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Abstract This paper investigates quasi-periodic
vibration-based energy harvesting in a delayed nonlin-
earMEMSdevice consisting of a delayedMathieu–van
der Pol–Duffing type oscillator coupled to a delayed
piezoelectric coupling mechanism. We use the multi-
ple scales method to approximate the quasi-periodic
response and the related power output near the prin-
cipal parametric resonance. The effect of time delay
on the energy harvesting performance is studied. It is
shown that for appropriate combination of time delay
parameters, there exists an optimum range of exci-
tation frequency beyond the resonance where quasi-
periodic vibration-based energy harvesting is maxi-
mum. Numerical simulations are performed to confirm
the analytical predictions.
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1 Introduction

The problem of scavenging energy from ambient
sources of vibration for powering up small-scale elec-
tronic devices such as micro-electro-mechanical sys-
tems (MEMS) is an active research topic and has a
beneficial impact in the development of autonomous
MEMS devices able to ensure their own power supply;
see, for instance, [1] and references therein. A sim-
ple nonlinear mechanical attachment modeling such
devices which exhibits relevant phenomena in the con-
text of energy harvesting (EH), such as limit cycle
(LC) oscillations and parametric amplification, is the
Mathieu–van der Pol–Duffing-type equation [2,3]. For
instance, a certain type of radio frequency resonator can
be designed by such an oscillator, as shown in [2,4–6].
The sources of vibration present in the resonator are the
self-sustained LC oscillations induced by a DC laser of
sufficient amplitude and the parametric amplification
produced by modulating the incident laser. In this case,
the response of the oscillator can be frequency-locked
near the resonance with a relatively large amplitude or
quasi-periodic (QP) away from the resonance with a
low amplitude [3,7–9]. In such a system, energy can
be harvested only in the frequency-locked regime near
the resonance, while the QP regime should be avoided
[10,11]. However, it was shown in a series of papers
[12–14] that in the presence of time delay, it is pos-
sible to exploit QP vibrations for scavenging energy
in broadband of parameter space away from the reso-
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nance with a good performance. Indeed, in the pres-
ence of time delay large-amplitude QP vibrations can
take place in certain ranges of excitation frequency and
delay parameters.

In a recent paper [15], QP vibration-based EH has
been studied in a delayed van der Pol oscillator coupled
to an electromagnetic EH device. It was demonstrated
that the modulation of the delay amplitude may give
rise to stable large-amplitude QP vibrations in broad-
band of parameters. More recently, QP vibration-based
EH was studied in a forced and delayed Duffing har-
vester device [16]. It was concluded that energy can be
extracted fromQP vibrations over broadband of excita-
tion frequency away from the resonance, circumvent-
ing bistability and jumpphenomena near the resonance.
Moreover, EH from QP vibrations has been explored
using a delayed electromagnetic coupling [17] and it
was shown that an optimum value of the excitation fre-
quency for which the QP vibrations amplitude and the
output power are maximum can be obtained. In [17],
the harvester is subjected to a delayed self-sustained
vibration coupled to a delayed electromagnetic compo-
nent, while in [16] the Duffing-type harvester is excited
by an external forcing and the delay introduced in the
mechanical attachment.

In the present paper, we consider the case where the
nonlinear harvester is under self-sustained and para-
metric excitations and the delay is present in both
mechanical and electrical components. Specifically, we
consider a delayed Mathieu–van der Pol–Duffing-type
resonator coupled to a delayed piezoelectric harvester
circuit and we explore the effect of time delays on the
performance of the harvester. This study can be viewed
as an extension of the works provided in [16,17]. For
the sake of generality, it is assumed that the time delay
present in the mechanical component is different from
that present in the electric circuit.

The next section describes the harvester system and
gives an approximation of the periodic response and
power amplitudes near the principal parametric res-
onance using the multiple scales method. In Sect. 3,
the QP response is approximated applying the second-
step multiple scales method and the corresponding har-
vested power is provided. Section 4 provides the main
results. Specifically, the influence of time delays and
coupling parameters of the harvester device on the EH
performance is examined. A summary of the results is
given in the concluding section.

Fig. 1 Schematic of the EH system

2 Model description and periodic energy
harvesting

The energy harvester MEMS device considered con-
sists of a Mathieu–van der Pol–Duffing resonator cou-
pled to an electrical circuit through a piezoelectric
device as shown in the schematic presented in Fig. 1.
We assume that the mechanical and electrical compo-
nents of the harvester are both under a time-delayed
feedback such that the dimensionless governing equa-
tions for the system can be written as

ẍ(t) + [1 − h cosωt]x(t) − [α − βx(t)2]ẋ(t)
+ γ x(t)3 − χv(t) = α1x(t − τ1) (1)

v̇(t) + λv(t) + κ ẋ(t) = α2v(t − τ2) (2)

Here x(t) is the relative displacement of the mass m
and v(t) is the voltage across the load resistance. The
coefficients h, ω are, respectively, the amplitude and
the frequency of the parametric excitation, α and β the
mechanical damping components, γ the stiffness,χ the
piezoelectric coupling term in the mechanical attach-
ment, κ the piezoelectric coupling term in the electri-
cal circuit and λ the reciprocal of the time constant of
the electrical circuit. The parameters α1, α2 and τ1, τ2
are, respectively, the feedback gains and time delays in
the mechanical and electric attachments. The current
study is based on the linearized piezoelectric coupling
in Eq. (1) although the piezoelectric constitutive equa-
tions are nonlinear [18–20].

It is worth noticing that the delayed Mathieu–van
der Pol–Duffing oscillator [Eq. (1) with χ = 0] has
been investigated in [21]. Attention was focused on
approximating QP and frequency-locked responses. In
[7], the dynamic of such an oscillator under external
forcing has been studied, while the undelayed forced
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Mathieu–van der Pol–Duffing oscillator, modeling an
optically actuated radio frequencyMEMS, was consid-
ered in [4,9].

To study the response of the harvester system (1), (2)
near the principal parametric resonance, we assume the
resonance condition 1 = ω2

4 + σ where σ is a detun-
ing parameter. Approximation of solutions is obtained
using themethod ofmultiple scales [22] by introducing
a bookkeeping parameter ε and scaling asα = εα̃, β =
εβ̃, γ = εγ̃ , χ = εχ̃, h = εh̃, α1 = εα̃1, σ = εσ̃ .
Equations (1), (2) become

ẍ(t) + ω2

4
x(t) = ε[(α̃ − β̃x(t)2)ẋ(t) − γ̃ x(t)3

+ χ̃v(t) + h̃ cos(ωt)x(t) − σ̃ x(t) + α̃1x(t − τ1)]
(3)

v̇(t) + λv(t) + κ ẋ(t) = α2v(t − τ2) (4)

We seek a solution of Eqs. (3) and (4) in the form:

x(t) = x0(T0, T1) + εx1(T0, T1) + O(ε2) (5)

v(t) = v0(T0, T1) + εv1(T0, T1) + O(ε2) (6)

where T0 = t , and T1 = εt . Using the time derivatives
d
dt = D0 + εD1 + O(ε2) and d2

dt2
= D2

0 + ε2D2
1 +

2εD0D1 + O(ε2) where D j
i = ∂ j

∂ j Ti
, substituting (5),

(6) into (3), (4) and balancing terms of like powers of
ε, we obtain up to the second order

D2
0x0 + ω2

4
x0 = 0 (7)

D0v0 + λv0 + κD0x0 = α2v0τ2 (8)

and

D2
0x1 + ω2

4
x1 = −2D0D1x0

+ (α̃ − β̃x20 )D0x0 − σ̃ x0 − γ̃ x30
+ χ̃v0 + h̃ cos(ωt)x0 + α̃1x1τ1 (9)

D0v1 + λv1 = −D1v0 − κD0x1 − κD1x0

+α2v1τ2 (10)

The first-order solution is given by

x0(T0, T1) = A(T1)e
i

ωT0
2 + Ā(T1)e

− ωT0
2 (11)

v0(T0, T1) = −κiωA(T1)

2λ + iω − 2α2e−i
ωτ2
2

ei
ωT0
2

+ κiω Ā(T1)

2λ − iω − 2α2ei
ωτ2
2

e−i
ωT0
2 (12)

where A(T1) and Ā(T1) are unknown complex con-
jugate functions. Substituting Eqs. (11), (12) into (9),

(10) and eliminating the secular terms gives

−iω(D1A) + i α̃ωA

2
− i β̃ω

2
A2 Ā − σ̃ A − 3γ̃ A2 Ā

− κiωχ̃ A

2λ − 2α2 cos(
ωτ2
2 ) + i(ω + 2α2 sin(

ωτ2
2 ))

+ h̃

2
Ā + α̃1Ae

− iωτ1
2 = 0 (13)

Assuming A = 1
2ae

iθ where a and θ are the amplitude
and the phase, we obtain the modulation equations
⎧
⎪⎨

⎪⎩

da

dt
= S1a + S2a

3 + S3a sin(2θ)

a
dθ

dt
= S4a + S5a

3 + S3a cos(2θ)

(14)

in which Si (i = 1, . . . , 5) are given in Appendix. The
solution given by (11), (12) reads
⎧
⎪⎨

⎪⎩

x0(T0, T1) = a cos(
ωt

2
+ θ)

v0(T0, T1) = V cos(
ωt

2
+ θ + arctan

2λ − 2α2 cos(
ωτ2
2 )

ω + 2α2 sin(
ωτ2
2 )

)

(15)

with the condition ω + 2α2 sin(
ωτ2
2 ) �= 0, and the volt-

age amplitude V is given by

V = κω
√

(2λ − 2α2 cos(
ωτ2
2 ))2 + (ω + 2α2 sin(

ωτ2
2 ))2

a

(16)

The steady-state response of system (14) obtainedby
setting da

dt = dθ
dt = 0 corresponds to periodic solution

ofEqs. (3) and (4). Eliminating the phase, the amplitude
a is given by the equation

(S22 + S25 )a
4 + (2S1S2 + 2S4S5)a

2 + S21
+ S24 − S23 = 0 (17)

The condition for Eq. (17) to have two real roots is:

(2S1S2 + 2S4S5)
2 − 4(S22 + S25 )(S

2
1 + S24 − S23 ) > 0

(18)

and the conditions for the stability of the steady-state
response are:

2(S1S2 + S4S5) > 0 (19)

S21 + S24 − S23 > 0 (20)

The stability chart of the periodic solution is shown
in Fig. 2 in which two regions can be distinguished. In
thewhite region, where the conditions (19) and (20) are
satisfied, a stable periodic (SP) solution is present, and
within the gray regions, an unstable periodic (UP) one
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Fig. 2 Stability chart of the periodic solution in the plane
(α1, τ1); SP for stable periodic solution, UP for unstable peri-
odic solution; h = 0.25, ω = 2, α = 0.1, β = 0.2, γ = 0.05,
λ = 0.05, κ = 0.5, χ = 0.05, α2 = 0.05 and τ2 = 4.2

exists. The parameter values are chosen as in previous
works [16,17,21]

The average power is obtained by integrating the
dimensionless form of the instantaneous power P(t) =
λv(t)2 over a period T . This is given by

Pav = 1

T

∫ T

0
λv2dt (21)

where T = 4π
ω
. Hence, the average power expressed

by Pav = λV 2

2 takes the form

Pav = 1

2

(
λκ2ω2

(2λ − 2α2 cos(
ωτ2
2 ))2 + (ω + 2α2 sin(

ωτ2
2 ))2

)

a2

(22)

where the amplitude a is given by Eq. (17). Apply-
ing the maximization procedure, the maximum power
reads

Pmax =
(

λκ2ω2

(2λ − 2α2 cos(
ωτ2
2 ))2 + (ω + 2α2 sin(

ωτ2
2 ))2

)

a2

(23)

Equations (17) and (23) will be used to study the effect
of parameters on the steady-state response and on the
output power of the harvester.

3 Quasi-periodic energy harvesting

Next, we investigate the QP response. Using the fact
that the slow flow (14) is invariant under the transfor-
mation θ → −θ + π

2 , S4 → −S4, S5 → −S5, system

(14) can be rewritten in the form
⎧
⎪⎪⎨

⎪⎪⎩

da

dt
= S1a + S2a

3 + S3a sin(2θ)

a
dθ

dt
= sS4a + sS5a

3 + S3a cos(2θ)

(24)

in which s = ±1. This invariance property will be
exploited, as in [16], to determine the boundaries of
the QP modulation envelope given by taking s = 1
and s = −1. Analytical approximate of the QP solu-
tion is carried out using the second-step multiple scales
method on the slow flow (24) [23], written in its Carte-
sian form as

⎧
⎪⎪⎨

⎪⎪⎩

du

dt
= (sS4 − S5)w + μ{S1u + (S2u + sS5w)(u2 + w2)}

dw

dt
= −(sS4 + S3)u + μ{S1w + (S2w − sS5u)(u2 + w2)}

(25)

where u = a cos θ and w = −a sin θ and μ is a new
bookkeeping parameter introduced in the system such
that the unperturbed one has a basic solution.Aperiodic
solution of the modulation equations (25), correspond-
ing to the QP response of the original system (1), (2),
is sought in the form

u(t) = u0(T0, T1) + μu1(T0, T1) + O(μ2) (26)

w(t) = w0(T0, T1) + μw1(T0, T1) + O(μ2) (27)

where T0 = t and T1 = μt . In terms of the variables
Ti , we have d

dt = D0 + μD1 + O(μ2) where D j
i =

∂ j

∂ j Ti
. Substituting (26) and (27) into (25), and collecting

terms of like powers of μ, we obtain the systems

D2
0u0 + ν2u0 = 0 (28)

(sS4 − S3)w0 = D0u0 (29)

D2
0u1 + ν2u1 = −D0D1u0 + S1D0u0 + (S2D0u0

+ sS5D0w0)(u
2
0 + w2

0)

−(sS4 − S3)D1w0

+ (S2u0 + sS5w0)D0(u
2
0

+w2
0) + (sS4 − S3)S1w0

+(sS4 − S3)(S2w0

−sS5u0)(u
2
0 + w2

0) (30)

(sS4 − S3)w1 = D0u1 + D1u0

−S1u0 − (S2u0 + sS5w0)(u
2
0 + w2

0)

(31)
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where ν =
√

S24 − S23 is the frequency of the QP mod-
ulation. Up to the first order, the solution reads

u0(T0, T1) = R(T1) cos(νT0 + ψ(T1)) (32)

w0(T0, T1) = −R(T1)ν

(sS4 − S3)
sin(νT0 + ψ(T1)) (33)

where R andψ are, respectively, the amplitude and the
phase of the QPmodulation. Substituting (32) and (33)
into (30) and removing secular terms, we obtain the
slow–slow flow

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dR

dt
= S1R +

[
S2
2

+ S2ν2

2(sS4 − S3)2

]

R3

R
dψ

dt
=

[
νsS5

4(sS4 − S3)
+ 3ν3sS5

8(sS4 − S3)3
+ 3

8ν
sS5(sS4 − S3)

]

R3

(34)

in which equilibria correspond to QP solutions of the
original equations (1), (2). By setting dR

dt = 0, we
obtain the nontrivial equilibrium

R =
√

− S1(sS4 − S3)

sS2S4
(35)

The boundaries of the QP modulation envelope are
given by Eq. (35) with s = ±1 and periodic solution
of the slow flow (25) is approximated by

u(t) = R cos(θ t) (36)

w(t) = −Rν

(sS4 − S3)
sin(θ t) (37)

Explicitly, the QP response of the original system is
given by

x(t) = u(t) cos(
ωt

2
) + w(t) sin(

ωt

2
) (38)

Inserting Eq. (38) into Eq. (2), the QP voltage v(t)
can be obtained using a convolution integral with the
boundary condition v(0) = v(T ) where T = 2π

ν
. This

leads to

v(t) = −κe(α2eλτ2−λ)t
∫ t

0
ẋ(t ′)e(λ−α2eλτ2 )t ′dt ′ (39)

Then, the total, the average and the maximum power
outputs, in the QP regime, are, respectively, given by

PQP (t) = λ(κe(α2e
λτ2−λ)t

∫ t

0
ẋ(t ′)e(λ−α2e

λτ2 )t ′dt ′)2 (40)

PavQP = λκ2ν2

2[(λ − 2α2 cos(
ωτ2
2 ))2 + (ν + 2α2 sin(

ωτ2
2 ))2] R

2

(41)

PmaxQP = λκ2ν2

[(λ − 2α2 cos(
ωτ2
2 ))2 + (ν + 2α2 sin(

ωτ2
2 ))2] R

2

(42)

where R is obtained from Eq. (35).

4 Main results

The influence of delay parameters on the power ampli-
tude is presented in this section. In what follows, we
fix the parameters: α = 0.1, β = 0.2, λ = 0.05 and
γ = 0.05. Figure 3 shows the variation of the ampli-
tudes a and R of the periodic and the QP responses ver-
sus ω (Fig. 3a) as well as the output power amplitudes
Pmax (for the periodic response), PmaxQP (for the QP
response) versus the frequency ω (Fig. 3b) in the case
of the undelayed harvester device (α1 = α2 = 0 and
τ1 = τ2 = 0). The amplitude of the periodic response
is given by (17), and the boundaries of the QP modula-
tion envelope are obtained from Eq. (35) with s = ±1.
Also, the maximum power for periodic and QP vibra-
tions are given, respectively, by Eqs. (23) and (42). The
analytical prediction (solid lines for stable and dashed
line for unstable) is compared to numerical simulation
(circles) obtained by the method of Runge–Kutta of
order 4. The plots in Fig. 3b show that in the absence
of time delay, the periodic vibration-based EH perfor-
mance is better than that of the QP vibrations.

The frequency response curves in terms of ampli-
tudes and power responses are illustrated in Fig. 4 in
the case where the time delay is present only in the
mechanical subsystem (α1 �= 0, τ1 �= 0 and α2 = 0,
τ2 = 0). It can be observed fromFig. 4 that the presence
of a small delay amplitude in the mechanical compo-
nent has no significant effect on the EH performance.

In Fig. 5 is shown by the black lines the influence of
time delay introduced in bothmechanical and electrical
components (α1 �= 0 and α2 �= 0) on the EH perfor-
mance of the system. These are compared to the gray
lines related to the case where the delay is present only
in themechanical subsystem (Fig. 4). It can be observed
that introducing the delay in the electrical circuit causes
a significant increase in the QP output power in a cer-
tain range of the frequencyω just beyond the resonance
(Fig. 5b, black lines).

Figure 6 shows the variation of the amplitude of the
responses (Fig. 6a) and the powers (Fig. 6b) versus
the mechanical delay amplitude α1 for α2 = 0 (unde-
layed circuit, gray lines) and for α2 = λ (delayed cir-
cuit, black lines). The analytical prediction is compared
to numerical simulation (circles) obtained by using
dde23 [24] algorithm. One can observe from Fig. 6b
that for small values ofα1, energy can be extracted from
periodic vibrations with low performance. Beyond a
certain value of α1, QP solution appears, offering the
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Fig. 3 Vibration and power
amplitudes versus ω for
h = 0.25, α1 = α2 = 0,
τ1 = τ2 = 0, χ = 0.05, and
κ = 0.5. Analytical
prediction (solid lines for
stable and dashed line for
unstable) and numerical
simulation (circles). QPR
QP response, PR periodic
response; QPP QP power,
PP periodic power ω
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Fig. 4 Vibration and power
amplitudes vs ω for
h = 0.25, α1 = 0.02,
α2 = 0, τ1 = 5.2, τ2 = 0,
χ = 0.05 and κ = 0.5.
Analytical prediction (solid
and dashed lines) and
numerical simulation
(circles)
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Fig. 5 Vibration and power
amplitudes vs ω for
h = 0.25, α1 = 0.02,
τ1 = 5.2, τ2 = 4.2,
χ = 0.05, and κ = 0.5.
Black lines for delayed
electric circuit (α2 = λ) and
gray lines for undelayed
circuit (α2 = 0, Fig. 4)
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possibility to scavenging energy with better perfor-
mance when the time delay is present in the electrical
circuit (α2 = λ).

Next, a stability analysis of the QP solution is per-
formed by examining the nontrivial solution of the
slow–slow flow (34). Figure 7a shows this stability
chart in the parameter plane (α1, τ1) indicating the gray
regionswhere stableQP (SQP) solutions take place and
the white region corresponding to unstable QP (UQP)
solutions. In Fig. 7b are shown time histories and the
power output responses related to crosses 1, 2, 3 in
Fig. 7a. From cross 3 to cross 2 or 1, a secondary Hopf
bifurcation occurs. The evolution of the SQP domains
in the parameter plane (α1, τ1) is depicted in Fig. 8 for
different values of the parametric excitation amplitude
h. One observes that for small values of h, the SQP

domain covers almost the entire parameter plane.When
h is increased, the SQP domain divides into two parts
that shift toward higher (positive and negative) values
of the delay amplitude of the mechanical subsystem
α1. This indicates that for increasing values of h, QP
vibration-based EH performance can be achieved for
larger values ofα1 and over certain ranges of time delay
τ1.

Finally, we show in Figs. 9, 10, respectively, the
influence of the piezoelectric coupling coefficients χ

and κ on the output powers. It can be observed that for
the given values of parameters, QP vibration-based EH
can be extracted with a good performance for small
negative values of χ (Fig. 9b) or for large negative
values of κ (Fig. 10b).
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Fig. 6 Vibration and power
amplitudes vs α1, for
h = 0.25, ω = 2, τ1 = 5.2,
τ2 = 4.2, χ = 0.05 and
κ = 0.5. Black (gray) lines
for delayed (undelayed)
electric circuit α2 = λ

(α2 = 0)
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Fig. 7 Stability chart in the
plane (α1, τ1), b time and
power histories
corresponding to different
regions picked from (a). SP
stable periodic, SQP stable
QP; h = 0.25, ω = 2,
α2 = 0.05, τ2 = 4.2,
χ = 0.05 and κ = 0.5

t

x(
t)

-4

0

4
 At cross 1 (τ 1 =4, α 1 =0.5)

t

P
(t)

0

0.2

0.4
At cross 1 ( τ 1 =4, α 1 =0.5)

t

x(
t)

-4

0

4
At cross 2 (τ 1 =4, α 1 =-0.5)

t

P
(t)

0

0.2

0.4
At cross 2 (τ 1 =4, α 1 =-0.5)

t

x(
t)

-4

0

4
At cross 3 (τ 1 =8.076, α 1 =0.086)

t

500 600 700 800 500 600 700 800

500 600 700 800 500 600 700 800

500 600 700 800 500 600 700 800

P
(t)

0

0.2

0.4

At cross 3 (τ 1 =8.076, α 1 =0.086)

(a)

(b)

123



2544 M. Belhaq et al.

Fig. 8 Evolution of the
stability chart in the plane
(α1, τ1) for ω = 2,
α2 = 0.05, τ2 = 4.2,
χ = 0.05 and κ = 0.5, a
h = 0.02, b h = 0.15, c
h = 0.16, d h = 1. SP
stable periodic, SQP stable
QP

(a) (b)

(c) (d)

Fig. 9 Vibration and power
amplitudes vs χ for
h = 0.25, ω = 2,
α1 = 0.02, τ1 = 5.2,
τ2 = 4.2 and κ = 0.5. Black
(gray) line for delayed
(undelayed) electric circuit
α2 = λ (α2 = 0)
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Fig. 10 Vibration and
power amplitudes vs κ for
h = 0.25, ω = 2,
α1 = 0.02, τ1 = 5.2,
τ2 = 4.2 and χ = 0.05.
Black (gray) line for
delayed (undelayed) electric
circuit α2 = λ (α2 = 0)
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5 Conclusions

QP vibration-based EH has been studied in [16] for a
delayed and excited Duffing-type oscillator coupled to
a piezoelectric circuit, and in [17] for a delayed van der
Pol oscillator with a delayed electromagnetic coupling.
In the former study, optimal values of external forcing
for which the power is maximumwere obtained, and in
the later, it was demonstrated that the maximum power
of the harvester is not necessarily accompanied by the
maximum amplitude of the system response.

In the present work, we have studied QP vibration-
based EH in a delayed Mathieu–van der Pol–Duffing-
type resonator coupled to a delayed piezoelectric cou-
plingmechanism. The study is carried out near the prin-
cipal parametric resonance, and analytical approxima-
tions of the amplitudes of the QP response and the cor-
responding power output are obtained. Results show
that for appropriate combination of time delay param-
eters, there exists a small range of the excitation fre-
quency overwhich the energy harvested fromQPvibra-
tions is higher compared to the energy harvested from
periodic ones. It was also concluded that beyond a cer-
tain value of the delay amplitude of the mechanical
attachment, QP vibrations offer the possibility to scav-
enge energy with better performance when the delay
is present in the electric circuit. Moreover, by increas-
ing the amplitude of the parametric excitation, good
QP vibration-based EH performance can be obtained
only for higher values of the delay amplitude of the
mechanical attachment.

Appendix
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2
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2 ))
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