
Nonlinear Dyn (2018) 94:2889–2899
https://doi.org/10.1007/s11071-018-4532-3

ORIGINAL PAPER

Fixed-time stabilization of high-order integrator systems
with mismatched disturbances

Bailing Tian · Hanchen Lu · Zongyu Zuo ·
Hong Wang

Received: 1 February 2018 / Accepted: 17 July 2018 / Published online: 30 August 2018
© Springer Nature B.V. 2018

Abstract The fixed-time stabilization of high-order
integrator systems with both matched and mismatched
disturbances is investigated. A continuous non-
switching control law is designed based on the bi-
limit homogeneous technique for arbitrary-order inte-
grator systems. Combiningwith fixed-time disturbance
observer, the proposed continuous control law for the
system with matched and mismatched disturbances
guarantees that the convergence time is uniformly
bounded with respect to any initial states. Finally, the
numerical results are provided to verify the efficiency
of the developed method.
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1 Introduction

In comparison with the systems with asymptotically
stable, the finite-time stable systems show some addi-
tional properties, such as faster convergence rate,
higher accuracy and better disturbance rejection [1–
3]. As a result, extensive work has been studied during
the last years from the point of view both in theory and
in practice [4–6].

The homogeneous technique is commonly applied
to develop a finite-time stabilizing control law for high-
order systems [7]. Subsequently, the method in [7] was
extended to deal with the system with mismatched dis-
turbances in [8]. In addition, a sufficient condition was
proposed in [9] using Lyapunov method, which has
been widely applied in finite-time analysis of nonlinear
systems [10,11]. Nevertheless, the convergence time
achieved by these methods aforementioned increases
unboundedly together with the initial states. To address
the issue, the fixed-time stabilization has received a lot
attention [12–16] in the recent years. The systems with
fixed-time stabilization show some excellent properties
such as uniform finite-time convergence with respect
to any initial condition, which is very useful in practice
for systemswhose initial states are varying or uncertain
[17]. In this case, the finite-time control algorithm is not
able to provide an estimation of the convergence time
which is dependent on the initial condition. However,
the fixed-time algorithm avoids the issue due to the fact
that the upper bound of the convergence time is inde-
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pendent on the initial condition. In [18], the Lyapunov
technique was utilized to achieve a sufficient condition
ensuring the fixed-time stability of a class of nonlin-
ear systems. Nevertheless, it is non-trivial to extend
the fixed-time stabilizing control algorithms from first-
order or second-order systems [13,19,20] to high-order
cases due to the fact that an analytic Lyapunov func-
tion satisfying the sufficient condition is difficult to
develop. In spite of the difficulties, some work on this
issue has been investigated in the recent years. Specif-
ically, a fixed-time stabilizing control law was pro-
posed based on an implicit Lyapunov function (ILF)
for high-order integrator systems in [21]. Instead of
providing an analytical control law, an online compu-
tation of the ILF value at the current state is required
in the algorithm. Hence, it is applicable only in digi-
tal controller. Another result on fixed-time stabilization
for high-order systems can be found in [22], where a
Lyapunov-based homogeneous technique was used for
controller design. However, the control law provided
in [22] was designed based on switching control strat-
egy. In practice, the non-switching control lawwith less
control effort is more desirable [18].

Motivation It is well known that the classic finite-
time stabilizing control law presented in [23] can be
easily used to develop a finite-time control algorithm
for high-order systems subject to disturbances, such as
[11,24] and [25], to name a few. As aforementioned,
it is non-trivial to design a fixed-time control algo-
rithm for high-order systems utilizing the Lyapunov
methods. Hence, we are wondering if there exists a
fixed-time control law having a similar form with that
in [23] for arbitrary-order integrator systems. If it is
available, then some fixed-time control algorithms can
be designed for high-order systems following the ideas
in [11,24] and [25]. Bearing this in mind, an important
motivation of the current work is to design a fixed-time
control law covering the one in [23] as a special case.
In addition, disturbance-observer-based methods have
received much attention in improving the control per-
formance of systems subject to disturbance [26,27].
Nevertheless, the fixed-time control algorithm based
on disturbance observer for systems with both matched
and mismatched disturbances is little discussed in the
open literature but is common in practice [28], which
constitutes the second motivation of the research.

Contributions The main contributions of the work
are twofold. First, a novel continuous non-switching
fixed-time stabilizing control law is developed for inte-

grator systems with arbitrary-order dynamics, which
covers the classic finite-time control law [23] as a spe-
cial case. Second, both thematched and themismatched
disturbances are dealt with by a fixed-time disturbance
observer, and some fine properties of the developed
method are expected, such as fixed-time convergence
as well as chattering alleviation.

The remainder of the paper is as follows. In Sect. 2,
some concepts and lemmas on finite-time stability are
recalled, and the problem is formulated. Section 3 is
devoted to the construction of a non-switching fixed-
time stabilizing control law for arbitrary-order inte-
grator system. In Sect. 4, disturbance-observer-based
fixed-time stabilizing control law is proposed for high-
order system with matched and mismatched distur-
bances. In Sect. 5, an illustrative numerical example
is given. Finally, concluding remarks are presented in
Sect. 6.

2 Preliminaries and problem statement

In this section, some notations and useful lemmas to be
used in the subsequent development of the proposed
algorithm are provided. Then, the problem discussed
in the context is formulated.

2.1 Notations

Let α > 0 be an arbitrary positive constant, and
the notation x �→ �x�α is defined by �x�α =
|x |αsign(x) for all x ∈ R. For strictly positive num-
bers ri , i = 1, . . . , n and λ > 0, define the vector
of weights r = [r1, . . . , rn] and the dilation function
Λr (λ) = diag{λr1, . . . , λrn }. With the definition, one
has Λr (λ)x = diag{λr1x1, . . . , λrn xn} for any x ∈ R

n .
Furthermore, for continuous and positive definite func-
tion V (x), let set V−1([α, β]) = {x ∈ R

n : α ≤
V (x) ≤ β} denote the [α, β] sublevel set of V (x).
Define Bε[0] = {x ∈ R

n : ‖x‖ ≤ ε}. Denote the n
dimensional column vector x = [x1, . . . , xn]T ∈ R

n

by x = [xi ]T ∈ R
n .

2.2 Definitions and lemmas

In this context, the following nonlinear system is con-
sidered
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ẋ = f (x), x(0) = x0 (1)

where x = [xi ]T ∈ R
n is the state vector, f (x) =

[ fi (x)]T ∈ R
n ensures forward existence and unique-

ness of the system solutions at least locally satisfy-
ing f (0) = 0. Some useful definitions and lemmas
on finite-time stability are recalled below, which are
required in the subsequent development.

Definition 1 [29] A function g : R
n → R is r -

homogeneous with degree k ∈ R if the condition
λ−kg(Λr (λ)x) = g(x) holds for any x ∈ R

n and any
positive real number λ > 0.

Definition 2 [29] A vector field f : R
n → R

n is
r -homogeneous with degree k ∈ R if the condition
λ−kΛ−1

r f (Λr (λ)x) = f (x) holds for any x ∈ R
n and

any positive real number λ > 0.

Definition 3 [30] A function g : Rn → R is homo-
geneous in the p-limit (p = 0 or p = ∞) with
triple (rp, kp, gp), where rp = [rp,1, . . . , rp,n] ∈ R

n

denotes the vector of weights, kp represents the degree,
and gp is the approximating function, if the equality
limλ→p maxx∈C |λ−kp g(Λ

rp
λ (x)) − gp(x)| = 0 holds

for any C ∈ R
n\{0}.

Definition 4 [30] A vector field f : R
n → R

n is
homogeneous in the p-limit with triple (rp, kp, f p)
where rp = [rp,1, . . . , rp,n] ∈ R

n denotes the vector of
weights, kp represents the degree and f p is the approxi-
matingvectorfield if the i th component of f is homoge-
neous in the p-limit under the triple (rp, kp+rp,i , f p,i )
with the condition kp + rp,i > 0 being hold.

Definition 5 [30] A vector field f : Rn → R
n is bi-

limit homogeneous if it is homogeneous in both 0-limit
and ∞-limit.

Definition 6 [21] The origin of system (1) is said to
be globally finite-time stable if it is globally asymptot-
ically stable and any solution x(t, x0) of (1) attains it
in finite time, i.e., x(t, x0) = 0 for ∀t ≥ T (x0) where
T : Rn → R+ ∪ 0 is the settling-time function.

Definition 7 [21] The origin of system (1) is said to
be globally fixed-time stable if it is globally finite-time
stable and the settling-time function T (x0) is bounded,
i.e., there exists Tmax > 0 such that T (x0) ≤ Tmax for
∀x0 ∈ R

n .

Lemma 1 [12] Consider system (1) with the assump-
tion that f (x) is bi-limit homogeneous with the triples
(r0, k0, f0) and (r∞, k∞, f∞). Then, the system (1) is
called to be fixed-time stable provided that the systems
ẋ = f (x), ẋ0 = f0(x) and ẋ∞ = f∞(x) are globally
asymptotically stable with the inequality k0 < 0 < k∞
being hold.

Lemma 2 [12]Consider the system ẋ = f (x, δ) ∈ R
n

with exogenous disturbance δ = [δi ]T ∈ R
m and sup-

pose that f (x, δ) is bi-limit homogeneous with triples
((r0, τ0), k0, f0) and ((r∞, τ∞), k∞, f∞), where τ0
and τ∞ areweights with respect to disturbance δ. Then,
the system ẋ = f (x, δ) is input-to-state stable (ISS)
with δ as input if its nominal system ẋ = f (x, 0) sat-
isfies all the hypotheses in Lemma 1.

2.3 Problem statement

Consider the following high-order integrator system
subject to both mismatched disturbances Δi (t) and
matched disturbance Δn(t), which covers many prac-
tical systems such as the attitude control of vehicles
[25,28], to name just a few.

ẋi = xi+1+Δi (t), ẋn = u+Δn(t), i =1, . . . , n−1

(2)

where xi ∈ R is the state variable, u is the control input,
x = [xi ]T ∈ R

n represents the state vector. To proceed,
the following assumption is required

Assumption 1 Suppose that the disturbance Δi (t)
in (2) is n + 1 − i times differentiable such that
Δ

(n+1−i)
i (t) has a known Lipschitz constant Li satis-

fying |Δ(n+1−i)
i (t)| ≤ Li .

The aimof thework is to design a continuous control
law u driving systemoutput y = x1 to zero in finite time
which is uniformly bounded with respect to any initial
conditions in the presence of matched and mismatched
disturbances.

3 Fixed-time stability of integrator systems

In this section, a fixed-time stabilizing control algo-
rithm is developed for integrator systemswith arbitrary-
order dynamics. To show that, let us consider the system
with the following form
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ẋ1 = x2, ẋ2 = x3, . . . , ẋn = u, x(0) = x0 (3)

where x = [xi ]T ∈ R
n and u ∈ R denote the state

vector and the control input, respectively, and x0 ∈ R
n

represents the initial condition of the system. In order
to guarantee the fixed-time stabilization of system (3)
under appropriate control input u, the following control
law is developed

u(x) = −
n∑

i=1

ki
(
�xi�
i + �xi� + �xi�
′

i

)
(4)

where the positive constants ki > 0, (i = 1, . . . , n)

are selected to ensure that the n-order polynomials sn+
knsn−1+· · ·+k2s+k1 and sn+3knsn−1+· · ·+3k2s+
3k1 areHurwitz, and the detailed implementation of the
selection of the parameter ki is provided in “Appendix.”
Furthermore, the parameters 
i , 


′
i , (i = 1, . . . , n) are

calculated by


n− j = 


( j + 1) − j

,


′
n− j = 2 − 


j
 − ( j − 1)
, ( j = 0, . . . , n − 1) (5)

due to the bi-limit homogeneity reasoning to be shown
in the subsequent proof. In (5), the parameter 
 is
selected in the interval (ε, 1) with ε ∈ ( n−2

n−1 , 1). In

fact, the high-order item �xi�
′
i in (4) is responsible for

driving the system states into a compact set in finite
time independent of any initial condition x0, whereas
the low-order item �xi�
i is used to ensure the finite
time stabilization of the system (3) with its initial state
x0 being in a any compact set. The following theorem is
presented to summarize the main result in this section.

Theorem 1 Consider system (3) under the control
law (4) with parameters provided in (5); then there
exists a positive real number ε in the interval ( n−2

n−1 , 1)
such that the origin of system (3) is fixed-time stable
for any initial condition x0 ∈ R

n if 
 ∈ (ε, 1) and
the parameters ki > 0, (i = 1, . . . , n) are chosen to
ensure that the n-order polynomials sn + knsn−1 +
· · · + k2s + k1 and sn + 3knsn−1 + · · · + 3k2s + 3k1
are Hurwitz.

Proof The proof proceeds in the following three steps.
First, it will be shown that the vector field (denoted
by f
(x)) of closed-loop system (3) under control
law (4) with parameters (5) is bi-limit homogeneous

with the triples (r0, k0, f
0(x)) and (r∞, k∞, f
∞(x))
to be given later, satisfying k0 < 0 < k∞. Then,
the globally asymptotical stability of its approximat-
ing systems ẋ = f
0(x) and ẋ = f
∞(x) would be
proved. Furthermore, it will be illustrated that the ori-
gin of system ẋ = f
(x) is also globally asymptotically
stable. In terms of Lemma 1, the result in this theorem
follows. ��

For brevity, the control law in (4) is divided into the
following three parts

u1(x) = −
n∑

i=1

ki�xi�
i

u2(x) = −
n∑

i=1

ki�xi�, u3(x) = −
n∑

i=1

ki�xi�
′
i (6)

Denote the closed-loop vector fields of system (3)
under control law u(x) = u1(x) and u(x) = u3(x) by
f
0(x) and f
∞(x), respectively. For any 
 ∈ (ε, 1)
with ε ∈ ( n−2

n−1 , 1), it follows from (5) that the condi-
tions 0 < 
i < 1 < 
′

i , (i = 1, . . . , n) hold. Hence,
it can be observed that f
0(x) and f
∞(x) can be con-
sidered as the approximating functions for f
(x) in 0-
limit and ∞-limit. Furthermore, selecting weight vec-
tors r0 = [r0i ]T ∈ R

n and r∞ = [r∞i ]T ∈ R
n with

r0n− j = ( j + 1) − j


1 − 

, r∞n− j = j
 − ( j − 1)

1 − 

(7)

where j = 0, . . . , n − 1. It follows from the homo-
geneity definitions provided in Sect. 2.2 that the vec-
tor fields f
0(x) (resp. f
∞(x)) are homogeneous with
weight r0 = [r0i ]T ∈ R

n (resp. r∞ = [r∞i ]T ∈ R
n)

defined in (7) and degree k0 = −1 (resp. k∞ = 1).
In the sequel, we will focus to show that the approx-

imating systems ẋ = f
0(x) and ẋ = f
∞(x) are glob-
ally asymptotically stable. To this end, the following
lemma is required.

Lemma 3 [23] Suppose that system (1) is homoge-
neous and there exists a compact set A ⊂ R

n that
is strictly positively invariant with respect to homo-
geneous system (1), then the origin of system (1) is
globally asymptotically stable.

Next, the idea to prove the globally asymptotic sta-
bility for systems ẋ = f
0(x) and ẋ = f
∞(x) fol-
lows the method in [23]. It follows from (5) that

i = 
′

i = 1, (i = 1, . . . , n) if specified with 
 = 1.
In this case, system ẋ = f
0(x) (resp.ẋ = f
∞(x)) is
reduced to
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Fig. 1 Visualizations idea
of global asymptotic
stability for ẋ = f
(x)

ẋ1 = x2, ẋ2 = x3, . . . , ẋn−1 = xn, ẋn = −
n∑

i=1

ki xi

(8)

which is globally asymptotically stable when the
parameters ki , (i = 1, . . . , n) are selected such that the
polynomial sn + knsn−1 + · · · + k2s + k1 is Hurwitz.
Therefore, there exists a continuous differentiable, pos-
itively definite and proper function V (x) such that
V̇ (x) < 0 for system (8) with any x ∈ R

n\{0}. Then,
let V (
, x) = V (x) and V̇ (
, x) denote the derivative
of V (x) along system ẋ = f
0(x) (resp.ẋ = f
∞(x)),
satisfying V̇ (1, x) = V̇ (x). In addition, it can be easily
found that V̇ (
, x) is continuouswith respect to
 and x .
Furthermore, define A = V−1([0, μ]) for any μ > 0,
and S = V−1({μ}) as the boundary of set A. Since
V (x) is proper, it follows that setsA andS are compact.
Hence, the continuous function V̇ (1, x) = V̇ (x) < 0
for any x ∈ S. Following the tube lemma (Lemma
5.8) in [31] that there exists a constant n−2

n−1 < ε1 < 1

(resp. n−2
n−1 < ε2 < 1), such that V̇ (
, x) < 0 for x ∈ S

with 
 ∈ (ε1, 1) (resp.
 ∈ (ε2, 1)), which is suffi-
cient to ensure that A is a strictly positively invari-
ant set for system ẋ = f
0(x) (resp.ẋ = f
∞(x)).
It follows from Lemma 3 that the global asymptotic
stability of system ẋ = f
0(x) (resp.ẋ = f
∞(x))
can be guaranteed. Therefore, there exists a constant
ε3 = max(ε1, ε2) ensuring global asymptotic stability
for both ẋ = f
0(x) and ẋ = f
∞(x)when 
 ∈ (ε3, 1).

Next, the global asymptotic stability of system ẋ =
f
(x) is to be proved. Instead of finding an unified Lya-
punov function for this system, we will find different
Lyapunov functions, i.e., V∞, V , and V0, in different
regions of C1, C2 and C3 (see Fig. 1) which covers the
whole state spaces. In this case, if V̇∞, V̇ and V̇0 are
strictly negative in C1, C2 and C3\{0}, respectively, then
the claim follows. The proof is summarized as below.

Since the bi-limit systems ẋ = f
0(x) and ẋ =
f
∞(x) are globally asymptotically stable for 
 ∈
(ε3, 1), it follows from Propositions 2.16 and 2.18 in
[12] that the origin of system ẋ = f
(x) is locally
asymptotically stable and there exists an invariant com-
pact set which is globally asymptotically stable for this
system. Following the results in [12], there exist strictly
positive real numbers υ0, υ∞ and continuous, positive
definite as well as proper functions V0(x) and V∞(x)
satisfying

∂V0
∂x

f
(x) < 0, x ∈ C3\{0} � Bυ0 [0]\{0} (9)

and

∂V∞
∂x

f
(x) < 0, x ∈ C1 � V−1∞ ([υ∞,+∞)) (10)

Next, our aim is to find a Lyapunov function V (x) in
region C2 (see Fig. 1), satisfying V̇ (x) < 0 for any
x ∈ C2 and

C1 ∪ C2 ∪ C3 = R
n (11)

Specifying with 
 = 1 in (5), system ẋ = f
(x) is
reduced to

ẋ1= x2, ẋ2= x3, . . . , ẋn−1= xn, ẋn = −
n∑

i=1

3ki xi

(12)

which is globally asymptotically stable with the selec-
tion of ki , (i = 1, . . . , n) such that sn+3knsn−1+· · ·+
3k2s + 3k1 is Hurwitz. The selection of positive real
numbers ki to ensure that the polynomials sn+knsn−1+
· · ·+ k2s+ k1 and sn +3knsn−1 +· · ·+3k2s+3k1 are
both Hurwitz provided in “Appendix.” Following the
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same analysis for system (8), it can be concluded that
there exists a constant ε4, satisfying n−2

n−1 < ε4 < 1,
and continuous, positive definite and proper function
V (x) such that

∂V

∂x
f
(x) < 0, x ∈ C2 � V−1([υmin, υmax]) (13)

for 
 ∈ (ε4, 1) and υmin as well as υmax being arbitrary
positive real numbers satisfying υmin ≤ υmax. Next,
parameters υmin and υmax are to be selected to ensure
that the condition (11) holds. Since function V∞(x) is
proper, it follows that the sets Cc1 � V−1∞ ([0, υ∞]) is
compact. Taking into account the continuity of V (x),
there exists a maximum value for V (x) in Cc1, given by
υmax = maxx∈Cc

1
V (x). Consequently, for any x ∈ Cc1,

the condition V (x) ≤ υmax holds, implying that x ∈
C12 � V−1([0, υmax]). It follows that

Cc1 � V−1∞ ([0, υ∞]) ⊆ C12 � V−1([0, υmax]) (14)

In what follows, we show that there exists a positively
real number υmin such that the following condition
holds.

C22 � V−1([0, υmin]) ⊆ C3 � Bυ0 [0] (15)

For linear system (12) with Hurwitz matrix A, the Lya-
punov function used in (13) can be chosen as V (x) =
xT Px with positive definite matrix P as the solution
to AT P + PA ≺ 0. Condition (15) holds if, for any
x ∈ C22 , we can derive x ∈ C3. To this end, note the fact
that λmin(P)‖x‖2 ≤ V (x) = xT Px ≤ λmax(P)‖x‖2
holds with λmin(P) and λmax(P) being the maximum
and minimum eigenvalues of matrix P . As a result,
for any x ∈ C22 in (15), it follows that V (x) ≤ υmin

implying λmin(P)‖x‖2 ≤ υmin. Equivalently, ‖x‖ ≤√
υmin

λmin(P)
= υ0 if specified with υmin = λmin(P)υ2

0 . In

such case, any x ∈ C22 means x ∈ C3 defined in (15),
which implies (15) holds.

Next we show that condition (11) holds with param-
eters υmin and υmax provided previously. Taking into
account that C1 ∪ Cc1 = R

n , it follows from (14) that
C1 ∪ C12 = R

n . Following the definitions of C2, C12 and
C22 in (13), (14) and (15), we have C12 = C2∪C22 , imply-
ing C1 ∪ C2 ∪ C22 = R

n . Bearing in mind that C22 ⊆ C3
which can be observed from (15), it follows that con-
dition (11) holds.

From the proof, it can be concluded that there must
exist a constant ε = max(ε3, ε4) such that all the con-
ditions in Lemma 1 hold for system ẋ = f
(x) with

 ∈ (ε, 1), which implies the fixed-time stabilization
of ẋ = f
(x). This completes the proof.

Remark 1 It should be noted that the developed algo-
rithm inTheorem1 is different from that in [12]. Specif-
ically, the bi-limit homogeneous control law in [12] is
designed recursively by backstepping technique, which
relies strongly on the recursive determination of the vir-
tual controllers. However, a non-recursive design pro-
cedure is developed in the current work to render a sim-
ple construction of a fixed-time stabilizing control law
for high-order systems. In addition, the proposed con-
trol law covers the classic finite-time stabilizing control
law in [23] as a special case if the items �xi� and �xi�
′

i

are removed from (4).

Remark 2 It is worth mentioning that the existence of
ε in Theorem 1 is guaranteed by tube lemma [31],
and it is difficult to specify ε exactly. Alternatively,
the exact selection of ε may be solved via Lyapunov
analysis, which has been addressed for double integra-
tor systems in [19]. The rule for the selection of ε for
arbitrary-order integrator systems will be investigated
in the future work.

4 Disturbance observer based fixed-time
stabilization control

Following the idea from thework in [32], the fixed-time
convergent arbitrary-order sliding mode differentiator
in [33] can be utilized to design the following distur-
bance observer

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

żi0 = vi0 + xi+1

vi0 = −λi0θL
1

mi+1

i �zi0 − xi �
mi

mi+1 − ki0(1 − θ)�zi0 − xi �α0 + zi1
żi1 = vi1

vi1 = −λi1θL
1
mi
i �zi1 − vi0�

mi−1
mi − ki1(1 − θ)�zi1 − vi0�α1 + zi2

.

.

.

żimi−1 = vimi−1

vimi−1 = −λimi−1θL
1
2
i �zimi−1 − vimi−2�

1
2 − kimi

(1 − θ)�zimi−1

− vimi−2�αmi−1 + zimi

żimi
∈ −λimi

θLi �zimi
− vimi−1�0 − kimi

(1 − θ)�zimi
− vimi−1�αmi

+ [− Li , Li ]
(16)
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to estimate Δi in (2) and its derivatives Δ
( j)
i , (i =

1, . . . , n; j = 1, . . . ,mi ) , where mi = n − i and
xn+1 = u for brevity. Furthermore, the solution of
differential inclusion (16) is understood in Filippov’s
sense [34].

Lemma 4 Consider the system (2) with assumption 1
being satisfied; then the following equalities are estab-
lished in a fixed time

zi0 = x1, zi1 = Δi , . . . , z
i
mi

= Δ
(mi−1)
i (17)

if the following statements hold

1. Parameters λij , ( j = 0, . . . ,mi ) are selected in
terms of traditional high-order sliding mode dif-
ferentiator provided in [35];

2. Parameters α j , ( j = 0, . . . ,mi ) are calculated by

α j = ( j + 1)α − j

jα − ( j − 1)
(18)

with α ∈ (1, εα) and εα > 1 close enough to one;
3. Parameters kij are chosen such that the following

matrix is Hurwitz

Ai =

⎛

⎜⎜⎜⎜⎜⎜⎝

− ki0 1 0 · · · 0
− ki0k

i
1 0 1 · · · 0

...
...

...
...

...

−
j=mi∏
j=0

kij 0 · · · 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
(19)

4. Function θ is determined by θ = 0 if t ≤ T0; oth-
erwise θ = 1, with arbitrarily time constant T0.

Proof Define variables σ i
0 = zi0 − xi , σ i

1 = zi1 −
Δi , . . . , σ

i
mi

= zimi
−Δ

(mi−1)
i . Taking into account (2)

and (16), the error dynamics are governed by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ̇ i
0 = −λi0θL

1
mi+1

i �σ i
0�

mi
mi+1 − ki0(1 − θ)�σ i

0�α0 + σ1

σ̇ i
1 = −λi1θL

1
mi
i �σ i

1 − σ̇ i
0�

mi−1
mi − ki1(1 − θ)�σ i

1 − σ̇ i
0�α1 + σ i

2

.

.

.

σ̇ i
mi−1 = −λimi−1θL

1
2
i �σ i

mi−1 − σ̇ i
mi−2�

1
2 − kimi

(1 − θ)�σ i
mi−1

− σ̇ i
mi−2�αmi−1 + zimi

σ̇ i
mi

∈ −λimi
θLi �σ i

mi
− σ̇ i

mi−1�0 − kimi
(1 − θ)�σ i

mi
− σ̇ i

mi−1�αmi

+ [− Li , Li ]
(20)

For 0 ≤ t ≤ T0 implying θ = 0, if specifiedwithα = 1
and Li = 0 meaning Δi = 0, the error dynamics (20)
are reduced to σ̇ i = Aiσ i where σ i = [σ i

0, . . . , σ
i
mi

]T
with Ai being provided in (19). Furthermore, the
obtained linear system is globally asymptotically stable
when the third condition in Lemma 4 holds. In addi-
tion, system (20) with θ = 0 and Li = 0 is homoge-
neous with weight r i = [ jα−( j−1)

α−1 ]T ∈ R
mi+1, ( j =

0, . . . ,mi ) with respect to degree di = 1 for α > 1.
It follows from the similar analysis in Theorem 1 that
there exists a constant εα > 1 and close enough to 1
such that system (20) with θ = 0 and Li = 0 is glob-
ally asymptotically stable for α ∈ (1, εα). Following
Lemma 1 in [33], it can be known that the trajectories
that started at “infinity” for system (20) with θ = 0
and arbitrary bounded Li > 0 enter into a compact set
containing origin for any T0 > 0.

For t > T0 implying θ = 1, the error dynamical sys-
tem (20) with the selection of parameters λij in terms
of the first condition in Lemma 4 is the same with that
provided in [32], which is able to bring the estima-
tion errors to zero in a bounded finite time, i.e., T1,
from any compact set. From the analysis, it follows
that equalities (17) are established in finite time T0 +
T1 which is independent of initial conditions, imply-
ing the fixed-time convergence. This completes the
proof. ��

Now, we are in a position to construct a fixed-time
stabilizing control law for system (2). To this end, intro-
duce variables

y1 = x1, y2 = x2+Δ1, . . . , yn = xn+
n−1∑

i=1

Δ
(n−1−i)
i

(21)

satisfying

ẏ1 = y2, . . . , ẏn−1 = yn, ẏn = u +
n∑

i=1

Δ
(n−i)
i (22)

with x being governed by (2). Then, the objective of
the work is equivalent to designing control law u for
system (22) such that y1 = x1 converges to zero in a
fixed time. The main result is summarized by theorem
2 given below.
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Theorem 2 Consider system (22) with control law

u(x)=−
n∑

i=1

ki
(
�ŷi�
i + �ŷi� + �ŷi�
′

i

)
−

n∑

i=1

Δ̂
(n−i)
i

(23)

where ŷ1 = x1, ŷ2 = x2 + Δ̂1, . . . , ŷn = xn +∑n−1
i=1 Δ̂

(n−1−i)
i are measurable with Δ̂k

i = zik, (i =
1, . . . , n; k = 0, . . . , n − i) obtained from (16). If
the parameters ki > 0 and 
i , 


′
i , (i = 1, . . . , n)

are selected in terms of Theorem1 and the param-
eters λij , k

i
j , (i = 1, . . . , n; j = 0, . . . ,m j ) and θ

in observer (16) are chosen based on Lemma4, then
y1 = x1 → 0 in a fixed time.

Proof For brevity, define variables Δ̂i−1
0 � Δi−1

0 , (i =
1, . . . , n) such that, following from (21) and (22), the
equalities ŷi = yi+ei hold with ei =∑i−1

j=0[Δ̂(i−1− j)
j −

Δ
(i−1− j)
j ]. Then, substituting (23) into (22) results in

ẏi = yi+1

ẏn = −
n∑

i=1

ki
(�yi + ei�
i

+�yi + ei� + �yi + ei�
′
i

)
+ e′

n

(24)

with e′
n = ∑n

i=1[Δ(n−i)
i − Δ̂

(n−i)
i ]. Based on the

results in Lemma 4, it can be known that ei and e′
n

are bounded and there exists a finite time, i.e., T0 + T1,
such that ei = e′

n = 0 for all t ≥ T0 + T1. Taking into
account ŷi = yi + ei , it follows that yi = ŷi holds for
t ≥ T0 + T1. After that, the system (24) is equivalent
to ˙̂yi = ŷi+1, ˙̂yn = −∑n

i=1 ki (�ŷi�
i +�ŷi�+�ŷi�
′
i )

which is fixed-time stability based on Theorem 1.
Hence, the last step to prove Theorem 2 is to show
that the trajectory of system (24) does not escape in
any finite time interval, i.e., [0, T0 + T1].

To this end, let f (y, δ) ∈ R
n with y = [yi ]T ∈ R

n

and δ = [ei e′
n]T ∈ R

n+1 be the closed-loop vector
field of system (24) with 
i and 
′

i in (5). It can be ver-
ified that f (y, δ) is bi-limit homogeneous with triples
((r0, τ0), k0, fδ0) and ((r∞, τ∞), k∞, fδ∞), where r0
and r∞ are provided in (7) and τ0i = r0i , τ∞i =
r∞i , (i = 1, . . . , n), τ0n+1 = 


1−

, τ∞n+1 =

2−

1−


, k0=−1, k∞ =1, fδ0 =[y2, . . . , yn,−∑n
i=1 ki�yi+

ei�
i + e′
n]T and fδ∞ = [y2, . . . , yn,−∑n

i=1 ki�yi +
ei�
′

i + e′
n]T . Moreover, system ẏ = f (y, 0) (see The-

orem 1) satisfies all the conditions in Lemma 1. It fol-

lows from Lemma 2 that system ẏ = f (y, δ) is ISS
with respect to bounded disturbance δ, which means
that the system trajectory in (24) is always bounded in
any finite time interval. This completes the proof. ��

5 Numerical example

Considering the following integrator system with mis-
matched disturbances Δ1 as well as Δ2 and matched
disturbances Δ3

ẋ1 = x2 + Δ1, ẋ2 = x3 + Δ2, ẋ3 = u + Δ3 (25)

In the simulation, the disturbances are set to Δ1 =
sin(t),Δ2 = cos(t) and Δ3 = 1

2 (sin(t) + cos(t)).
The controller parameters are chosen as k1 = 2, k2 =
3, k3 = 5 and 
 = 0.85. The disturbance observer
parameters are given by α = 1.05, ki0 = 21, ki1 =
15/21, ki2 = 1/2, ki3 = 1/5, Li = 100, λi0 = 3, λi1 =
2, λi2 = 1.5, λi3 = 1.1, (i = 1, 2, 3) and T0 = 1.5.
The simulation is carried out in Matlab/Simulink by
Euler method with a fixed sampling step 0.1 ms. As
a comparison, the classic finite-time control algorithm
in [23] is selected which can be recovered from the
proposed control law (4) by omitting high-order items
�xi� and �xi�
′

i . The other parameters are the samewith
those provided previously. The simulation results are
presented in Fig. 2 for initial values x(0) = [102, 0, 0],
x(0) = [103, 0, 0] and x(0) = [104, 0, 0]. From Fig. 2,
it can be observed that the convergence time under our
proposed control law with different initial values is
similar, implying a weak dependence of the conver-
gence time on the initial conditions. However, it can be
observed that the convergence time under finite-time
control law grows significantly with initial conditions.
Correspondingly, the control signals obtained by finite-
time and fixed-time algorithms are provided in Fig. 3.
From that, it can be seen that the fixed-time property is
achieved at the cost of large control magnitude.

Remark 3 It should be noted that the fixed-time control
algorithm has many applications in practice. For exam-
ple, the fixed-time approach helps to design a control
law, which is able to preserve the convergence time
even with the variation of operation region. In addi-
tion, the fixed-time property is especially useful for
either hybrid or switching systems with some kind of
dwell time [33].
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Fig. 2 System responses with different initial values x(0) = (102, 0, 0) for (a), x = (103, 0, 0) for (b), and x = (104, 0, 0) for (c)
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Fig. 3 Control signals with different initial values x(0) = (102, 0, 0) for (a), x = (103, 0, 0) for (b), and x = (104, 0, 0) for (c)
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6 Conclusions

A fixed-time stabilizing control law is presented for
high-order integrator systems with matched and mis-
matched disturbances. The stability of closed-loop
system under controller and disturbance is analyzed
through Lyapunov function and bi-limit homogeneous
techniques, ensuring that the convergence time is uni-
formly bounded with respect to any initial states.
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Appendix

For brevity, define An
1(s) and An

2(s) as follows

An
1(s) = sn + kns

n−1 + · · · + k2s + k1 (26)

and

An
2(s) = sn + k′

ns
n−1 + · · · + k′

2s + k′
1 (27)

with

k′
i = 3ki , i = 1, 2, . . . , n (28)

For n ≤ 4, a direct application of Routh criterion [36]
shows that An

2(s) is Hurwitz if the parameters ki are
selected such that the polynomial An

1(s) is Hurwitz.
For example, A4

1(s) with n = 4 in (26) is Hurwitz if
and only if the condition

k2k3k4 > k22 + k24k1, ki > 0, i = 1, . . . , 4 (29)

holds. Obviously, the condition k′
2k

′
3k

′
4 > k′2

2 + k′2
4 k

′
1

with k′
i > 0, i = 1, . . . , 4 holds when k′

i are defined
by (28) with the selection of ki in (29). It follows
that A4

2(s) is Hurwitz if A4
1(s) is Hurwitz. Similarly,

it can be easily found that the conclusion holds for
n = 1, 2, 3.

For n > 4, the polynomial An
2(s) may not be Hur-

witz even if An
1(s) isHurwitz. In this case, the following

lemma can be applied to select ki , i = 1, . . . , n such
that An

1(s) and An
2(s) are both Hurwitz.

Lemma 5 [37] The polynomial ansn + · · ·+ a1x + a0
is Hurwitz if the condition aiai+1 ≥ 3ai−1ai+2, i =
1, . . . , n − 2 with a j > 0, j = 0, . . . , n holds.

Lemma 5 was first proposed in [38] using Chinese,
and its English description was provided in [37]. It
follows from Lemma 5 that the positive real numbers
k j , j = 1, . . . , n can be chosen as

ki ki+1 ≥ 3ki−1ki+2, i = 2, . . . , n − 1 (30)

with the definition kn+1 = 1 such that An
1(s) is Hur-

witz. An equivalent expression of (30) is

(3ki )(3ki+1) ≥ 3(3ki−1)(3ki+2), i = 2, . . . , n − 1

(31)

Taking into account (28), (31) means the following
inequality

k′
i k

′
i+1 ≥ 3k′

i−1k
′
i+2, i = 2, . . . , n − 1 (32)

holds with the definition k′
n+1 = 1. Although k′

n+1 =
kn+1 = 1 does not satisfy the relationship (28), it can be
easily verified that (32) can be derived from (31) when
i = n − 1. It follows from Lemma 5 that the polyno-
mial An

2(s) is Hurwitz with the positive real numbers
k′
i satisfying (28) and (30). Therefore, the positive real
numbers ki can be selected in terms of (30) to ensure
that An

1(s) and An
2(s) are both Hurwitz.

References

1. Du, H., Li, S., Qian, C.: Finite-time attitude tracking control
of spacecraft with application to attitude synchronization.
IEEE Trans. Autom. Control 56(11), 2711–2717 (2011)

2. Liu, X., Ho, D.W.C., Cao, J., Yu, W.: Discontinuous
observers design for finite-time consensus of multiagent
systems with external disturbances. IEEE Trans. Neural
Netw. Learn. Syst. 28(11), 2826–2830 (2017)

3. Liu, X., Cao, J., Yu, W., Song, Q.: Nonsmooth finite-time
synchronization of switched coupled neural networks.
IEEE Trans. Cybern. 46(10), 2360–2371 (2016)

4. Tian, B.L., Fan, W.R., Su, R., Zong, Q.: Real-time trajec-
tory and attitude coordination control for reusable launch

123



Fixed-time stabilization of high-order integrator systems 2899

vehicle in reentry phase. IEEE Trans. Ind. Electron. 62(3),
1639–1650 (2015)

5. Du, H.B., Wen, G.H., Yu, X.H., Li, S.H., Chen, M.Z.Q.:
Finite-time consensus of multiple nonholonomic chained-
form systems based on recursive distributed observer.
Automatica 62(12), 236–242 (2015)

6. Tian, B.L., Lu, H.C., Zuo, Z.Y., Zong, Q.: Multivariable
finite-time output feedback trajectory tracking control of
quadrotor helicopters. Int. J. Robust Nonlinear Control
28(1), 281–295 (2018)

7. Levant, A.: Homogeneity approach to high-order sliding
mode design. Automatica 41(5), 923–830 (2005)

8. Estrada, A., Fridman, L.: Quasi-continuous hosm control
for systems with unmatched perturbations. Automatica
46(11), 1916–1919 (2010)

9. Bhat, S.P., Bernstein, D.S.: Lyapunov analysis of finite-time
differential equations. In: American Control Conference,
pp. 1831–1832. Seattle, WA (1995)

10. Polyakov, A., Poznyak, A.: Lyapunov function design for
finite-time convergence analysis: twisting controller for
second-order sliding mode realization. Automatica 45(2),
444–448 (2009)

11. Yang, J., Li, S.H., Su, J.Y.,Yu,X.H.:Continuous nonsingular
terminal sliding mode control for systems with mismatched
disturbances. Automatica 49(7), 2287–2291 (2013)

12. Andrieu, V., Praly, L., Astolfi, A.: Homogeneous approx-
imation, recursive observer design and output feedback.
SIAM J. Control Optim. 47(4), 1814–1850 (2008)

13. Zuo, Z.: Non-singular fixed-time consensus tracking for
second-order multi-agent networks. Automatica 54(4),
305–309 (2015)

14. Meng, D., Zuo, Z.: Signed-average consensus for networks
of agents: a nonlinear fixed-time convergence protocol.
Nonlinear Dyn. 85(1), 155–165 (2016)

15. Ni, J., Liu, C., Liu, X., Shen, T.: Fixed-time dynamic surface
high-order sliding mode control for chaotic oscillation in
power system. Nonlinear Dyn. 86(1), 401–420 (2016)

16. Huang, Y., Jia, Y.: Fixed-time consensus tracking control of
second-order multi-agent systems with inherent nonlinear
dynamics via output feedback. Nonlinear Dyn. 91(2),
1289–1306 (2018)

17. Yu, X., Li, P., Zhang, Y.: The design of fixed-time observer
and finite-time fault-tolerant control for hypersonic gliding
vehicles. IEEE Trans. Ind. Electron. 65(5), 4135–4344
(2018)

18. Polyakov, A.: Nonlinear feedback design for fixed-time
stabilization of linear control systems. IEEE Trans. Autom.
Control 57(8), 2106–2110 (2012)

19. Tian, B.L., Zuo, Z.Y., Yan, X.M., Wang, H.: A fixed-time
output feedback control scheme for double integrator
systems. Automatica 80, 17–24 (2017)

20. Tian, B.L., Lu, H.C., Zuo, Z.Y., Yang, W.: Fixed-time
leader-follower output feedback consensus for second-order
multi-agent systems. In: IEEE Transactions on Cybernetics,
https://doi.org/10.1109/TCYB.2018.2794759 (2018)

21. Polyakov, A., Efimov, D., Perruquetti, W.: Finite-time
and fixed-time stabilization: Implicit lyapunov function
approach. Automatica 51(2), 332–340 (2015)

22. Laghrouche, S., Harmouche, M., Chitour, Y.: Stabilization
of perturbed integrator chains using lyapunov-based homo-
geneous controllers. arXiv:1303.5330 [math.OC] (2013)

23. Bhat, S.P., Bernstein, D.S.: Geometric homogeneity with
applications to finite-time stability. Math. Control Signals
Syst. 17(2), 101–127 (2005)

24. Defoort, M., Floquet, T., Kokosy, A., Perruqetti, W.: A
novel higher order sliding mode control scheme. Syst.
Control Lett. 58(2), 102–108 (2009)

25. Tian, B.L., Liu, L.H., Lu, H.C.: Multivariable finite time
attitude control for quadrotor UAV: theory and experimen-
tation. IEEE Trans. Ind. Electron. 65(3), 2567–2577 (2018)

26. Yao, X.M., Guo, L.: Composite anti-disturbance control
for Markovian jump nonlinear systems via disturbance
observer. Automatica 49(8), 2538–2545 (2013)

27. Yao, X.M., Guo, L., Wu, L.G., Dong, H.R.: Static anti-
windup design for nonlinear Markovian jump systems with
multiple disturbances. Inf. Sci. 418–419, 169–183 (2017)

28. Tian, B.L., Yin, L.P., Wang, H.: Finite-time reentry attitude
control based on adaptive multivariable disturbance com-
pensation. IEEE Trans. Ind. Electron. 62(9), 5889–5898
(2015)

29. Rosier, L.: Homogeneous Lyapunov function for homo-
geneous continuous vector field. Syst. Control Lett. 19(6),
463–473 (1992)

30. Bernuau, E., Efimov, D., Perruquetti, W., Polyakov, A.: On
homogeneity and its application in sliding mode control. J.
Frankl. Inst. 351(4), 1866–1901 (2014)

31. Munkres, J.R.: Topology a First Course. Prentice-Hall,
Englewood Cliffs (1975)

32. Shtessel, Y.B., Shkolnikov, I.A., Levant, A.: Smooth
second-order sliding mode: missile guidance application.
Automatica 43(8), 1470–1476 (2007)

33. Angulo, M.T., Moreno, J.A., Fridman, L.: Robust exact uni-
formly convergent arbitrary order differentiator. Automatica
49(8), 2489–2495 (2013)

34. Filippov, A.F.: Differential Equations with Discontinuous
Right Hand Sides. Kluwer Academic Publishers, The
Netherlands (1975)

35. Levant, A.: Higher-order sliding modes, differentiation and
output-feedback control. Int. J. Control 76(9/10), 924–941
(2003)

36. Hurwitz, A.: On the conditions under which an equation has
only roots with negative real parts. Mathematische Annelen
46, 273–284 (1985)

37. Nie, Y.Y., Xie, X.K.: New criteria for polynomial stability.
IMA J. Math. Control Inf. 4(1), 1–12 (1987)

38. Xie, X.K.: A new method to study the stability of linear
systems (chinese). In: Proceedings of the First National
Conference on Mechanics, Beijing, China, (1957)

123

https://doi.org/10.1109/TCYB.2018.2794759
http://arxiv.org/abs/1303.5330

	Fixed-time stabilization of high-order integrator systems with mismatched disturbances
	Abstract
	1 Introduction
	2 Preliminaries and problem statement
	2.1 Notations
	2.2 Definitions and lemmas
	2.3 Problem statement

	3 Fixed-time stability of integrator systems
	4 Disturbance observer based fixed-time  stabilization control
	5 Numerical example
	6 Conclusions
	Acknowledgements
	Appendix
	References




