε1.
In addition, we provide scripts, as supplementarymate-
rial, that allow the equations to be derived symbolically
using Wolfram Mathematica.

4.1 Multiple scales

Standard perturbations are again implemented, giving
the two modal coordinates as
q1(t) = Q10(τ1, T ) + εQ11(τ1, T ) + · · · ,

q2(t) = Q20(τ2, T ) + εQ21(τ2, T ) + · · · .
(59)

The notation τi = ωni t has been introduced to ensure
that the fast time for each mode corresponds to the

appropriate natural frequency. It should be noted that,
for this model, we consider the case τ1 ≈ τ2.

Implementing this perturbation, as well as the corre-
sponding adaptation of the derivative given in Eq. (19),
results in zeroth- and first-order perturbation equations
that take the same form as in Eq. (21), and hence, the
former can be solved to give

Q10 = A1,1(T ) cos(τ1 + φ1(T )),

Q20 = A2,1(T ) cos(τ2 + φ2(T )),
(60)

where Ai, j denotes the amplitude of the j th harmonic
in the i th mode. These solutions can be applied to the
first-order equation [equivalent to the SDOF equation
in Eq. (21)] to give the ε1 equations

ω2
n1Q

††
11 + ω2

n1Q11

= 2ωn1A1,1(T )‡ sin(τ1 + φ1(T ))

+ A1,1(T )

8
(16ωn1φ

‡
1(T )

−3κ1[A1,1(T )2 + 2A2,1(T )2]) cos(τ1 + φ1(T ))

−nq1(Q10, Q20),

ω2
n2Q

††
21 + ω2

n2Q21

= 2ωn2A2,1(T )‡ sin(τ2 + φ2(T ))

+ A2,1(T )

8
(16ωn1φ

‡
2(T ) − 3κ1[A1,1(T )2

+2(1 + β)A2,1(T )2]) cos(τ2 + φ2(T ))

−nq2(Q10, Q20). (61)

The nonlinear terms, nqi (Q10, Q20), are lengthy and
contain fundamental and harmonic terms. Therefore,
they are not shown here.
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Fig. 4 Fundamental
amplitude response curves
for the 2DOF system, using
ωn1 = 1, ωn2 = 1.005,
κ1 = 0.5, and κ2 = 0.05.
Panels a and c show the
response of the first mode,
and panels b and d show the
response of the second
mode
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Collecting the resonant terms allows the amplitudes
and phases to be calculated, as in the SDOF case, so
that
2ωn1A1,1(T )‡ sin(τ1 + φ1(T ))

+ A1,1(T )

8
(16ωn1φ

‡
1(T )

− 3κ1[A1,1(T )2 + 2A2,1(T )2]) cos(τ1 + φ1(T ))

− Res{nq1(Q10, Q20)} = 0,

2ωn2A2,1(T )‡ sin(τ2 + φ2(T ))

+ A2,1(T )

8
(16ωn1φ

‡
2(T ) − 3κ1[A1,1(T )2

+ 2(1 + β)A2,1(T )2]) cos(τ2 + φ2(T ))

− Res{nq2(Q10, Q20)} = 0.

(62)

These equations can now be solved to give:

A1,1(T ) = Ac1,

φ1(T ) = 3κ1
16ωn1Ac1

(Ac1 + Ac2)
3T + φc1,

A2,1(T ) = Ac2,

φ2(T ) = 3κ1
16ωn2Ac2

((Ac1+Ac2)
3 + βA3

c2)T+φc2,

(63)

where β = 16κ2
κ1

. Note that the expressions for phase
enforce the condition that neither fundamental ampli-
tude can be equal to zero. Therefore, recalling that
τ1 = ωn1t results in

Q10 = Ac1 cos(ωr t + φc1),

with: ωr = ωn1 + ε
3κ1

16ωn1Ac1
(Ac1 + Ac2)

3,

Q20 = Ac2 cos(ωr t + φc2),

with: ωr = ωn2

+ ε
3κ1

16ωn2Ac2

[
(Ac1 + Ac2)

3 + βA3
c2

]
.

(64)

This leads to the following compatibility condition

ωn1ωn2(ωn2 − ωn1)

= 3εκ1
16Ac1Ac2

[
(Ac2ωn2 − Ac1ωn1)(Ac1 + Ac2)

3

−βAc1A
3
c2ωn1

]
. (65)

This expression can now be used to find Ac1 in terms
of Ac2, or vice versa. However, the explicit solution is
non-trivial and is not shown here.

The resulting backbone curves from Eq. (64) are
given in Fig. 4 and discussed in Sect. 4.3. Due to
the involved process required to find the harmonics,
analytical solutions for these are not given, but have
been derived using Wolfram Mathematica and solved
numerically to allow comparison between the tech-
niques; this is discussed in Sect. 4.3.

4.2 Direct normal form

This technique also closely mirrors its SDOF counter-
part, so only a brief description of the key differences is
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given. The resonant equations of motion are once again
found in terms of u, with

ui = uip + uim = Aci

2
(e+i(ωr t−φi ) + e−i(ωr t−φi )).

(66)

Steps1NF–3NF are followed as previously described
and are not shown here due to the large size of the
matrices involved. Full workings are shown in [38].

The frequency–amplitude relationships that arise are
given by

3κ1(Ac1 + Ac2)
3

8m
+ Ac1(ω

2
n1 − ω2

r ) = 0,

3κ1[(Ac1 + Ac2)
3 + βA3

c2]
8m

+ Ac2(ω
2
n2 − ω2

r ) = 0.

(67)

These results are comparable with Eq. (64) and the
resulting backbone curves are, again, displayed in
Fig. 4. Similarly, the equations for the harmonics are
algebraically complex and are solved numerically.

4.3 Detuned multiple scales

The key difference when applying the dMS in two
degrees of freedom (2DOF) is that separate frequency
tunings are to be applied to each mode

ω2
ni = ω2

r + εδi , for i = 1, 2. (68)

Again, the resonant equations are used tofind the ampli-
tude, phase, and nowdetuning parameter. For the 2DOF
case under consideration, these are given by

A1,1(T ) = Ac1, φ1(T ) = φc1,

δ1 = 3κ1
8ωn1Ac1

(Ac1 + Ac2)
3,

A2,1(T ) = Ac2, φ2(T ) = φc2,

δ2 = 3κ1
8ωn2Ac2

[
(Ac1 + Ac2)

3 + βA3
c2

]
.

(69)

Thus, substituting these values into Eq. (68) gives the
frequency–amplitude equations as

3κ1(Ac1 + Ac2)
3

8m
+ Ac1

(
ω2
n1 − ω2

r

)
= 0,

3κ1
(
(Ac1 + Ac2)

3 + βA3
c2

)

8m
+ Ac2

(
ω2
n2 − ω2

r

)
= 0.

(70)

Comparing these with Eq. (67) demonstrates that the
results from the dMS method, once again, match those

from DNF. It should be made clear that, in Figs. 4 and
5, the curve for the dMS method has not been printed
as it is coincident with the DNF curve.

As with the SDOF case, the final forms of qi are
identical, though this is not shown here for reasons of
brevity.

4.4 Comparison of the techniques

The fundamental backbone curves for the first and sec-
ondmodal responses are given in Fig. 4. Four backbone
curves are shown for each technique. Panels (a) and
(b) correspond to the first backbone curve of the sys-
tem, that is, the curve which initiates at the first natural
frequency of the underlying linear system, ωn1; pan-
els (c) and (d) represent the second backbone curve.
These results are comparable to those for the Duffing
oscillator in Fig. 1, with the MS curve underestimating
the numerical continuation results and the DNF/dMS
results again remain closer to the numerical continua-
tion results. The difference between themethods grows
significantly with increasing amplitude. In particular,
the MS results diverge noticeably from the numerical
and DNF/dMS counterparts at higher amplitudes. As
verified in [38], this is the result of the loss of influence
of the higher-order terms during the linearisation of the
system.

Interestingly, the third harmonic components of the
backbone curves in Fig. 5 are qualitatively different
from the equivalent curve for the Duffing oscillator.
While the amplitudes of the third harmonics from the
MS method in the SDOF case were greater than those
from numerical continuation, Fig. 5 shows that the
opposite is true for the 2DOF responses. This incon-
sistency suggests that the MS method is less robust
to changes in the system compared to the DNF and
dMSmethods, which remains consistent across the two
cases, although higher-order cases have not been con-
sidered in this study.

5 Conclusions and discussion

This paper presents a comparison between the multiple
scales and direct normal form techniques and investi-
gates whether the two methods can produce equiva-
lent results. In particular, the detuning used in the DNF
method was applied in the MS method to investigate
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Fig. 5 Third harmonic
amplitude response curves
for the 2DOF system, using
ωn1 = 1, ωn2 = 1.005,
κ1 = 0.5, and κ2 = 0.05.
Panels a and c show the
response of the first mode,
and panels b and d show the
response of the second
mode
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whether a similar level of accuracy could be achieved.
The frequency detuning, which can be physically inter-
preted as away of reducing the amplitude of the nonlin-
ear term based on adapting the effective linear stiffness,
is inherent in the DNF method and has been shown to
improve the prediction of the harmonic response con-
tent. In applying this detuning in theMSmethod, it was
shown that the two methods could be equated, giving
identical solutions up to ε2 order.

The DNF is advantageous insofar as a natural detun-
ing approach is intrinsic in its formulation, whereas this
is not the case for theMS technique. It is, therefore, the
decision of the user as to whether a detuning is utilised
to increase the accuracy of the method. Furthermore, it
has been demonstrated that the fundamental response
prediction is robust to changes in detuning in the DNF
method. Since this is not the case for theMS technique,
we observe that there is room for further optimisation of
the detuning to be applied, which could further increase
the accuracy of the method.

To aid the understanding of these methods, as well
as the differences in their implementation, Wolfram
Mathematica files for the 2DOF case have been pro-
vided as open access data files. These closely follow
the steps defined in Sect. 2 and are designed to be used
in conjunction with this paper to give a practical under-
standing of each procedure.
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Appendix A

Considering a MDOF system, expressed in linear
modal coordinates, the direct normal form, to order ε

accuracy, involves the transform

q̈ + Λq + εnq(q) = 0
q = u + εh1u∗

1−−−−−−−−−−−→
ü + Λu + εnu1u∗

1 = 0.
(A.1)

Here, Λ is a diagonal matrix with the i th diagonal ele-
ment being the square of the i th linear natural frequency,
ω2
ni . This reduces to Eq. (3) for the case where a single

mode is considered, with q = q, u = u, n = n and
Λ = ω2

n1 = ω2
n to indicate that the terms are now scalar

quantities or functions.
To find vector u∗

1, we make use of the fact that in
the transformed equation ofmotion the harmonic terms
have been removed such that the response in the i th

coordinates ui may be expressed as

ui = u pi + umi

= Aci

2
ei(ωri t−φ0i ) + Aci

2
e−i(ωri t−φ0i ).

(A.2)
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Using this the nonlinear function nq expressed in terms
of umay be written as nq(u) = nq(up +um) = ne1u∗

1.
Here u∗ is an � × 1 vector consisting of all � combi-
nations of u pi and umi generated by nq(up + um) and
ne1 is a n × � matrix (for an n degree-of-freedom sys-
tem) that contains coefficient values. The subscript e
in ne1 indicates that this term can be thought of as an
excitation term in the following discussion.

Now, considering Eq. (A.1), the transform can be
substituted into the equation of motion in q. The result-
ing expression can first be simplified using the resonant
equation of motion and then balanced in terms of ε to
give

ε1 : s − h1ü∗
1 − Γ h1u∗

1 = ne1u∗
1 − nu1u∗

1, (A.3)

where Γ is a diagonal matrix with the i th diagonal ele-
ment being the square of the i th response frequency,
ω2
ri . Here, a Taylor series expansion has been used on

the nonlinear function: n(q) = n(u) + O(ε). In addi-
tion, a form of frequency tuning, similar to that used
in [37], is employed: we write Λ = Γ + εΔ when
considering the h1u∗

1 terms.
Now, observing that each element in u∗

1 is made up
of up and um elements which themselves are complex
exponentials in time, if follows that each term inu∗

1 may
be written as complex exponentials in time. Therefore,
when differentiating u∗ twice with time, each element
maps onto a scaled version of itself. So, we may repre-
sent ü∗

1 as

d2 u∗
1

d t2
= −dd ◦ u∗

1 (A.4)

where dd is a vector of length � × 1 and ◦ is the
Hadamard product (element-wise matrix multiplica-
tion). Using this, we canwrite the first term in Eq. (A.3)
as

− h1ü∗
1 = h1

(
dd ◦ u∗

1

) = [(
1n,1ddᵀ) ◦ h1

]
u∗
1,

(A.5)

where 1a,b is an a × b matrix of ones. In addition,
making use of the fact that Γ is a diagonal matrix, the
second term in Eq. (A.3) may be expressed in a similar
form

Γ h1u∗
1 = [(

Γ 1n,�

) ◦ h1
]
u∗
1. (A.6)

Substituting these into Eq. (A.3) gives

(1n,1ddᵀ − Γ 1n,�) ◦ h1 = ne1 − nu1. (A.7)

It can be seen that this reduces to the equation given in
Step3NF of the normal form description for the SDOF

case (n = 1). Using Step3NF , the equation can be
solved to find h1 and nu1 and hence identify the trans-
form and transformed equation of motion, respectively.
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