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Abstract In this paper, we develop two new fourth-
order integrable equations represented by nonlinear
PDEs of second-order derivative in time t . The new
equations model both right- and left-going waves in
a like manner to the Boussinesq equation. We will
employ the Painlevé analysis to formally show the
complete integrability of each equation. The simplified
Hirota’s method is used to derive multiple soliton solu-
tions for this equation. We introduce a complex form
of the simplified Hirota’s method to develop multiple
complex soliton solutions. More exact traveling wave
solutions for each equation will be derived as well.

Keywords Fourth-order integrable equation ·Painlevé
test · Multiple soliton solutions · Multiple complex
soliton solutions

1 Introduction

A major thrust of theoretical and experimental studies
has been witnessed in the past few decades on nonlin-
ear evolution equations and their applications in diverse
areas, such as nonlinear dynamics, optical fibers, mat-
ter waves, plasma physics, electromagnetic waves. The
nonlinear evolution equations describe a plethora of
physical effects in fluid dynamics, condensed matter
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physics, optics, photonics, and nonlinear fiber optics.
The work on these nonlinear equations has been flour-
ishing in recent years to get an insight through qualita-
tive and quantitative features of these nonlinear equa-
tions. One significant feature of most nonlinear equa-
tion is the perfect balance between nonlinearity and
dispersion effects which results in soliton pulse.

The study of integrable properties for nonlinear evo-
lution equations has formed a hot spot of research
due to its rich physical structures and scientific fea-
tures. During the past decades, much attention has been
focused on the integrability of the nonlinear equations
and particularly on deriving nonlinear integrable equa-
tions that describe various physical phenomena. Find-
ing new integrable systems has been a major concern
of research work on nonlinear phenomena and solitary
waves theory.

Therefore, finding nonlinear integrable partial dif-
ferential equations that incorporate higher-order terms
is of great importance from both theoretical and exper-
imental points of view. Researchers in [1–23] have
invested a lot of work for deriving nonlinear integrable
equations in (n + 1) dimensions, where n = 1, 2, 3.
The study of integrable equations, which possess suf-
ficiently large number of conservation laws, Lax pairs,
bi-Hamiltonian and give rise to multiple soliton solu-
tions, [8–15] plays a major role in scientific and engi-
neering fields. Lot of research works has been invested
to derive new integrable equations, where powerful
works, such as the symmetries method, recursion oper-
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ators, have been employed to achieve this goal. The
recursion operator has been used recently to estab-
lish more higher-dimensional integrable models [1–
11]. The Painlevé analysis is applied to confirm the
complete integrability of the newly developed equa-
tions.

Many reliable methods are used in the literature
to investigate completely integrable equations that
admit multiple soliton solutions [1–6]. The algebraic-
geometricmethod [4–8], the inverse scatteringmethod,
the Bäcklund transformation method, the Darboux
transformation method, the Hirota bilinear method [7–
14], and other methods are used to make progress and
new developments in this filed. The Hirota’s bilinear
method is rather heuristic and possesses significant fea-
tures thatmake it practical for the determination ofmul-
tiple soliton solutions and for multiple singular soliton
solutions [7–20] for a wide class of nonlinear evolution
equations in a direct method.

In [1], we introduced a new fifth-order nonlinear
integrable equation of the form

uttt − utxxxx − (uxut )xx − 4(uxuxt )x = 0. (1)

In another work [2], we developed another generalized
integrable form of Eq. (1) that reads

uttt − utxxxx − α(uxut )xx − β(uxuxt )x = 0. (2)

where α and β are nonzero parameters.
Our aim in the present work is to explore two new

nonlinear integrable equations by using the sense of
Boussinesq equation and the idea presented in (1), (2).
Following up on our earlier work in [1,2], we develop
new integrable equations which take the forms

utt + utxxx + α(uxut )x = 0, (3)

and

utt + utxxx + α(uxut )x + βuxx = 0, (4)

that will be named, for further use, first fourth-order
integrable equation and second fourth-order integrable
equation, respectively. The parameters α and β are
nonzero real numbers. It is obvious that Eq. (3) can
be derived from (4) by setting β = 0. However, the
two equations will be examined independently due to
the distinct features of these equations.

In this work, we plan to follow a twofold analysis.
We first aim to show that these two equations pass the
Painlevé test; hence, these are integrable equationswith
all merits and properties of integrable equations such
as multiple soliton solutions. The simplified Hirota’s
method will be employed to develop multiple soliton
solutions for each model. We second plan to introduce,
to our knowledge for the first time, a new modified
complex version of the simplified Hirota’s method to
show that Eqs. (3) and (4) give also multiple complex
soliton solutions. We will finally use hyperbolic and
trigonometric ansatze to derive more traveling wave
solutions for each of the derived equations.

2 First fourth-order integrable equation

In this section, we will examine the first fourth-order
integrable equation (3). The analysis will be con-
ducted in a systematic manner where we will first
use the Painlevé analysis to confirm the integrability
of this equation. We then will employ the simplified
Hirota’s method to derive multiple soliton solutions.
We finally will introduce a new complex simplified
Hirota’s method, which to our knowledge will be intro-
duced for the first time, to develop multiple complex
soliton solutions.

2.1 Painlevé analysis for the first equation

In this section,wewill employ the Painlevė analysis [1–
6] to formally confirm the integrability of thefirst devel-
oped equation (3). The Painlevė analysis is a powerful
method, used heavily in the literature in addition to
other techniques for testing the integrability of nonlin-
ear partial differential equations. More concretely, we
seek solutions of Eq. (3) in the form of the assumption
that Eq. (3) has solution as a Laurent expansion about
a singular manifold φ = φ(x, t) given as

u(x, t) =
∞∑

k=0

uk(x, t)φ
k−γ , (5)

where uk(x, t)′s (k = 0, 1, 2, . . .) are the functions of
x and t . On substitution of (5) in Eq. (3), then equating
the most dominant terms we get, γ = 1 and

u0(x, t) = 6

α
φx . (6)

Putting this result in (5) yields
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Two new integrable fourth-order nonlinear equations 2657

u(x, t) ∼= φxφ
−1 + uk(x, t)φ

k−1, (7)

Further, using (7) and Eq. (6) in Eq. (3), characteristic
equation for resonances has been obtained, which is
subsequently solved to get one branch with four reso-
nances at k = −1, 1, 4, and 6. As usual, the resonance
at −1 corresponds to the arbitrariness of the singular
manifold φ(x, t) = 0. Now our task is to confirm the
existence of sufficient number of arbitrary functions
without introducing the movable critical manifold at
the resonance values.

The next step is to determine the coefficients u2, u3
and u5, from the recursion relation and to verify the
compatibility conditions for the existence of the free
functions u1, u4, and u6. After detailed computations,
we observed that u1 comes out to be arbitrary func-
tion and corresponding expressions for u2, u3, and
u5 are found to be arbitrary functions as well. More-
over, we discovered that u1, u4, u6 turn out to be arbi-
trary functions and also compatibility conditions, for
k = 1, 4, 6, are satisfied identically which implies that
Eq. (3) passes the Painlevé test for integrability. The
consequent feature of integrability is the derivation of
multiple soliton solutions which will be carried out in
the next section.

2.2 Multiple soliton solutions of the first equation

It is now useful, for the purposes of our analysis, to
show that the first fourth-order integrable equation

utt + utxxx + α(uxut )x = 0, (8)

gives multiple soliton solutions. We plan in this sec-
tion to determine the dispersion relation and the phase
shift of the interaction of solitons and hence derive the
multiple soliton solutions. Substituting

u(x, t) = eki x−ci t , (9)

into the linear terms of (8) gives the dispersion relation
as

ci = k3i , i = 1, 2, . . . , N . (10)

The following phase variables

θi = ki x − k3i t, i = 1, 2, . . . , N , (11)

follow immediately. Using the transformation

u(x, t) = R(ln f (x, t))x , (12)

into Eq. (8), where the auxiliary function f (x, t), for
the single-soliton solution, is given as

f (x, t) = 1 + eθ1 = 1 + ek1x−k31 t . (13)

and solving for R we find

R = 6

α
, α �= 0. (14)

This in turn leads to the single-soliton solution

u(x, t) = 6k1ek1x−k31 t

α(1 + ek1x−k31 t )
. (15)

For the two-soliton solutions, we use the auxiliary
function as

f (x, t) = 1 + ek1x−k31 t + ek2x−k32 t

+ a12e(k1+k2)x−(k31+k32) t ,
(16)

where a12 is the phase shift of the interaction of soli-
tons. To determine the phase shift a12, we substitute
(16) into (8), and solving for the phase shift a12, we
obtain

a12 = k41 − k1k2(k21 + k22) + k42
k41 + k1k2(k21 + k22) + k42

= (k1 − k2)2(k21 + k1k2 + k22)

(k1 + k2)2(k21 − k1k2 + k22)
, (17)

which can be generalized as

ai j = k4i − ki k j (k2i + k2j ) + k4j
k4i + ki k j (k2i + k2j ) + k4j

= (ki − k j )2(k2i + ki k j + k2j )

(ki + k j )2(k2i − ki k j + k2j )
, 1 ≤ i < j ≤ 3.

(18)

The result (18) shows that the phase shifts do not
depend on the parameters α. The two-soliton solutions
are obtained by substituting (17) and (16) into (12),
where R = 6

α
.

For the three-soliton solutions, we apply the auxil-
iary function f (x, t) as

f (x, t) = 1 + eθ1 + eθ2 + eθ3 + a12e
θ1+θ2 + a13e

θ1+θ3

+ a23e
θ2+θ3 + b123e

θ1+θ2+θ3 . (19)

123



2658 A.-M. Wazwaz

Proceeding as before, we find

b123 = a12a23a13. (20)

The three-soliton solutions are obtained by substituting
(19) into (12). This also shows that N -soliton solutions
can be obtained for finite N , where N ≥ 1.

2.3 Multiple complex soliton solutions of the first
equation

It remains now to show that the first fourth-order inte-
grable equation

utt + utxxx + α(uxut )x = 0, (21)

gives multiple complex soliton solutions. Proceeding
as before, we obtain the dispersion relation as

ci = k3i , i = 1, 2, . . . , N , (22)

and hence the phase variables

θi = ki x − k3i t, i = 1, 2, . . . , N , (23)

follow immediately.
We now introduce a new complex form of the sim-

plified Hirota’s method. The proposed method for the
determination of multiple complex soliton solutions
consists of the following steps:

1. For the single-complex soliton solution, the auxil-
iary function f (x, t) takes the form:

f (x, t) = I + eθ1 , I = √−1. (24)

2. For the two-complex soliton solutions, we set the
auxiliary function f (x, t) as:

f (x, t) = I + eθ1 + eθ2 − I a12e
θ1+θ2 , (25)

where a12 is the phase shift for the interaction
between the solitons.

3. For the three-complex soliton solutions, we set the
auxiliary function f (x, t) as:

f (x, t) = I + eθ1 + eθ2 + eθ3 − I a12e
θ1+θ2

− I a13e
θ1+θ3 − I a23e

θ2+θ3

− b123e
θ1+θ2+θ3 , (26)

where the phase variable θi , i = 1, 2, . . . , N is given
before in (23). Note that for b123 = a12a13a23, the
equation gives three-complex soliton solutions and
hence multiple complex soliton solutions as examined
in the standard algorithm.

Using the transformation

u(x, t) = R(ln f (x, t))x , (27)

into Eq. (21), where the auxiliary function f (x, t), for
the single-soliton solution, is given as

f (x, t) = I + eθ1 = I + ek1x−k31 t , I = √−1. (28)

and solving for R we find

R = 6

α
, α �= 0. (29)

We now apply the proposed method to achieve our
goal.

Using (24) into (27) gives the single-complex soliton
solution as

u(x, t) = 6k1ek1x−k31 t

α(I + ek1x−k31 t )
, I = √−1. (30)

For the two-soliton solutions, we use the auxiliary
function as given in (25) to find that the phase shift a12
remains same as in the real case and given as

a12 = k41 − k1k2(k21 + k22) + k42
k41 + k1k2(k21 + k22) + k42

= (k1 − k2)2(k21 + k1k2 + k22)

(k1 + k2)2(k21 − k1k2 + k22)
, (31)

which can be generalized as

ai j = k4i − ki k j (k2i + k2j ) + k4j
k4i + ki k j (k2i + k2j ) + k4j

= (ki − k j )2(k2i + ki k j + k2j )

(ki + k j )2(k2i − ki k j + k2j )
, 1 ≤ i < j ≤ 3.

(32)

The result (32) shows that the phase shifts do not
depend on the parameter α as in the real case. The two-
complex soliton solutions are obtained by substituting
(31) and (25) into (27), where R = 6

α
.
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Two new integrable fourth-order nonlinear equations 2659

For the three-complex soliton solutions, we apply
the auxiliary function f (x, t) as given in (26), and by
proceeding as before, we find

b123 = a12a23a13. (33)

The three-complex soliton solutions and hence the N -
complex soliton solutions can be obtained in a like
manner to our approach presented before, for finite N ,
where N ≥ 1.

We will close this section by employing a variety
of hyperbolic and trigonometric ansatze to derive new
exact solutions for the first integrable equation (3). The
ansatze that will be used will be applied in a systematic
manner.

2.4 The tanh-coth method

First substituting

u(x, t) = a0 + a1 tanh(kx − ct), (34)

into (8), collecting the coefficients of tanh2i (kx −
ct), i = 0, 1, 2, setting these coefficients to zeros, and
by solving the resulting system, we find

a0 = a0, left free parameter,
a1 = 6k

α
,

c = 4k3.
(35)

This in turn gives the soliton solution

u(x, t) = a0 + 6k

α
tanh(kx − 4k3 t). (36)

In a like manner, we can derive the singular soliton
solution

u(x, t) = a0 + 6k

α
coth(kx − 4k3 t). (37)

2.5 The tan–cot method

Proceeding as before, we can assume the solution in
the form

u(x, t) = a0 + a1 tan(kx − ct). (38)

Substituting this assumption, equation (8), and pro-
ceeding as before, we obtain the periodic solution

u(x, t) = a0 − 6k

α
tan(kx + 4k3 t), (39)

and the singular solution

u(x, t) = a0 + 6k

α
cot(kx + 4k3 t). (40)

3 Second fourth-order integrable equation

In a like manner to the previous section, we will study
the second fourth-order integrable equation (4). The
analysis will be conducted where we will use the
Painlevé analysis, followed by using the simplified
Hirota’s method to derive multiple soliton solutions.
We then will apply the proposed complex simplified
Hirota’s method to determine multiple complex soli-
ton solutions.

3.1 Painlevé analysis for the second equation

Following the analysis presented earlier, we use the
Painlevé analysis [1–6] to examine the integrability of
the second developed equation (4). We assume that Eq.
(4) has solution as a Laurent expansion about a singular
manifold φ = φ(x, t) given as

u(x, t) =
∞∑

k=0

uk(x, t)φ
k−γ , (41)

where uk(x, t)′s (k = 0, 1, 2, . . .) are the functions of
x and t . On substitution of (41) in Eq. (4), then equating
the most dominant terms we get, γ = 1 and

u0(x, t) = 6

α
φx . (42)

Putting this value of α in (41) yields

u(x, t) ∼= φxφ
−1 + uk(x, t)φ

k−1, (43)

Further, using (43) and Eq. (42) in equation (4), char-
acteristic equation for resonances has been obtained,
which is subsequently solved to get one branch with
four resonances at k = −1, 1, 4, and 6. As usual,
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the resonance at −1 corresponds to the arbitrariness
of the singular manifold φ(x, t) = 0. Proceeding as
before, we determine the coefficients u2, u3 and u5,
from the recursion relation and verify the compati-
bility conditions for the existence of the free func-
tions u1, u4, and u6. After detailed computations, we
observed that u1 comes out to be arbitrary function and
corresponding expressions for u2, u3, and u5 are deter-
mined as well. Moreover, we discovered that u1, u4, u6
turn out to be arbitrary functions and also compatibil-
ity conditions, for k = 1, 4, 6, are satisfied identically
which implies that Eq. (4) passes the Painlevé test for
integrability.

3.2 Multiple soliton solutions of the second equation

We showed that the new fourth-order equation,

utt + utxxx + α(uxut )x + βuxx = 0, (44)

is integrable. We follow the same analysis as presented
earlier for the first equation; hence, substituting

u(x, t) = eki x−ci t , (45)

into the linear terms of (44) gives the dispersion relation
as

ci =
k3i ± k2i

√
k4i − 4β

2
, i = 1, 2, . . . , N . (46)

Unlike the dispersion relation of the first fourth-order
equation where we found that ci = k3i , the dispersion
relation in (46) depends on the parameter β as well.

The following phase variables

θi = ki x−
k3i ± ki

√
k4i − 4β

2
t, i = 1, 2, . . . , N , (47)

follow immediately. Using the transformation

u(x, t) = R(ln f (x, t))x , (48)

into Eq. (44), where the auxiliary function f (x, t), for
the single-soliton solution, gives the following:

f (x, t) = 1 + eθ1 = 1 + ek1x−
k31±k1

√
k41−4β

2 t . (49)

and solving for R we find

R = 6

α
, α �= 0. (50)

This in turn leads to the single-soliton solution

u(x, t) = 6k1ek1x−
k31±k1

√
k41−4β

2 t

α(1 + ek1x−
k31±k1

√
k41−4β

2 t )

. (51)

For the two-soliton solutions, we use the auxiliary
function as

f (x, t) = 1 + ek1x−k31 t + ek2x−k32 t

+a12e(k1+k2)x−(k31+k32) t ,
(52)

where a12 is the phase shift of the interaction of soli-
tons. To determine the phase shift a12, we substitute
(52) into (44), and solving for the phase shift a12, we
obtain

a12 = 4β − 3(k21 + k1k2 + k22)(k1 − k2)2 − k21k
2
2 − 3(k1 − k2)(k1μ1 − k2μ2) + μ1μ2

4β − 3(k21 − k1k2 + k22)(k1 + k2)2 − k21k
2
2 − 3(k1 + k2)(k1μ1 + k2μ2) + μ1μ2

, (53)

where

μi =
√
k4i − 4β, i = 1, 2, 3. (54)

The phase shift (53) can be generalized as presented
earlier.
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ai j = 4β − 3(k2i + ki k j + k2j )(ki − k j )2 − k2i k
2
j − 3(ki − k j )(kiμi − k jμ j ) + μiμ j

4β − 3(k2i − ki k j + k2j )(ki + k j )2 − k2i k
2
j − 3(ki + k j )(kiμi + k jμ j ) + μiμ j

, 1 ≤ i ≤ j ≤ 3. (55)

The result (55) shows that the phase shifts depend on
the parameters β in addition to the coefficients of the
spatial variable. The two-soliton solutions are obtained
by substituting (53) and (52) into (48), where R = 6

α
.

For the three-soliton solutions, we apply the auxil-
iary function f (x, t) as

f (x, t) = 1 + eθ1 + eθ2 + eθ3 + a12e
θ1+θ2

+ a13e
θ1+θ3 + a23e

θ2+θ3 + b123e
θ1+θ2+θ3 .

(56)

Proceeding as before, we find

b123 = a12a23a13. (57)

The three-soliton solutions are obtained by substituting
(56) into (48). This also shows that N -soliton solutions
can be obtained for finite N , where N ≥ 1.

3.3 Multiple complex soliton solutions of the second
equation

Thedispersion relation for the second fourth-order inte-
grable equation

utt + utxxx + α(uxut )x + βuxx = 0, (58)

is obtained by using substitute

u(x, t) = eki x−ci t , (59)

that gives the dispersion relation as

ci =
k3i ± k2i

√
k4i − 4β

2
, i = 1, 2, . . . , N , (60)

and phase variables

θi = ki x −
k3i ± ki

√
k4i − 4β

2
t, i = 1, 2, . . . , N ,

(61)

remains same as derived earlier. Using the transforma-
tion

u(x, t) = R(ln f (x, t))x , (62)

into Eq. (58), where the auxiliary function f (x, t), for
the single-soliton solution, givens the following:

f (x, t) = I + eθ1 = I + ek1x−
k31±k1

√
k41−4β

2 t . (63)

and solving for R we find

R = 6

α
, α �= 0. (64)

Using (62) gives the single-complex soliton solution as

u(x, t) = 6k1ek1x−
k31±k1

√
k41−4β

2 t

α(I + ek1x−
k31±k1

√
k41−4β

2 t )

. (65)

For the two-complex soliton solutions, we use the
auxiliary function as

f (x, t) = I + ek1x−k31 t + ek2x−k32 t

−I a12e(k1+k2)x−(k31+k32) t ,
(66)

which gives the phase shift a12

a12 = 4β − 3(k21 + k1k2 + k22)(k1 − k2)2 − k21k
2
2 − 3(k1 − k2)(k1μ1 − k2μ2) + μ1μ2

4β − 3(k21 − k1k2 + k22)(k1 + k2)2 − k21k
2
2 − 3(k1 + k2)(k1μ1 + k2μ2) + μ1μ2

, (67)
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2662 A.-M. Wazwaz

where

μi =
√
k4i − 4β, i = 1, 2, 3. (68)

The phase shift (67) can be generalized as presented
earlier.

ai j = 4β − 3(k2i + ki k j + k2j )(ki − k j )2 − k2i k
2
j − 3(ki − k j )(kiμi − k jμ j ) + μiμ j

4β − 3(k2i − ki k j + k2j )(ki + k j )2 − k2i k
2
j − 3(ki + k j )(kiμi + k jμ j ) + μiμ j

, 1 ≤ i ≤ j ≤ 3. (69)

This shows that the phase shifts remain same as in the
real case. For the three-complex soliton solutions, we
proceed as before to find

b123 = a12a23a13. (70)

The three-complex soliton solutions are obtained by
substituting (69) into (62). This also shows that N -
soliton solutions can be obtained for finite N , where
N ≥ 1.

We will close this section by applying a variety of
hyperbolic and trigonometric ansatze to derive new
exact traveling wave solutions. The ansatze that will
be used in a like manner to the previous section.

3.4 The tanh-coth method

We first substitute

u(x, t) = a0 + a1 tanh(kx − ct), (71)

into (44), collecting the coefficients of tanhi (kx −
ct), i = 0, 1, 2, 3, 4, setting these coefficients to zeros,
and by solving the resulting system we find

a0 = a0, left free parameter,
a1 = 6k

α
,

c = 2k3 ± k
√
4k4 − β.

(72)

This in turn gives the soliton solution

u(x, t) = a0 + 6k

α
tanh

(
kx −

(
2k3 ± k

√
4k4 − β

)
t
)
.

(73)

In a like manner, we can derive the singular soliton
solution

u(x, t) = a0 + 6k

α
coth

(
kx −

(
2k3 ± k

√
4k4 − β

)
t
)
.

(74)

3.5 The tan–cot method

Proceeding as before, we can assume the solution in
the form

u(x, t) = a0 + a1 tan(kx − ct). (75)

Substituting this assumption, equation (8), and pro-
ceeding as before, we obtain the periodic solution

u(x, t) = a0− 6k

α
tan

(
kx−

(
−2k3±k

√
4k4 − β

)
t
)
,

(76)

and the singular solution

u(x, t) = a0+ 6k

α
cot

(
kx−

(
−2k3±k

√
4k4 − β

)
t
)
.

(77)

4 Discussion

In the presentwork,wehave systematically constructed
two fourth-order nonlinear integrable equations. This
formulation revealed both the dispersion and the phase
shifts structures. More importantly, the Painlevé anal-
ysis confirmed the integrability of these two equations.
The findings that an integrable equation can be reduced
to another integrable equation, as in the case of the KP
to be reduced to the KdV equation, is rarely examined
in the literature. The simplified Hirota’s method was
used to carry out our analysis to determine multiple
soliton solutions for each of the two developed inte-
grable equations.

More importantly, we introduced, for the first time,
a new complex form of the simplified Hirota’s method
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Two new integrable fourth-order nonlinear equations 2663

wherewedevelopedmultiple complex soliton solutions
for each of the developedmodels. The findings reported
in this work will be useful to design more integrable
systems.
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