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Abstract Nonlinear dynamical behaviors of an axi-
ally accelerating viscoelastic sandwich beam subjected
to three-to-one internal resonance and parametric exci-
tations resulting from simultaneous velocity and ten-
sion fluctuations are investigated. The direct method
of multiple scales is adopted to obtain a set of first-
order ordinary differential equations and associated
boundary conditions. The frequency and amplitude
response curves along with their stability and bifur-
cation are numerically studied. A great number of
dynamic behaviors are presented in the form of phase
portraits, time traces, Poincaré sections, andFFTpower
spectra. Due to modal interaction, various periodic,
quasiperiodic, and chaotic behaviors are displayed,
depending on the initial conditions. The largest Lya-
punov exponent is carried out to determine the midly
chaotic response by the convergent form of exponents.
Numerical results show various oscillatory behaviors
indicating the influence of internal resonance and cou-
pled effects of fluctuating axial velocity and tension.
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1 Introduction

In recent years, axially moving structures have widely
applications inmanyfields of engineering devices, such
as power transmission belts, pipe conveying fluids,
band saw blades, paper sheets, and other similar sys-
tems. So far, dynamical models of axially moving con-
tinua have been studied in many literatures. After a lit-
erature survey, different numerical methods are applied
to themechanical analysis of axiallymoving beams and
their dynamical stability.

Perturbation method, especially the method of mul-
tiple scales, has found more practical and efficient
among researchers. Based on the method of multi-
ple scales, the parametric vibration and stability of
an axially accelerating beam with hinged–hinged con-
ditions was carried out by Öz and Pakdemirli [1].
Moreover, the fixed–fixed supported beam was stud-
ied by Öz [2]. Transverse vibrations of axially moving
beams with harmonically varying velocity have been
investigated, and the approximate boundary-layer-type
solutions have been given by Özkaya et al. [3]. Sta-
bility of axially moving beams with parametric exci-
tation was studied by using perturbation methods as
well as single-term Galerkin truncation in Ref. [4]. In
this study, the parametric excitation was resulted from
simultaneous tension and speed fluctuations. By con-
sidering the subharmonic and combination parametric
oscillations, dynamic stability in transverse vibration of
axially accelerating viscoelastic beams has been dis-
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Fig. 1 Schematic of an
axially moving viscoelastic
sandwich beam with
time-dependent axial
tension and velocity

cussed by Chen et al. [5] via the averaging method
and the Galerkin method. Yang and Chen [6] estab-
lished a nonlinear model to analyze the forced vibra-
tion of the traveling beam due to the motion of sup-
porting foundation by the method of multiple scales.
Stability of the viscoelastic beam studied by Chen and
Wang [7] is based on the differential quadraturemethod
and the asymptotic perturbation method. In Ref. [8],
dynamic responses of an axially moving viscoelastic
beam subjected to two-frequency parametric excita-
tion with considering internal resonance were investi-
gated. Also, a similar study on an axially moving beam
with respect to single-frequency parametric excitation
was done by Sahoo et al. [9]. By using the method of
multiple scales, Tang et al. [10] estimated the nonlin-
ear parametric vibration of an Euler–Bernoulli beam
with axial motion on elastic foundation. In addition, a
vibrational model was established to analyze stability
of an axially moving viscoelastic beam in Ref. [11]. In
this study, the three-to-one internal resonance and the
primary resonance cases due to the external excitation
were considered.

Galerkin method as an efficient tool for the trans-
formation of the governing equation, is adopted to fur-
ther investigation. By applying the Galerkin truncation
method and the method of incremental harmonic bal-
ance, forced response of the axiallymoving beam in the
presence of internal resonance was presented by Sze et
al. [12]. A similar studywas presented byGhayesh [13]
who exploited the Galerkin method to investigate the
forced dynamical behaviors of translating viscoelastic
beams with considering internal resonance. In addi-
tion to these, the Galerkin technique and the fourth-
order Runge–Kutta method have been used to study
dynamical behaviors of the axially moving beam with
time-varying tension taken into consideration in Ref.
[14]. And dynamic phenomenon such as attractors was

Table 1 Material properties of the viscoelastic sandwich beam

Surface layers Core layer

Density (kg/m3) 2700 1300

Young’s modulus (Pa) 7.2 × 1010 107

Viscoelastic coefficient – 0.1

Thickness (m) 0.02 0.08

observed in the form of Poincaré map and bifurcation
diagram. InRef. [15], vibration isolation of a viscoelas-
tic beam with vertical elastic support was discussed.
For the axially accelerating buckled beam, a closed
form solution for the post-buckling configuration and
its thermo-mechanical nonlinear dynamical behaviors
were investigated by Kazemirad et al. [16]. And the
post-buckling analysis of the beam with four different
supercritical speeds in axial direction was given in Ref.
[17]. In addition, an axially moving beam subjected to
a harmonic external forcewas studied byGhayesh et al.
[18]. They considered coupled longitudinal and trans-
verse displacements and a three-to-one internal reso-
nance into the investigation of the thermo-mechanical
nonlinear dynamical behaviors.

Besides the applications of the perturbation method
and the Galerkin method, other numerical methods
have been applied in the axially moving beam, includ-
ing the differential quadrature method, the Lindstedt–
Poincaré method, etc. By considering the application
of artificial neural networks [19] and Lie group the-
ory [20], the influence of harmonic velocity on stabil-
ity boundaries of the beam was studied in these works.
Another method for multidimensional Lindstedt–
Poincaré was also used to investigate the axially mov-
ing beam by Chen et al. [21]. Dynamical behaviors
of beams and plates have also been investigated by
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Fig. 2 Variation of the natural frequencies ω1, ω2, and 3ω1 with
varying moving velocity v0

Gavete et al. [22] applying the generalized finite dif-
ference method. In order to analysis dynamical behav-
iors of axially moving viscoelastic beams, the Fourier
differential quadrature method and the Runge–Kutta–
Fehlberg method were employed to obtain discrete
governing equations, respectively, in space and time
regions [23]. On the basis of the full-state feedback
boundary control, the hybrid partial–ordinary differen-
tial equations were derived to study control problems
for a class of axially moving nonuniform system by
Zhao et al. [24]. An axially translating beam with axial
pretension was discussed by Mokhtari and Mirdamadi
[25] via Timoshenko beam theory. Recently, the trans-
porting belts are applied inmanymechanical structures.
However, the transporting belts with considering non-
homogeneous boundary conditions havebeen attractive
to researchers. For example, free and forced vibration
characteristics of a transporting belt were investigated
by Ding and coworkers [26,27] using the differential
quadrature method.

From the reviewed researches, the front contents
involve viscoelastic beams with axial acceleration [5–
11,13,14,23,25]. It is known that viscoelastic material
has characteristics of viscous fluid and elastic solid.
But for sandwich structures, there are several advan-
tages in high stiffness and strength-to-weight ratios
[28]. Therefore, sandwich structures with viscoelas-
tic core have significant effects on the control and
reduction of vibration. Recently, the researches on
sandwich structures with viscoelastic material are only
few in number, especially for beam models in linear
and nonlinear vibrations analyses. Some investigators
focused on their attention on studying nonlinear vibra-

tions of the damped viscoelastic sandwich beam using
the harmonic balance method with Galerkin approx-
imation [29] and the harmonic balance method and
the finite element method [30]. In addition, transient
dynamic analysis of viscoelastic sandwich beams was
presented by the fractional derivative operator [31]
and the Galerkin-based state-spacemethod [32]. Under
these effects of the moving speed, thickness and inter-
nal dampingof corematerial, dynamic responses of vis-
coelastic sandwich beams were performed in Ref. [33].
Dynamic analysis of a cantilevered viscoelastic sand-
wich beamwith the effects of transverse shear deforma-
tion and rotational inertia was given by Alvelid [34].
Vibration and damping analysis were made by Jin et
al. [35] for a sandwich beam based on Reddy’s higher-
order theory and a modified Fourier–Ritz method. On
the other hand, the forced harmonic response [36] and
vibration characteristics and structural stability [37] of
viscoelastic sandwich beams were investigated. With
considering low- and high-frequency principal para-
metric oscillations, Li et al. [38] worked on investi-
gating forced vibration and stability of the sandwich
beamwith viscoelastic core. Using differential quadra-
ture method, vibration and damping characteristics of
three-layered curved sandwich beams with composite
face layers and viscoelastic core were developed by
Demir et al. [39].

Simultaneous effect resulting from parametric exci-
tations as an importation part of dynamical analysis
of mechanical systems has attracted attention in few
researches. Several investigators have considered cou-
pled effects into stability analysis of their models. By
using the method of multiple scales, the modulation
equations of amplitude and phase were determined in
Ref. [40]. With considering the effects of damping,
self-excitation, and two-frequency parametric excita-
tion, vibrational behaviors of the system were also dis-
cussed. Along similar lines, a drillstring system was
modeled by a nonlinear equation with time-varying
axial velocity and axial load [41]. With considering
harmonically varying axial speed and axial load simul-
taneously, dynamical behaviors of the axially moving
beam were presented by Özhan [42]. Also, dynamic
characteristics of an axially moving viscoelastic sand-
wich beam were studied by Lv et al. [43]. In the above-
mentioned works, parametric resonance cases have
been studied, including combined parametric oscilla-
tion (Both the two subharmonic types of parametric
oscillations are of order 1/2 [40]) and so on. For the con-
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Fig. 3 a Frequency response curves for the first mode when v1 = 10 and p = 10. Zoomed solutions corresponding to part A (b), part
B (c), part C (d) and part D (e)

tinuous systemderived inRef. [42], combined paramet-
ric vibration (simultaneous parametric resonance from
parametric excitations) was given. It is worth mention-
ing that combined parametric oscillation and combined
parametric vibration are both for discrete and contin-
uous systems. Also, these references demonstrate that
the simultaneous effect has significant influence in ana-
lyzing dynamical systems.

In the previously mentioned researches, the analy-
sis of viscoelastic sandwich beams is mainly focused
on time-varying axial load or axial moving velocity
expect for the work [43]. Few literatures have studied
the dynamical behaviors of axially moving viscoelas-
tic sandwich beams subjected to parametric excitation
resulting from the first two modes expect for the works
[37,38,43]. Internal resonance as a typical nonlinear
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Fig. 4 a Frequency response curves for the second mode when v1 = 10 and p = 10. Zoomed solutions corresponding to part E (b),
part F (c), and part G (d)

dynamical behavior, many complex dynamic behaviors
such as bifurcations and chaos, are observed. However,
there is no work considering it into viscoelastic sand-
wich beams in all available works.

To resolve the lack of researches mentioned above,
this paper is focused on the dynamical behaviors of
axially accelerating viscoelastic sandwich beams sub-
jected to three-to-one internal resonance and princi-
pal parametric resonances owing to the simultaneous
effect of axial moving velocity and axial tension fluc-
tuations. The direct method ofmultiple scales is used to
the dimensionless governing equations and associated
simply supported boundary conditions for both end.
The obtained equations are complex modulation equa-
tions for the first two interactingmodes. On the basis of
Cartesian formulation, a set of first-order modulation
equations are obtained to investigate nonlinear behav-
iors of the system. Using the pseudo-arclength contin-
uation algorithm, the associated solutions are obtained
to analyze stability and bifurcation. The simultaneous
effect of harmonically varying velocity and tension

is illustrated by the variation of pitchfork bifurcation
points in trivial solution curves and the branch stabil-
ity of nontrivial solutions. And the dynamic solutions
of the system are presented in the form of periodic,
quasiperiodic, and chaotic phenomena. The largest
Lyapunov exponent is employed to reveal uncertain
system responses. Finally, subcritical and supercritical
Hopf bifurcation curves are given to findmore interest-
ing oscillatory behaviors associated with the coupled
effect of harmonically varying components of veloc-
ity and tension by tracing codimension one bifurcation
curves.

2 Governing equations

Consider an axially moving sandwich beam with vis-
coelastic core subjected to parametric oscillations in
the presence of internal resonance. The model of the
sandwich beamwith length L andwidth b is depicted in
Fig. 1. It is assumed that the uniform cross section takes
the plane assumption. And the beam performs planar
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Fig. 5 a Frequency response curves for the first mode when v1 = 20 and p = 10. Zoomed solutions corresponding to part A (b), part
B (c), and part C (d)

motion. On the basis of the Euler–Bernoulli beam the-
ory, the transverse vibration analysis of the beam is
studied. The surface layers and core layer are made of
homogeneous and isotropicmaterials. The correspond-
ing thickness of surface layers and core layer is hs and
hc, respectively. Assuming the axial tension to be a
small harmonic fluctuation about initial tension, it is
represented in the form of P(T ) = P0+εP1sin(Ω0T ),
where P0 is the initial tension, εP1 is the amplitude and
Ω0 is the frequency of the harmonically varying com-
ponent. The axially moving velocity is assumed to be
Ve(T )=V0 + εV1sin(Ω1T ), where V0 is mean veloc-
ity, εV1 is the amplitude and Ω1 is the frequency of
the harmonic component. The governing equation of
transverse vibration of the sandwich beam in nondi-
mensional form is given by Lv et al. [43]
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Fig. 6 a Frequency response curves for the second mode when v1 = 20 and p = 10. Zoomed solutions corresponding to part D (b),
part E (c), and part F (d)

The corresponding dimensionless quantities are
defined as

x = X

L
, w = W

L
, t = T

√
P0

ρbHL2 ,

v0 = V0

√
ρbH

P0
, v1 = V1

√
ρbH

P0
,

α = ηbh3c
12εL3

√
ρbH P0

, k1 = Esbhs + Ecbhc
P0

,

k2 = ηbhc
L
√

ρbH P0
, p = P1

P0
,

k2f = Esb(h3s + 3h2chs + 3hch2s ) + Ecbh3c
12P0L2 ,

Ω0 = Ω0

√
ρbHL2

P0
, Ω1 = Ω1

√
ρbHL2

P0
.

(2)

where X is the longitudinal coordinate, W is the trans-
verse displacement, and Es(Ec) and ρs(ρc) are the
Young’s modulus and density of surface layers(core

layer), respectively. x , w, α, Ω0, and Ω1, respec-
tively, denote nondimensional longitudinal displace-
ment, nondimensional transverse displacement, nondi-
mensional viscoelastic coefficient, nondimensional fre-
quency of axial tension, and nondimensional frequency
of velocity.

The dimensionless axial velocity is expressed as

v = v0 + εv1 sin(Ω1t), (3)

wherev0 and εv1 denote nondimensionalmeanvelocity
and nondimensional amplitude, respectively, and Ω1

is nondimensional frequency of harmonically varying
component.

To obtain the smallness of amplitude of the direction
w, it can be scaled like

w → √
εw (4)

where ε is the book keeping parameter and used in the
subsequent perturbation analysis. Substituting Eq. (4)
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Fig. 7 a Frequency response curves for the first mode when v1 = 10 and p = 40. Zoomed solutions corresponding to part A (b), part
B (c), and part C (d)

into Eq. (1), the nonlinear equation of motion can be
rewritten as
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with simply supported boundary conditions

w(0, t) = w(1, t) = 0,
∂2w

∂x2
(0, t) = ∂2w

∂x2
(1, t) = 0.

(6)

2.1 Perturbation Analysis

The solution to Eq. (5) is assumed to be an uniform
solution of a first-order expansion in the following form

w(x, t, ε) = w0(x, T0, T1)+εw1(x, T0, T1)+· · · , (7)

where the timescales are Tn = εnt , n = 0, 1, 2, . . ..
By denoting the differential operators as Dn = ∂/∂Tn ,
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Fig. 8 a Frequency response curves for the second mode when v1 = 10 and p = 40. Zoomed solutions corresponding to part D (b),
part E (c), part F (d) , part G (e) and part H (f)

n = 0, 1, 2, . . ., partial derivatives with respected to t
are expressed as

∂

∂t
= D0 + εD1 + · · · ,

∂2

∂t2
= D2

0 + 2εD0D1 + · · · .

(8)

Substituting Eqs. (7) and (8) into Eqs. (5) and (6)
with the aid of Eq. (3), and balancing coefficients of ε0

and ε1, functional equations can be derived as

O(ε0) : D2
0w0 + 2v0D0w

′
0 + (v20 − 1)w′′

0

+ k2f w
′′′′
0 = 0,

w0(0, t) = w0(1, t) = 0, w′′
0(0, t) = w′′

0(1, t) = 0
(9)

and

O(ε1) : D2
0w1 + 2v0D0w

′
1 +

(
v20 − 1

)
w′′
1 + k2f w

′′′′
1

= −2D0D1w0 − 2v0D1w
′
0 + p sin(Ω0t)w

′′
0
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Fig. 9 a Frequency response curves for the first mode when v1 = 20 and p = 40. Zoomed solutions corresponding to part A (b), part
B (c), and part C (d)

− 2v1 sin(Ω1t)
(
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′
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(10)

The primes denote derivativewith respect to nondimen-
sional longitudinal coordinate x . It is assumed that the
solution to Eq. (9) which is expressed as

w0(x, T0, T1) =
∞∑
n=1

φn(x)An(T1)e
iωnT0 + cc, (11)

where φn(x) represent the mode shapes, ωn denote
the natural frequencies, and cc are complex conjugate

terms. The nth complex mode shape φn(x) for simply
supported boundary conditions is stated as follows [1]
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where βmn are the eigenvalues which are the roots of
following relations

k2f β
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mn − (v20 − 1)β2

mn − 2ωnv0βmn − ω2
n = 0,

m = 1, 2, 3, 4, n = 1, 2, . . . . (13)

and
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Fig. 10 a Frequency response curves for the second mode when v1 = 20 and p = 40. Zoomed solutions corresponding to part D (b),
part E (c), part F (d), part G (e) and part H (f)

+
[
ei(β1n+β3n) + ei(β2n+β4n)

] (
β2
2n − β2

4n

) (
β2
3n − β2

1n

)

+
[
ei(β2n+β3n) + ei(β1n+β4n)

] (
β2
1n − β2

4n

) (
β2
2n − β2

3n

)

= 0. (14)

3 Principal parametric resonances and internal
resonance

In the present investigation, the length and width of
the beam are L = 2m and b = 0.05m. The material

properties as those in Ref. [37,38,43] are displayed in
Table 1. The linear natural frequencies of the viscoelas-
tic sandwich beam are solved from the above Eqs. (13)
and (14). With the increasing of initial tension P0,
the flexural stiffness value kf is decreased. Numerical
simulation shows that the first and second natural fre-
quencies are decreased by increasing the mean veloc-
ity v0 for a fixed flexural stiffness value kf = 0.214.
As the mean velocity v0 increases, the second natural
frequency is close to three times as much as the first
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Table 2 The parametric frequency detuning parameter values at
a, b, c, and d

v1 p a b c d

10 10 −13.282079 13.282079 32.407297 44.752703

20 10 −13.282079 13.282079 26.234594 50.925406

10 40 −53.128316 53.128316 32.407297 44.752703

20 40 −53.128316 53.128316 26.234594 50.925406

natural frequency when v0 = vc = 0.46199, result-
ing in a three-to-one internal resonance (Fig. 2). At
critical speed of buckling or divergence, the first nat-
ural frequency is close to zero. Since all other high
modes except the first two modes decay with time
for the damping and Coriolis terms [45], the internal
resonance response is activated between the first two
modes.According to this, the general solution toEq. (9)
can be rewritten as

w0(x, T0, T1) = φ1(x)A1(T1)e
iω1T0

+φ2(x)A2(T1)e
iω2T0 + cc. (15)

Substituting Eq. (15) into Eq. (10) yields

D2
0w1 + 2v0D0w

′
1 + (

v20 − 1
)
w′′
1 + k2f w

′′′′
1

= Γ1e
iω1T0 + Γ2e

iω2T0 + Γ3e
i(−ω1+Ω0)T0

+ Γ4e
i(ω1+Ω0)T0 + Γ5e

i(−ω1+Ω1)T0

+ Γ6e
i(ω1+Ω1)T0 + Γ7e

i(−ω2+Ω0)T0

+ Γ8e
i(ω2+Ω0)T0 + Γ9e

i(−ω2+Ω1)T0

+ Γ10e
i(ω2+Ω1)T0 + Γ11e

3iω1T0 + Γ12e
i(2ω1+ω2)T0

+ Γ13e
i(ω1+2ω2)T0 + Γ14e

3iω2T0 + Γ15e
i(2ω2−ω1)T0

+ Γ16e
i(ω2−2ω1)T0 + cc, (16)

where the Γn are defined in Appendix.
It is observed that Eq. (16) will contain secular terms

when Ω0 ≈ 2ω1 or Ω1 ≈ 2ω2. Hence, frequency
detuning parameters σ1, σ2 and σ3 are used to describe
the nearness of ω2 to 3ω1, Ω0 to 2ω1 and Ω1 to 2ω2.
And then, the nearness relations of these frequencies
can be expressed as

ω2 = 3ω1+εσ1,Ω0 = 2ω1+εσ2, andΩ1 = 2ω2+εσ3.

(17)

In this case, the combined parametric resonance
type, Ω0 = ω2 − ω1 + ε (σ2 − σ1), is also considered.
Substituting Eq. (17) into Eq. (16) yields

D2
0w1 + 2v0D0w

′
1 +

(
v20 − 1

)
w′′
1 + k2f w

′′′′
1

= Γ1e
iω1T0 + Γ2e

iω2T0 + Γ3e
i(ω1T0+σ2T1)

+ Γ4e
i(ω2T0−σ1T1+σ2T1) + Γ9e

i(ω2T0+σ3T1)

+ Γ11e
i(ω2T0−σ1T1) + Γ16e

i(ω1+σ1T1) + cc + NST,

(18)

where NST stands for terms that do not bring secular
or small-divisor terms into solution. The homogeneous
part of Eq. (18) has a nontrivial solution, so the cor-
responding nonhomogeneous part will has a solution.
For this, the solvability condition is only satisfied [46].
To achieve it, the right-hand side of Eq. (18) should
be orthogonal to the solution of adjoint homogeneous
problem. These conditions demand that

∫ 1

0

(
Γ1 + Γ3e

iσ2T1 + Γ16e
iσ1T1

)
φ̄1dx = 0, (19)

Fig. 11 a, b Frequency response curves for the first and second modes when σ1 = −48.06
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Fig. 12 a Frequency response curves for the first mode when σ1 = 5.6553× 10−4. Zoomed solutions corresponding to part A (b), part
B (c), and part C (d)

and

∫ 1

0

(
Γ2 + Γ4e

i(σ2T1−σ1T1) + Γ9e
iσ3T1

+Γ11e
−iσ1T1

)
φ̄2dx = 0. (20)

Substituting Γn(n = 1, 2, 3, 4, 9, 11, 16) from
Appendix into Eqs. (19) and (20), modulation equa-
tions are obtained as

2A′
1 + 8H1A

2
1 Ā1 + 8H2A1A2 Ā2 + 2αE1A1

+ 2G1 Ā1e
iσ2T1 + 8K5A2 Ā

2
1e

iσ1T1 = 0, (21)

and

2A′
2 + 8H3A

2
2 Ā2 + 8H4A1A2 Ā1 + 2αE2A2

+ 2G2A1e
i(σ2T1−σ1T1) + 2G3 Ā2e

iσ3T1

+ 8K4A
3
1e

−iσ1T1 = 0, (22)

where the prime denotes derivative with respect to the
slow time T1, overbar indicates the complex conjugate
terms. The detailed representation of nonlinear coeffi-
cients of Eqs. (21) and (22) is presented in Appendix.
For the stability of trivial state, the polar transform of
complex amplitudes An is impossibility [47]. In what
follows, An are expressed in Cartesian form as

An = 1

2
[pn (T1) − iqn (T1)] e

iλn(T1), n = 1, 2

(23)

Substituting Eq. (23) into Eqs. (21) and (22) yields

p′
1 = −μ1q1 − H1R

(
p31 + p1q

2
1

) − H1I
(
p21q1 + q31

)

− H2R
(
p1 p

2
2 + p1q

2
2

) − H2I
(
q1 p

2
2 + q1q

2
2

)

− αp1E1R − αq1E1I − p1G1R + q1G1I

− K5R
(
p21 p2 − q21 p2 + 2p1q1q2

)

+ K5I
(
2p1q1 p2 − p21q2 + q21q2

)
, (24)

q ′
1 = μ1 p1 − H1R

(
p21q1 + q31

) + H1I
(
p31 + p1q

2
1

)
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Fig. 13 a Frequency response curves for the second mode when σ1 = 5.6553× 10−4. Zoomed solutions corresponding to part D (b),
part E (c), and part F (d)

− H2R
(
q1 p

2
2 + q1q

2
2

) + H2I
(
p1 p

2
2 + p1q

2
2

)

− αq1E1R + αp1E1I + q1G1R + p1G1I

+ K5R
(
2p1q1 p2 − p21q2 + q21q2

)

+ K5I
(
2p1q1q2 + p21 p2 − q21 p2

)
, (25)

p′
2 = −μ2q2 − H3R

(
p32 + p2q

2
2

) − H3I
(
p22q2 + q32

)

− H4R
(
p21 p2 + q21 p2

)

− H4I
(
p21q2 + q21q2

) − αp2E2R − αq2E2I

− p1G2R − q1G2I − p2G3R + q2G3I

− K4R
(
p31 − 3p1q

2
1

) + K4I
(
q31 − 3p21q1

)
, (26)

q ′
2 = μ2 p2 − H3R

(
p22q2 + q32

) + H3I
(
p32 + p2q

2
2

)

− H4R
(
p21q2 + q21q2

)

+ H4I
(
p21 p2 + q21 p2

) − αq2E2R + αp2E2I

− q1G2R + p1G2I + q2G3R + p2G3I

+ K4R
(
q31 − 3p21q1

) + K4I
(
p31 − 3p1q

2
1

)
, (27)

where

μ1 = σ2

2
, μ2 = 3σ2

2
− σ1, σ3 = 3σ2 − 2σ1, (28)

λ1 = σ2T1
2

− nπ, λ2=3σ2T1
2

− σ1T1−3nπ + 2mπ.

(29)

4 Numerical results and discussions

In this section, a great number of numerical results are
carried out to study the viscoelastic sandwich beam
by considering flexural stiffness kf = 0.214 and the
book keeping parameter ε = 0.01. In current research,
the mean traveling velocity is considered as v0 = 0.6
firstly. Depending on the value of the mean mov-
ing velocity, the related parameter values are internal
detuning parameterσ1 = 57.87 and the first two natural
frequencies ω1 = 3.1021 and ω2 = 9.8850.

4.1 One parameter analysis

It is known that periodic motions of the beam are corre-
spond to equilibrium solutions of Eqs. (24)–(27). These
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Fig. 14 a Amplitude response curves for the first mode when p = 10 and σ1 = 57.87. Zoomed solutions corresponding to part A (b)
and part B (c)

Fig. 15 a Amplitude response curves for the second mode when p = 10 and σ1 = 57.87. Zoomed solutions corresponding to part C
(b)

equilibrium solutions are numerically solved by setting
p′
i = q ′

i = 0 in Eqs. (24)–(27). The frequency and
amplitude response analyses are focused on the varia-
tion of system parameters including axially harmonic
velocity and tension, and internal and parametric fre-

quency detuning parameters of the beam. A pseudo-
arclength continuation algorithm [48] is applied to
obtain the branches of equilibrium solutions involv-
ing specific values of system variables. The bifurca-
tion and stability of a fixed point is determined by
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Fig. 16 a Amplitude response curves for the first mode when v1 = 10 and σ1 = 57.87. Zoomed solutions corresponding to part A (b)

Fig. 17 a Amplitude response curves for the second mode when v1 = 10 and σ1 = 57.87. Zoomed solutions corresponding to part B
(b), part C (c), and part D (d)

the eigenvalues of the corresponding Jacobian matrix
given by Eqs. (24)–(27). Note that the amplitudes of
the first mode a1 and second mode a2 are calculated
from ak = (

p2k + q2k
)1/2

.
Obviously, the equilibrium analysis is confined to

reveal system behavior [8]. In order to settle the lim-

its of equilibrium solutions, dynamic solutions of the
system such as periodic, quasiperiodic, and chaotic
responses are taken into investigation.

123



Nonlinear dynamics of a viscoelastic sandwich beam 2591

(b)(a)

Fig. 18 a, b Amplitude response curves for the first and second modes when p = 10 and σ1 = −48.06

(a) (b)

Fig. 19 a, b Amplitude response curves for the first and second modes when p = 10 and σ1 = 5.6553 × 10−4

4.1.1 Stability and bifurcation analysis

Frequency response analysis Typical frequency
response curves for first and second modes are shown
in Figs. 3 and 4. The system parameters are consid-
ered as v1 = 10 and p = 10. In the following inves-
tigation, P0 is assumed to be a fixed initial tension.
Therefore, p denotes the influence of fluctuating ten-
sion, whereas v1 represents the influence of harmonic
velocity disturbance. According to the eigenvalues of
the Jacobian matrix, equilibrium solutions are divided
into three parts including stable solutions(solid lines),
saddles(dashed lines), and unstable foci(bold lines). As
we can see, the frequency response curves display a
hardening-spring nonlinear feature. As σ2 increases,
the trivial solution loses stability at supercritical pitch-
fork bifurcation point a (σ2 = −13.282079), leading
to two-mode equilibrium solutions.Also, the amplitude

of the first mode is firstly increased and then decreased.
On this branch, the equilibrium solution loses stability
through a Hopf bifurcation at H1 (σ2 = 13.653545),
where a pair of complex conjugate eigenvalues crosses
the imaginary axis of complex plane from left side to
right side.But it regains stability through a reverseHopf
bifurcation at H2 (σ2 = 73.628133), resulting the exis-
tence of limit cycles between H1 and H2. However,
the stability of Hopf bifurcation points H1 and H2 are
obtained by the application of normal form theory and
the calculation of cubic coefficient given in Ref. [49].
It follows from Fig. 3b that, as σ2 increases further,
the amplitude of the first mode decreases at saddle-
node bifurcation SN1 (σ2 = 97.100664). Then, the
system response gives way to either a two-mode equi-
librium solution, or a dynamic solution, or the trivial
solution [50]. At σ2 = 116.065709, the equilibrium
solution encounters a limit point SN2, resulting in the
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Fig. 20 a, cAmplitude response curves for the first and secondmodeswhen v1 = 10 andσ1 = −48.06. Zoomed solutions corresponding
to part A (b), and part B (d)

secondary reduction of amplitude of thefirstmode. Fur-
thermore, this branch has another Hopf bifurcation at
H3 (σ2 = 173.066084). The trivial solution loses sta-
bility at point b (σ2 = 13.282079) through subcriti-
cal pitchfork bifurcation by increasing σ2 from point
a. Increasing σ2 beyond SN3 in the nontrivial state,
the response jumps to stable solution and the ampli-
tude of the first mode is decreased. The branch has
Hopf bifurcation H4 (σ2 = 42.883581) and H5 (σ2 =
41.553177), as shown in Fig. 3d. In Fig. 3e, corre-
sponding to part D of Fig. 3a, supercritical and subcriti-
cal pitchfork bifurcation points are, respectively, repre-
sented as c and d. Also, the numerical result presented
in Fig. 3e illustrates other bifurcation information such
as e (σ2 = 40.954068) and f (σ2 = 52.825190).

Figure 4a shows the amplitude of the second mode
against frequency detuning parameter σ2. The parts E,
F, and G are zoomed in Fig. 4b–d, respectively. Com-
paring Fig. 3ewith Fig. 4a and e, the branch from pitch-
fork bifurcation point c (σ2 = 32.407297) obviously
has supercritical and subcritical pitchfork bifurcation

points e and f, respectively. Similarly, the nontrivial
solution branch from subcritical pitchfork bifurcation
point d (σ2 = 44.752703) has two points g and h. But
g (σ2 = 58.816441) and h (σ2 = 70.687547) are not
supercritical or subcritical pitchfork point. And it is
noted that the amplitudes of the second mode from
points c and d are not equal to zero significantly, com-
paringwith the variation of amplitudes of the firstmode
in Fig. 3. Physically speaking, this is related to energy
transfer between the first two modes. Moreover, there
are four pitchfork bifurcation points (a, b, c, and d)
existing on trivial solution branch.

Influence of amplitude of velocity harmonic compo-
nent To further study the effect of the velocity har-
monic component, the variations of the parametric fre-
quency detuning parametric versus the amplitudes of
the first two interacting modes are, respectively, dis-
cussed. Figures 5 and 6 show response amplitudes by
considering v1 = 20 and p = 10. It can be observed
that these response curves are similar to Figs. 3 and 4,
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Fig. 21 a, d Amplitude response curves for the first and second modes when v1 = 10 and σ1 = 5.6553 × 10−4. Zoomed solutions
corresponding to part A (b), part B (c), part C (e), and part D (f)

respectively. In addition, there are still four pitch-
fork bifurcation points containing a, b, c, and d on
the trivial solution branch. It is obvious that unstable
interval (c–d) of trivial solution has broadened. How-
ever, unstable part (a–b) is invariant. And the interval
between Hopf bifurcation points H1 and H2 has also
broadened. Furthermore, points e (σ2 = 32.022876)
and f (σ2 = 43.893995) appear between pitchfork
bifurcation points c (σ2 = 26.234594) and d (σ2 =

50.925406), comparing to the case of c and d shown in
Fig. 3e.

Influence of amplitude of fluctuating axial tension com-
ponent The influence of amplitude of fluctuating axial
tension component is shown in Figs. 7 and 8. For the
case ofv1 = 10 and p = 40, there are slight changes for
the response curves, comparing to these curves shown
in Fig. 3. Obviously, one may find an important differ-
ence about the number of pitchfork bifurcation points
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Fig. 22 a, c Amplitude response curves for the first and second modes when p = 10 and σ1 = 57.87. Zoomed solutions corresponding
to part C (b), and part F (d)

in the trivial state. There are only two pitchfork bifur-
cation points shown in Fig. 8e and f, corresponding to
supercritical bifurcation (a) and subcritical bifurcation
(b), respectively. In addition, some new Hopf bifur-
cation points appear, such as H5 (σ2 = 394.073620)
and H6 (σ2 = 403.434746) in Fig. 7a or 8a and H3

(σ2 = 163.405251) in Fig. 7b or 8d. In contrast, some
Hopf bifurcation points like H4 and H5 are vanish in
Figs. 7 and 8. In which, by increasing the value of
σ2, the amplitudes of the first and second modes are
monotonously increased from point b. It is obvious that
the instability region (a–b) of trivial solution branch is
broadened, comparing to a and b in Fig. 3a. It indicates
that the harmonic component of axial tension increases
the strength of nonlinear modal interaction.

Influence of amplitudes of fluctuating velocity and ten-
sion components In this subsection, the coupled effects
of amplitudes of fluctuating velocity and tension com-
ponents on frequency response curves have been ana-
lyzed by the variation of frequency detuning param-

eter σ2. Figures 9 and 10, respectively, show similar
response curves with the previous case for v1 = 10
and p = 40. The unstable trivial solution region (a–b)
keeps the same with the previous case. But the differ-
ences are the interval between Hopf bifurcation points
H5 and H6 is broadened, and the stability associated
with H1 and H2 is drastically reduced. As evident from
Fig. 10e and f, the pitchfork bifurcation points in the
trivial solution curve are still a and b.

In Table 2, the parametric frequency detuning
parameter values (a, b, c, and d) are displayed. In con-
trast with the first case of v1 = 10 and p = 10, the
pitchfork bifurcation points (c, d) in the second case are
influenced by the fluctuating velocity v1. It is noted that
the instability range between c and d is substantially
increased, comparing with the first case. In the light
of the third case for v1 = 10 and p = 40, the pitch-
fork bifurcation points (a, b) are moved toward both
sides, whereas the points c and d are not about pitch-
fork bifurcation, comparing with the first two cases.
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Fig. 23 a, cAmplitude response curves for the first and second modes when v1 = 10 and σ1 = 57.87. Zoomed solutions corresponding
to part A (b), and part B (d)

Fig. 24 a Phase portrait and b projected Poincaré section for σ2 = 72.8159. FFT power spectrum for p1 is shown in (a)

This is induced by the fluctuating tension component
associated with axial tension. The similar phenomena
can be observed from the last case for v1 = 20 and
p = 40.

Influence of internal frequency detuning parameter
Figures 11, 12 and 13 demonstrate frequency response
curveswith the variation of internal frequency detuning
parameter. Also, v = 10 and p = 10 are considered to
be used for analysis. For σ1 = −48.06 at mean velocity
v0 = 0.3, the trivial solution branch has four pitchfork
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0.4 0.4 0.4 0.4

Fig. 25 a Phase portrait and b projected Poincaré section for σ2 = 63.1816. FFT power spectrum for p1 is shown in (a)

Fig. 26 a Phase portrait, b, c time trajectories, and d projected Poincaré section for σ2 = 68.0851

bifurcation points (a and c are supercritical bifurca-
tion, b and d are subcritical bifurcation), as shown in
Fig. 11. It follows from Fig. 11 that, as σ2 increases
past a and b, the amplitude of the first mode a1 is about
zero and the amplitude of the second mode a2 grows
all the way. However, the amplitudes of both modes
are monotonously increased on the nontrivial solution
branches from c and d. Notice that the system response

has not up to the condition of internal resonance, result-
ing in no bifurcation information (Hopf bifurcation,
saddle-node bifurcation, and so on) does not appear.
As we can observe in Fig. 12, it only has two pitchfork
bifurcation points containing a (σ2 = −13.085202)
and b (σ2 = 13.085202) given by the symmetric form.
Clearly, the results presented in Fig. 12 are similarly
to the case shown in Fig. 7. It indicates that parameter
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Fig. 27 a Phase portrait and b projected Poincaré section for σ2 = 68.1935

Fig. 28 a Phase portrait and b projected Poincaré section for σ2 = 317.5002

variables are in the vicinity of points c and d; the ampli-
tude of the first mode is about zero. It is worth men-
tioning that harmonically varying components of para-
metric excitation and internal resonance in the para-
metric study, the dynamical system will demonstrate
the existence of pitchfork bifurcation phenomena in
trivial solution curves. It is same with the analysis in
Ref. [8]. Besides this, the saddle-node bifurcation SN2

is changed into Hopf bifurcation H4 comparing with
these cases shown in Figs. 3a, 5a, 7b and 9a. In the
following analysis, the amplitude response curves are
discussed.

Amplitude response analysis By considering the vari-
ation of amplitude of the fluctuating axial velocity,
the amplitude response curves are shown in Figs. 14
and 15. With decreasing fluctuating velocity v1 from
30, the trivial solution loses stability at subcritical
pitchfork bifurcation point a (v1 = 13.152531). Fig-
ure 14c shows the amplitude of the first mode remains

unchanged in the nontrivial solution curve. In contrast,
a significant increasing in the amplitude of the sec-
ond mode is observed before the saddle-node bifurca-
tion SN1 (v1 = 0.005714) appears. After that, with
the increasing of moving velocity v1, the correspond-
ing response amplitude for the second mode is con-
tinuously increased. It also obviously has isolated two-
mode solutions, as shown in Fig. 15a. Corresponding to
the two-mode solutions, some bifurcation points such
as H2 (v1 = 0.338328), H3 (v1 = 0.257388), SN2

(v1 = 0.231428) and SN3 (v1 = 1.774630) are pre-
sented in Figs. 14b and 15b.

Figures 16 and 17 show amplitude response curves
for v1 = 10, σ1 = 57.87, and σ2 = 100. With
the decrease in axially harmonic tension, the unsta-
ble trivial solution loses stability at subcritical pitch-
fork bifurcation point a (p = 75.289412), resulting in
the response jumps to nontrivial solution. In addition,
as the fluctuating load p decreases, the amplitude of
the second mode increases monotonically. But for the
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Fig. 29 a, b Phase portraits, c, d time trajectories, and e, f projected Poincaré sections: a, c, e σ2 = 317.5934; b, d, f σ2 = 320.2881.
FFT power spectra for p1 are shown in (a) and (b)

first mode, it remains unchanged. In addition to this,
the majority of bifurcation information are zoomed in
Figs. 16b and 17b, d, containing Hopf bifurcation point
H1 and limit points SNi (i = 1, 2, 3, 4). In contrastwith
the above case, the equilibrium solutions of the first and
second modes display much more complexities. And it
is shown that bifurcation points are mostly appearing
in the vicinity of low values of p.

Influence of internal frequency detuning parameter In
order to analyze the detuning parameter σ1, the typi-
cal parameters are −48.06 and 5.6553 × 10−4 selec-
tively. In Figs. 18 and 19, with the increasing of ampli-
tude of fluctuating velocity component, some qualita-
tive changes are depicted. The trivial solution loses sta-
bility through subcritical pitchfork bifurcation at a from
v1 = 21.982532 (σ1 = −48.06) to v1 = 16.649136
(σ1 = 5.6553 × 10−4). Also, the stable trivial solu-
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Fig. 30 a, b Phase portraits and c, d projected Poincaré sections: a, c σ2 = 378.00298. FFT power spectra for p1 are shown in (a) and
(b)

Fig. 31 Lyapunov
exponents for
σ2 = 378.00298

tion decreases through pitchfork bifurcation at a from
p = 76.764052 (σ1 = −48.06) to p = 76.422185
(σ1 = 5.6553 × 10−4). Moreover, a new saddle-
node bifurcation appears at SN3 in Fig. 19, comparing
with Fig. 18. Besides this, with increasing σ1, these
branches (H1–H2, SN3–H5) have broadened and new
Hopf bifurcation point H4 and limit point SN2 appear
in the vicinity of point b. All these phenomena are dis-

played in Figs. 20 and 21. Comparing with the case
of σ1 = 57.87, various bifurcation points containing
saddle-node bifurcation point SN3 and Hopf bifurca-
tion point H2 are displayed. Typically at lower values
of p, the equilibrium solution has two limit points con-
taining SN4 and SN5.
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Fig. 32 a, b Phase portraits, c time trajectory, and d projected Poincaré section for σ2 = 374.8555. FFT power spectra for p1 and p2
are shown in (a) and (b), respectively

Fig. 33 a Phase portrait and b projected Poincaré section for σ2 = 63.6768. FFT power spectrum for p1 is shown in (a)

Influence of parametric frequency detuning parameter
In the present study, the effect of the parametric fre-
quency detuning parameter is discussed. The results
presented herein are for σ2 = 20, which are com-
pared to numerical simulation obtained by the case of
σ2 = 100. From Fig. 22c, the amplitude of the sec-
ond mode monotonously increases through supercrit-

ical pitchfork bifurcation at a (v1 = 6.953105), dis-
playing a hardening-spring behavior. It can be observed
that increasing fluctuating velocity component results
in supercritical and subcritical pitchfork bifurcation
points displayed in parts E and D, respectively. In con-
trast with the case of σ2 = 100, the amplitude of the
second mode displays soft-spring feature firstly. For
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Fig. 34 a Phase portrait and b projected Poincaré section for σ2 = 51.9850. FFT power spectrum for p1 is shown in (a)

Fig. 35 a Eigenvalue movement and b Hopf bifurcation curves: a the arrows denote the direction of eigenvalue movement with
increasing σ2; b solid lines and dashed lines denote supercritical and subcritical Hopf bifurcation curves, respectively

Fig. 36 a Phase portrait and b projected Poincaré section for v1 = 6.3249 and p = 2.5287 × 10−4. FFT power spectrum for p1 is
shown in (a)
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Fig. 37 a, b Lyapunov exponents: a v1 = 6.3249, p = 2.5287 × 10−4; b v1 = 3.2296, p = − 0.3332

Fig. 38 a Projected Poincaré section and b time trajectory for v1 = 3.2296 and p = − 0.3332

Fig. 39 a Projected Poincaré section and b time trajectory for v1 = 3.2192 and p = − 0.3364

some certain ranges of parameter values, Hopf bifurca-
tions at H1 (v1 = 7.729802) and H2 (v1 = 7.738442),
and saddle-node bifurcation at SN1 (v1 = 8.090234)
exist in region E. Also, there are Hopf bifurcation at H5

(v1 = 10.799705) and saddle-node bifurcation at SN3

(v1 = 10.799570) in region D. It follows from Fig. 23

that, as the fluctuating loading increases, the nontriv-
ial amplitudes of both modes are increased monotoni-
cally. Comparing with the case of σ2 = 100, the ampli-
tude of the second mode is significantly reduced in the
present case. Furthermore, the number of bifurcation
points on the nontrivial equilibrium solutions is sub-
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Fig. 40 a, b Phase portraits, c projected Poincaré section, and d time trajectory for v1 = 0.3796 and p = 0.2211

stantially reduced. And saddle-node bifurcation points
(SN1, SN2) appear in the region of 0 < p < 0.1.
In addition, the nontrivial solution curves follow from
Hopf bifurcation at H1 that remain stability.

4.1.2 Dynamic solutions

The analysis of dynamic behavior of the system is
focused on the phenomena in the form of periodic,
quasiperiodic, and chaotic responses, depending on ini-
tial conditions. Firstly, the system variables are, respec-
tively, taken as: k f = 0.214; v0 = 0.6; v1 = 10;
p = 10; σ1 = 57.87. As indicated in Fig. 3, fre-
quency response curves are displayed. By calculating
the first Lyapunov coefficient [49], it is known that
H2 is a supercritical Hopf bifurcation point. There-
fore, the stable limit cycles are resulted in the vicinity
of H2, corresponding to the quasiperiodic response of
beam. For chaotic motion, system has least one posi-
tive Lyapunov exponent. So the largest Lyapunov expo-
nent is always considered to indicate the existence of
chaotic response in the parameter region of system.

As σ2 decreases to 72.8159, the system response is
demonstrated in Fig. 24. It can be observed that the
Poincaré section displayed in Fig. 24b is closed loops,
indicating the system response is quasiperiodic. And
its phase portrait and power spectrum are also dis-
played in Fig. 24a. By decreasing σ2 further, typically
at σ2 = 63.1816, it leads to chaotic response, forming
two large chaotic attractors. From Fig. 24 to Fig. 25,
it is noted that nontrivial responses have continued to
deform with decreasing σ2. Finally, the chaotic attrac-
tors are formed. These are about the formation and
breakdown of tori. The corresponding dynamic behav-
iors are sensitive to initial conditions. At typical param-
eter values of σ2, the results called ‘periodic windows’
are obtained from the following study. Figure 26 shows
period-two in both modes at σ2 = 68.0851. Typically
at σ2 = 68.1935, the dynamical motion is depicted by
the form of time trajectory and two-dimensional pro-
jection on the p1–q1 plane. From the Poincaré section,
it can be identified that the response is period-three, as
shown in Fig. 27b.
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Fig. 41 a, b, c, d Projected Poincaré sections: a, b v1 = 0.2307, p = 4.9121; c v1 = 0.2322, p = 5.0463; d v1 = 0.2321, p = 5.0298

In the following analysis, complex dynamic behav-
iors are represented for higher values of fluctuating
velocity and even fluctuating tension. Some similar
behaviors are also displayed selectively when k f =
0.214, v0 = 0.6, v1 = 20, p = 40 and σ1 = 57.87.
In Fig. 10, there are two supercritical Hopf bifurca-
tion points, namely H5 (σ2 = 317.313860) and H6

(σ2 = 410.245395). Increasing σ2 few from H5, it is
observed that the system response is periodic-one, as
shown in Fig. 28. Also, the quasiperiodic response is
observed by the four-torus feature of Poincaré section
shown in Fig. 29e. At the right side of Fig. 29, the sys-
tem exhibits chaotic behavior as illustrated by phase
portrait, time trace and two-dimensional projection on
p1–q1 plane atσ2 = 320.2881.On the same branch, the
system response encounters Neimark–Sacker bifurca-
tion, typically at σ2 = 371.9448, indicating a torus
bifurcation. As can be seen from the Poincaré sec-
tion in Fig. 30c, the corresponding dynamic motion
of the beam is chaotic. A more pronounced difference
is that FFT power spectrum is not always the critical
tool for some special parameters, including the chaotic

motion displayed in Fig. 30a. As already stated before,
the largest Lyapunov exponent is always used to deter-
mine the existence of chaotic responsewhen the chaotic
behavior is not obvious. For this, the convergent form
of the lyapunov exponents is shown in Fig. 31. Then,
the system encounters Fold bifurcation of limit cycle at
σ2 = 378.0029825, resulting in a jump of the system
response. Increasing σ2 beyond it, the system shows
a jump phenomenon as depicted by two-torus feature
of Poincaré section shown in Fig. 30d. This means
that the system is in a slow motion along the branch
from H5 until it reaches the bifurcation point, that is, at
σ2 = 378.0029825. And then, it follows from Fig. 30d
that, as the detuning parameter σ2 increases, the system
response jumps to the branch from H6 in a fast motion.
As can be observed in Fig. 32c, there is the magnifica-
tion of the time trace. In Fig. 32d, the Poincaré section is
represented by three closed loops, which is agreement
with the phenomenon shown in Fig. 32c. The above
results are illustrated by high values of parametric fre-
quency detuning parameter σ2.
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Fig. 42 a, b, c, d Phase portraits, e, f projected Poincaré sections: a, c, e v1 = −5.4514, p = 0.1112; b, d, f v1 = −5.3248, p = 0.2004

Similarly, for some lower values of detuning param-
eter σ2, the system also has a wide range of dynamic
behavior. For example, at σ2 = 63.6768, the system
exhibits a quasiperiodic motion as displayed by pro-
jected Poincaré section in Fig. 33b. On the same branch
at σ2 = 51.9850, the chaotic behavior of torus break-
down is shown in Fig. 34. These dynamic behaviors
are attributed to internal resonance and the harmoni-
cally oscillation of parametric excitation.

4.2 Two parameters analysis

As seen before, a nonlinear autonomous system has
various complex dynamic behaviors characterized in
the vicinity of critical points. As discussed before,
simultaneous effect has various interesting phenomena
for dynamical systems. In the subsection, the param-
eter analysis is mainly focused on the analysis of
two parameters (axial velocity and axial tension) by
tracing bifurcation curves of codimension one. Fig-
ures 3a and 9a show the frequency response curves
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with coupled effects of fluctuating velocity compo-
nent and axial tension component. Note that the same
type of Hopf bifurcation point from Figs. 3a and 9a
are, respectively, labeled as m and n, as shown in
Fig. 35. The movement of relevant eigenvalues, start-
ing from σ2 = 50, is shown in Fig. 35a. Increasing
σ2, the unstable complex eigenvalues move toward
the left half plane and cross the imaginary axis at
0 − 22.014i(m) and 0 − 63.340i(n), developing the
occurrence ofHopf bifurcation. It follows fromFig. 35a
that, as σ2 increases to 90, the rest of eigenvalues are
on the left side of complex plane. In the second study,
Hopf bifurcation curves on p–v1 plane are displayed in
Fig. 35b. In which, the m and n denote the same Hopf
bifurcation points in Fig. 35a. The solid lines denote
supercritical Hopf bifurcation, and the dashed one for
subcritical Hopf bifurcation. Clearly, various supercrit-
ical and subcritical Hopf bifurcation curves varying
parameters v1 and p are interweaved together. Spe-
cially, amore pronounced parameter region is observed
in the vicinity of zero, indicating complex dynamic
behaviors are resulted here. Therefore, the following
discussions are carried out to investigate the simulta-
neous effect of parameters v1 and p in some special
parameter zones.

According to Jacobian matrix of the system, the
characteristic roots of Jacobian matrix at critical points
are calculated. For this, different types of codimension
two singularities are found. Meanwhile, bifurcation
phenomena can be found near these singularities. This
section is focused on dynamic behaviors of the system
by varying the dominant variables v1 and p simultane-
ously. In Fig. 36, the value of fluctuating axial tension is
sufficiently small, where the system response is domi-
nated by velocity fluctuation. In this figure, chaotic phe-
nomenon is exhibited at v1 = 6.3249. It is clearly that
the contours of tori are broken, as shown in Fig. 36b.
Also, the convergent form of the lyapunov exponents
is displayed in Fig. 37a, performing a small amplitude
motion. However, the largest Lyapunov exponent is
still greater than zero, indicating the chaotic motion.
Here, the value of p is negative, namely the initial ten-
sion P0 remains unchanged and associated harmonic
component makes the total axial tension P less than
the initial tension. Therefore, it has practical meaning
for restricting axial tension. As indicated in Fig. 37b,

at v1 = 3.2296 and p = − 0.3332, the correspond-
ing largest Lyapunov exponent is beyond zero. How-
ever, from the projected Poincaré section displayed in
Fig. 38a, there is no apparent change about the tori.
For another bifurcation analysis at v1 = 3.2192 and
p = − 0.3364, it leads to torus breakdown obviously,
performing in Fig. 39.

For parametric frequency detuning parameter σ2 =
63.676910, the system also presents dynamic solutions
for typical system parameters. Here, a few of them
are depicted selectively. Figure 40 shows an attract-
ing invariant ellipse as described by two-dimension
Poincaré section on q2–p2 plane, indicating quasiperi-
odic behavior. It can be seen that the phase portrait
shown in Fig. 40b is complex when compared to other
ones. This is due to its Floquet multipliers. In partic-
ular, the time trace has regions which are out of the
boundaries of wave form. Results indicate that the cou-
pled effects of tori may occur at special parameters. As
shown in Fig. 41a and b, chaotic motion is observed at
v1 = 0.2307 and p = 4.9121. However, for the val-
ues v1 = 0.2321 and p = 5.0298, one can observe
that the existence of quasiperiodic solution. Thus, the
system has a transient dynamic phenomenon which is
depicted in Fig. 41c. In the following, the axial veloc-
ity is assumed to take low values associated with mean
velocity. It is clear that the sign of parameter value
v1 influences the amplitude of mean velocity. How-
ever, the motion direction associated with axial veloc-
ity remains unchanged. Again at v1 = − 5.4514 and
p = 0.1112, the phenomena are observed resulting
from the coupled effects of tori. Similarly, one can
obtain that at v1 = −5.3248 and p = 0.2004. It is
worth mentioning that the complex dynamic behaviors
are resulted due to the combined influence of v1 and p,
and Floquetmultipliers at critical points (Fig. 42). As in
the description of bifurcation analysis, additional phe-
nomena are described depending on sensitive param-
eter values. The main difference compared to the sec-
tion of one parameter analysis is the coupled effects of
velocity and tension fluctuations in the axial direction.
So the simultaneous effect resulting from fluctuating
velocity and tension components has significant effects
on stability analysis of dynamical systems.
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5 Concluding remarks

In the present study, the nonlinear dynamics of a vis-
coelastic sandwich beamwith principal parametric res-
onances in the presence of three-to-one internal reso-
nance are investigated. A set of first-order differential
equations is obtained from the nondimensional par-
tial differential equation using the method of multi-
ple scales. While the pseudo-arclength continuation
algorithm is applied to obtain the frequency response
and amplitude response curves about the first two
modes. Several bifurcations such as saddle-node bifur-
cation, subcritical and supercritical Hopf bifurcation,
and pitchfork bifurcation are carried out in the equilib-
rium solutions of modulation equations. The parameter
analysis is based on the amplitude and frequency detun-
ing of harmonic disturbances. The frequency response
curves related to single-mode equilibrium solutions
exhibit a hardening-spring response. It is worth men-
tioning that the number of pitchfork bifurcation points
is decreased to two on the trivial branches with respect
to the effect of harmonically axial tension. Moreover,
the instability zone between the two pitchfork bifur-
cation points is broadened due to the effect of axial
velocity fluctuation. However, there is no bifurcation
information when internal frequency detuning parame-
ter value is negative. In amplitude response curves, sys-
tem exhibits similar phenomena such as the variation of
the number of saddle-node bifurcation and Hopf bifur-
cation points by considering different control parame-
ters. It is found that the two-mode equilibrium solutions
are isolated from single-mode equilibrium solutions for
typical system parameters. With the help of phase por-
traits, time traces, Poincaré sections, and FFT power

spectra, dynamic solutions are presented in terms of
periodic, quasiperiodic, and chaotic responses, depend-
ingon initial conditions. Several dynamical phenomena
such as jump phenomenon and ‘period windows’ are
observed. In addition, the largest Lyapunov exponent
is considered to decide the existence of midly chaotic
parameters. In the bifurcation analysis varying ampli-
tudes of fluctuating velocity and tension, rich and inter-
esting nonlinear phenomena are depicted. It is shown
that the time trajectories are complex compared to other
ones, inducing by simultaneous effect of fluctuating
velocity and tension and Floquet multipliers at special
parameters. The numerical calculations illustrate that
the system response is verified from periodic to chaotic
through quasiperiodic route. Both the response curves
and dynamic solutions indicate that the simultaneous
effect of parameter excitations resulting from velocity
and load fluctuations play an important role in stability
and bifurcation of the sandwich beamwith viscoelastic
core.
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i p Ā2φ̄

′′
2 ,

Γ8 = − 1

2
i pA2φ

′′
2 ,

Γ9 =v1ω2 Ā2φ̄
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2 Ā1φ

′2
2 φ̄′′

1 + 3

2
k1A

2
2 Ā1φ
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2 φ̄2dx
)

iω2
∫ 1
0 φ2φ̄2dx + v0

∫ 1
0 φ′

2φ̄2dx
,

S10 =
1

8
(1 − 3k1 − 2ik2ω2)

(∫ 1
0 φ′

2φ̄
′
1φ

′′
1 φ̄2dx + ∫ 1

0 φ′
1φ̄

′
1φ

′′
2 φ̄2dx + ∫ 1

0 φ′
1φ

′
2φ̄

′′
1 φ̄2dx

)

iω2
∫ 1
0 φ2φ̄2dx + v0

∫ 1
0 φ′

2φ̄2dx
,
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S11 =
−1

2
k2v0

(∫ 1
0 φ̄′

1φ
′′
1φ

′′
2 φ̄2dx + ∫ 1

0 φ′
2φ

′′
1 φ̄

′′
1 φ̄2dx + ∫ 1

0 φ′
1φ

′′
2 φ̄

′′
1 φ̄2dx

)

iω2
∫ 1
0 φ2φ̄2dx + v0

∫ 1
0 φ′

2φ̄2dx
,

S12 =
−1

4
k2v0

(∫ 1
0 φ′

2φ̄
′
1φ

′′′
1 φ̄2dx + ∫ 1

0 φ′
1φ̄

′
1φ

′′′
2 φ̄2dx + ∫ 1

0 φ′
1φ

′
2φ̄

′′′
1 φ̄2dx

)

iω2
∫ 1
0 φ2φ̄2dx + v0

∫ 1
0 φ′

2φ̄2dx
,

E1 =
1

2

(
iω1

∫ 1
0 φ′′′′

1 φ̄1dx + v0
∫ 1
0 φ′′′′′

1 φ̄1dx
)

iω1
∫ 1
0 φ1φ̄1dx + v0

∫ 1
0 φ′

1φ̄1dx
,

E2 =
1

2

(
iω2

∫ 1
0 φ′′′′

2 φ̄2dx + v0
∫ 1
0 φ′′′′′

2 φ̄2dx
)

iω2
∫ 1
0 φ2φ̄2dx + v0

∫ 1
0 φ′

2φ̄2dx
,

G1 =
1

4
i p

∫ 1
0 φ̄′′

1 φ̄1dx

iω1
∫ 1
0 φ1φ̄1dx + v0

∫ 1
0 φ′

1φ̄1dx
,

G2 =
1

4
i p

∫ 1
0 φ′′

1 φ̄2dx

iω2
∫ 1
0 φ2φ̄2dx + v0

∫ 1
0 φ′

2φ̄2dx
,

G3 =
1

2

(
−v1ω2

∫ 1
0 φ̄′

2φ̄2dx + 1

2
v1Ω1

∫ 1
0 φ̄′

2φ̄2dx − iv0v1
∫ 1
0 φ̄′′

2 φ̄2dx

)

iω2
∫ 1
0 φ2φ̄2dx + v0

∫ 1
0 φ′

2φ̄2dx
,

K1 =
1

8

(
1

2
− 3

2
k1 + 2ik2ω1 − ik2ω2

) ∫ 1
0 φ̄′2

1 φ′′
2 φ̄1dx

iω1
∫ 1
0 φ1φ̄1dx + v0

∫ 1
0 φ′

1φ̄1dx
,

K2 =
1

8
(1 − 3k1 + 4ik2ω1 − 2ik2ω2)

∫ 1
0 φ′

2φ̄
′
1φ̄

′′
1 φ̄1dx

iω1
∫ 1
0 φ1φ̄1dx + v0

∫ 1
0 φ′

1φ̄1dx
,

K3 =
−1

8
k2v0

(
4

∫ 1
0 φ̄′

1φ
′′
2 φ̄

′′
1 φ̄1dx + 2

∫ 1
0 φ′

2φ̄
′′2
1 φ̄1dx + ∫ 1

0 φ̄′2
1 φ′′′

2 φ̄1dx + 2
∫ 1
0 φ′

2φ̄
′
1φ̄

′′′
1 φ̄1dx

)

iω1
∫ 1
0 φ1φ̄1dx + v0

∫ 1
0 φ′

1φ̄1dx
,

K4 =
1

8

(
1

2
− 3

2
k1 − 3ik2ω1

)∫ 1
0 φ′2

1 φ′′
1 φ̄2dx − 1

4
k2v0

∫ 1
0 φ′

1φ
′′2
1 φ̄2dx − 1

8
k2v0

∫ 1
0 φ′2

1 φ′′′
1 φ̄2dx

iω2
∫ 1
0 φ2φ̄2dx + v0

∫ 1
0 φ′

2φ̄2dx
,

H1 = S1 + S2 + S3,

H2 = S4 + S5 + S6,

H3 = S7 + S8 + S9,

H4 = S10 + S11 + S12,

K5 = K1 + K2 + K3.
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