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Abstract Under an event-triggered communication
scheme (ETCS), this note focuses on the observer-
based finite-time resilient control problem for a class
of switched systems. Different from the existing finite-
time problems, not only the problem of finite-time
boundedness (FTBs) but also the problem of input-
output finite-time stability (IO-FTSy) are considered
in this paper. To effectively use the network resources,
an ETCS is formulated for switched systems. Consid-
ering that not all the states could be measured, thus
an event-triggered observer is constructed, and then,
an observer-based resilient controller is devised, which
robustly stabilizes the given systems in the meaning of
finite-time control. Based on time-delay method and
Lyapunov functional approach, interesting results are
derived to verify the properties of the FTBs and the
IO-FTSy of the event-triggered (ET) closed-loop error
switched systems. All the matrix inequalities can be
converted to linear matrix inequalities (LMIs) so as to
simultaneously obtain the controller gain and observer
gain. Finally, the applicability of the proposed control
scheme is verified via a boost converter circuit system.
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1 Introduction

Switched systems belong to the category of hybrid sys-
tems, which consists of a limited number of subsystems
and a switching law orchestrating the switching among
the subsystems. Over the past years, switched systems
have already obtained many attentions because of their
powerful potentials in process control, electricity sys-
tem , aircraft control systems, automobile controlling
systems, etc. From a theoretical point of view, differ-
ent properties of switched systems are characterized
[1–5]. Unfortunately, the research for switched systems
under communication networks is insufficient.With the
rapid development of computer and networked tech-
nologies, data transmission via communication net-
works has received considerable research attentions [6–
8]. Though communication network scheme allows for
reduced wiring as well as for lower installation cost,
it often be accompanied by some problems, such as
network congestion and communication packet losses,
which are quite challenging issues.

In order to deal with those challenging issues in net-
work environment, the simplest approach is periodic
sampling, which is termed as time-triggered scheme,
and many results have been established for switched
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systems [9–11]. However, time-triggered strategy may
lead to resource waste since some redundant sampled
data are sent even when those data do not significantly
change the performance of the research object. To over-
come this obstacle in general time-triggered communi-
cation, one can prefer event-triggered technique, which
allows sample points satisfying the predefined event-
triggered condition (ETC) to be transmitted. Since
the event-triggered control scheme can save precious
communication resources, many researchers have paid
attention to it [12–14]. It is well known that time delay
is the unavoidable feature in practice, and the results
of time-delay systems have been widely reported in
the past several years [15–18]. With that in mind, time-
delaymethod is generally used tomode an ETC system
as a time-delay system.

It is noted that the controlled systems in mentioned
above papers require that the total states of systems
are always available. In fact, this requirement is not
realistic for many real-world systems; thus, control
based on state feedback cannot be realized. Instead,
observer-based control can be used to implement a
good system performance when some states of systems
are not usually measurable. Therefore, the observer-
based control plays an active role in the field of control.
Especially, the observer-based event-triggered control
technique is widely adopted to estimate all the states
which cannot always be measured in practice. For var-
ious dynamic systems, some results on observer-based
event-triggered control are presented in [19–21]. Com-
pared with the existing analysis on a single system,
the analysis of switched system’s observer-based event-
triggered control problem is more complicated due to
its hybrid nature. In [22], assume that the observer
is designed in advance, and then, the event-triggered
control issue is studied for switched linear systems.
For the switched system in [23], the problem of event-
triggered finite-time stabilization is studied by using an
observer-based control approach, where the controller
gain and the observer gain cannot be obtained at the
same time due to the nonlinear terms. Moreover, the
authors in [22,23] do not consider the uncertainty in
the actuator. It is worth mentioning that the designed
controller under ETCSmay be sensitive in practice due
to the imprecision inherent in networked communica-
tion. Therefore, how to design an appropriate ETCS
to save the network resources and an observer-based
robust controller to avoid the sensitivity issue are one of

themost interesting and serious challenges for switched
systems, which is one motivation of this study.

Asweknow,Lyapunov asymptotic stability has been
widely studied in the majority of the existing studies.
However, under some circumstances such as chemical
reaction process, missile systems, and certain aircraft
maneuvers, it is required that the system state xt should
not exceed some bounds in the predefined finite-time
span. Noticing this, the definition of FTBs comes out
[24], which requires that the response of xTt Rxt falls
into the predefined bounded domain during a specified
time span, where R is a positive definite matrix. FTB
has been proved to be a meaningful research topic and
found wide applications in practice [25–29]. As some-
times the output yt is also required to be restrained
within a bound, the concept of IO-FTSy is provided in
[30]. By IO-FTSy, we mean that for given input sig-
nals and a positive definite matrix �, the response of
yTt �yt lies in an assigned threshold during a finite-
time span. Afterward, some results on IO-FTS are pre-
sented for various systems [31–34]. It is noted that in
the above studies, the results are obtained in nonevent-
triggered context. Nevertheless, the redundant signals
in nonevent-triggered context will increase the load on
the communication, so the research on IO-FTS needs
to be done based on an ETCS. This also motivates us
to perform the present study.

In view of the above-mentioned facts, we aim at
investigating to solve the observer-based finite-time
resilient control problem for switched systems with
ETCS. Compared to the existing works, there are some
main contributions in this paper as follows:

• (i) Although the research on switched systems is
very rich, most studies do not consider the waste of
communication resources, such as high energy con-
sumption and equipment abrading. Here, an appro-
priate ETCS is proposed for switched systems to
save the cost of communications.

• (ii) Different from the finite-time control in [25–32]
that only makes state/output bounded in a specified
time interval, a new finite-time control approach is
developed, which requires that during a finite-time
span, the response of xTt Rxt falls into the prede-
fined bounded domain, i.e., FTBs; the response of
yTt �yt under zero initial condition also lies in a
limited area, i.e., IO-FTSy.

• (iii) The ET closed-loop error switched system
is constructed by using the time-delay system

123



Event-triggered finite-time resilient control 2411

method. Further, when considering the unmea-
sured states and the uncertainty in controller, the
observer-based resilient control approach is applied
to resolve the FTB and IO-FTS problems for the ET
closed-loop error switched system.

• (iv) In the field of observer-based controller design,
when seeking the controller gain and observer gain,
the following situation often occurs: the controller
gain or observer gain should be given beforehand
[22,23,35]. Different from the above-mentioned
calculation methods, the controller gain and the
observer gain here can be acquired simultaneously
by solving strict LMIs.

• (v) Under the ETCS, the observer-based control
technique is used to solve the FTB and IO-FTS
problems of the boost converter circuit systems,
which has been shown to be more effective.

1.1 Notations

Throughout this paper, S − Q < 0(≤ 0) means that
S − Q is a negative definite (negative semidefinite)
matrix. ST indicates the transpose of matrix S. We use
∗, λmin(·), and λmax(·) to, respectively, denote the sym-
metric terms of matrices, the minimum and the maxi-
mum eigenvalues of a matrix (·). diag{X,Y } stands the
block-diagonal matrix of X and Y . Rn denotes the n-
dimensional Euclidean space. The symbol Lp,[t0,t0+T ]
represents the space of vector-valued signals ε(·), and
the norm is defined by ε(·) ∈ Lp,[t0,t0+T ] ⇐⇒
(
∫ t0+T
t0

|εs |pds)
1
p < ∞.

2 Problem formulation and preliminaries

Consider the following switched system:
{
ẋt = Aσt xt + Bσt ut + Dσtωt ,

yt = Ext ,
(1)

where xt ∈ R
n , ut ∈ R

q , ωt ∈ R
m , and yt ∈ R

l are the
state vector, controlled input, disturbance input, and
measured output, respectively. σt : [0,∞) �→ N =
{1, 2, . . . , N } is a piecewise constant function which
represents the switching signal. Further, the switching
sequence is represented by

{(0, σ0), (t1, σt1), . . . , (tk, σtk ), . . . |σtk ∈ N , k ∈ N},
where the switching points satisfy 0 < t1 < · · · < tk <

. . .. The σtk th subsystem works when t ∈ [tk, tk+1).

Switched system Sampler

Event Trigger

NetworkObserver

Controller

ZOH

rg hy

shy

ty
t

tu

ˆtx

Fig. 1 The switched control system with ETCS

For σt = i , Ai , Bi , Di , and E are real known constant
matrices.

In order to enhance the utilization ratio of the pre-
cious communication resources, we will design a suit-
able ETCS to decide whether the sampling point is
transmitted or not. The diagram of the observer-based
controller with an ETCS for switched systems is shown
in the following figure.

InFig. 1, at a constant period h, themeasured outputs
are sampled and the set of sampled instants is given by
T = {sh|s ∈ N}. The set of the event generator release
sample instants of the measured output is represented
by T1 = {grh|gr ∈ N} ⊆ T . Here, the event trigger
is a very critical component in the control loop, since
it determines whether a newly sampled signal ysh is
transmitted or not. The ETC is given as follows:

gr+1h = grh + min
ν∈N

{
νh | eT(gr+ν)h�i e(gr+ν)h

≥ δi y
T
(gr+ν)h�i y(gr+ν)h

}
, (2)

where e(gr+ν)h = y(gr+ν)h − ygr h , δi > 0 is the coeffi-
cient of the threshold. {(gr +ν)h} is the set of real-time
sampling instants between two successive event release
instants, and �i > 0 is a weighting matrix to be deter-
mined.

Remark 1 It should be pointed that the sampling pro-
cess of the measured output yt can be described as
follows:

• Firstly, the output signal yt is sampled at a constant
period h. The set of sampled output signals is given
by T = {ysh |s ∈ N}.

• Secondly, the event trigger is applied to determine
whether the sampled data ysh should be transmit-
ted or not. The set of transmitted instants can be
represented by T1 = {grh|gr ∈ N} ⊆ T .
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Since the event trigger is basedon theperiodic sampling
at a constant rate, it is clear that the minimum event-
triggered interval is the constant sampling interval h.
Therefore, there is no Zeno behavior.

Remark 2 The ZOH is used to hold the input signal of
the observer when there is no latest transmitted data
arrived at the observer side. However, once a transmit-
ted datum arrives at the ZOH, the ZOH immediately
updates its store and actuates the observer.

Remark 3 As we know, the ETC plays an important
role, which can judge whether the newly sampled sig-
nal ysh is transmitted or not. From ETC in (2), we say
that the number of sampling points will be affected by
the triggered thresholds δi > 0, which will be demon-
strated via a boost converter circuit system in Sect. 4.

For the sake of simplicity, let sr,ν � gr + ν, we
have [grh, gr+1h) = ∪lr

ν=0[sr,νh, sr,ν+1h), where lr =
gr+1 − gr − 1. Define a piecewise function dt = t −
sr,νh, t ∈ [sr,νh, sr,ν+1h), 0 ≤ dt ≤ h. Then, it is not
difficult to find

ȳt � ygr h = ysr,νh − esr,νh = yt−dt − esr,νh,

∀t ∈ [sr,νh, sr,ν+1h). (3)

Next, we focus on solving the problems of the waste
of communication resource and the unmeasured state
xt . Based on the ETCS and the measurable output yt ,
we shall consider the following Luenberger observer
for system (1):
{ ˙̂xt = Ai x̂t + Biut + Li (ȳt − ŷt ),
ŷt = Ex̂t ,

(4)

where σ(t) = i ∈ N , x̂t ∈ R
n is the estimated state

and ŷt ∈ R
p is the estimated output. ȳt = ygr h ∈ R

p

is the system output measurement that meets ETC. Lσt

is the observer gain to be designed.
In order to overcome the uncertainty of the actuator,

we shall design a resilient controller using x̂t to guaran-
tee that the closed-loop control systems are both FTB
and IO-FTS as follows:

ut = K̄i (t)x̂t = (Ki + 
Ki (t))x̂t , (5)

where �Ki (t) represents controller gain variation sat-
isfying

�Ki (t) = Mi Fi (t)Ni , (6)

Mi and Ni are given real matrices. Fi (t) is an unknown
time-varying matrix function which meets

FT
i (t)Fi (t) ≤ I.

The estimation error x̄t = xt − x̂t satisfies

˙̄xt = Ai x̄t − Li Ext−dt + Li E x̂t + Liesr,νh + Diωt .

(7)

From (4), (5), and (7), one can obtain the ET closed-
loop error switched system
⎧
⎨

⎩

˙̃xt = Ãi x̃t + Ãdi H x̃t−dt + L̃i esr,νh + D̃iωt ,

yt = Ẽ x̃t ,
x̃θ = ϕθ , θ ∈ [− h, 0],

(8)

where ϕθ is a continuously differentiable initial func-
tion in [− h, 0],

x̃t � [x̂ Tt x̄ Tt ]T , x̃t−dt � [x̂ Tt−dt x̄ Tt−dt ]T ,

Ãi �
[
Ai + Bi K̄i (t) − Li E 0

Li E Ai

]

, Ãdi �
[

Li E
− Li E

]

,

L̃i �
[− Li

Li

]

, D̃i �
[

0
Di

]

,

Ẽ = [
E E

]
, H = [

I I
]
.

Nowwe state the following definitions and Lemmas
before the later development in this paper.

Definition 1 (FTBs) [36].Given positive constantsa1,
a2, and T f with a1 < a2, a positive definite matrix
R̂, ET closed-loop error switched system (8) is said
to be finite-time bounded (FTB) wrt (a1, a2, R̂, T f ), if
t ∈ [0, T f ]

max
θ∈[− h,0]

{
x̃ Tθ R̂x̃θ , ˙̃xTθ R̂ ˙̃xθ

}
≤ a1 ⇒ x̃ Tt R̂x̃t < a2.

Remark 4 Noting the state x̃t = [x̂ Tt x̄ Tt ]T , we shall

choose R̂ =
[
R 0
0 R

]

, where R represents a positive

definite matrix.

Definition 2 (IO-FTSy) [31]. Given positive constant
T f , a positive definite matrix �, a class of exogenous
disturbance signalsW in [0, T f ], under zero initial con-
dition, switched system (8) shall be input-output finite-
time stable (IO-FTS) wrt (W, �, T f ), if t ∈ [0, T f ]
ωt ∈ W ⇒ yTt �yt < 1.
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Remark 5 In general, for the IO-FTSy problem, the
following exogenous disturbances are considered by
most of scholars:

W �
{
ωt ∈ L2,[0,T f ] :

∫ T f

0
ωT
s Gωsds ≤ 1

}
, (9)

W �
{
ωt ∈ L∞,[0,T f ] : max

t∈[0,T f ]
ωT
t Gωt ≤ 1

}
, (10)

whereG represents a positive definitematrix. Through-
out this paper, we only consider the exogenous distur-
bancesωt ∈ L2,[0,T f ]. Following the similar manipula-
tions, one can deal with the disturbance in (10). Here,
we just omit it.

Remark 6 It is known that a system is IO Lp-stable,
if its output belongs to the same class with the corre-
sponding input, where Lp ( 1 ≤ p < ∞) is defined
to be a set of all piecewise continuous functions ε(·)

such that ‖εt‖Lp =
( ∫ ∞

0 ‖εt‖pdt
) 1

p
< ∞. One can

see that IO-FTSy and IO Lp-stability are rather dif-
ferent concepts. IO-FTSy characterizes the short-time
performances of the system’s output, which not only
requires the existence of the bounds but also pays more
attention to the quantitative relations of the input and
output signals. However, the concept of IOLp-stability
is generally concerned with the output’s property in an
infinite time interval,which only demands the existence
of the bounds.

Lemma 1 [37]. For any constant matrix M > 0 and
all continuously differentiable function φ(·) in [a, b] →
R
n, the following inequality holds

− (b − a)

∫ b

a
φ̇T
s M φ̇sds

≤ −(φb − φa)
T M(φb − φa) − 3ϑT Mϑ,

where ϑ = φb + φa − 2
b−a

∫ b
a φsds.

Lemma 2 [38]. For full rank matrix E ∈ R
m×n,

rank(E) = m, the singular value decomposition (SVD)
for E can be described as E = O[S 0]V T , where
O · OT = I and V · V T = I . Let matrices X > 0,
M ∈ R

m×m and N ∈ R
n×n. Then, there exists X̄ such

that E X = X̄ E if and only if the following condition
holds:

X = V

[
M 0
0 N

]

V T .

Problem. Consider system (1). Given positive scalars
a1, a2, T f , positive definite matrices R̂, G, �, and
disturbance inputs W during the finite-time interval
[0, T f ], our main tasks are

(i) constructing an output-based event-triggered
scheme to solve the problem of communication
resources abused in network environment;

(ii) designing a resilient controller based on observer
to guarantee that ET closed-loop error switched
system (8) is both FTBs and IO-FTSy wrt (a1, a2,
R̂,W, �, T f ).

3 Main results

3.1 FTB and IO-FTS analysis of the closed-loop error
switched system

Theorem 1 For switched system (1), given positive
constants a1, a2, T f , α, δi , μ, h, with a2 > a1, μ > 1,
and positive define matrix R̂, there is a controller in the
form of (5) making ET closed-loop error switched sys-
tem (8) FTB wrt (a1, a2, T f , R̂), if there exist positive
definite matrices Pi , Qi , and Wi such that
[

�1 �2

∗ �3

]

< 0, (11)

Pi ≤ μPj , Qi ≤ μQ j , Wi ≤ μWj , (12)

τa > τ ∗
a,1 = T f lnμ

ln(λ2a2) − ln(γ + 1) − αT f − N0 lnμ
,

(13)

where

�1 =
⎡

⎣
�(1, 1) �(1, 2) �(1, 3)

∗ �(2, 2) �(2, 3)
∗ ∗ �(3, 3)

⎤

⎦ ,

�2 =
⎡

⎣
0 − Pi

1Li 6Qi �(1, 7)
Pi
2Di Pi

2Li 6Qi AT
i

0 0 6Qi 0

⎤

⎦ ,

�3 =

⎡

⎢
⎢
⎣

−G 0 0 DT
i∗ −�i 0 0

∗ ∗ − 12Qi 0
∗ ∗ ∗ − h−2Q−1

i

⎤

⎥
⎥
⎦ ,

�(3, 3) = − 4Qi + δi E
T�i E,

�(1, 1) =
(
AT
i + K̄ T

i (t)BT
i − ET LT

i

)
Pi
1 − αPi

1

+ Wi + Pi
1(Ai + Bi K̄i (t) − Li E) − 4Qi ,
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�(1, 2) = ET LT
i P

i
2 − 4Qi , �(1, 3) = Pi

1Li E

− 2Qi , �(2, 3) = − Pi
2Li E − 2Qi ,

�(2, 2) = AT
i P

i
2 + Pi

2 Ai − αPi
2 − 4Qi , �(1, 7)

= AT
i + K̄ T

i (t)BT
i , Pi = R̂

1
2 P̄i R̂

1
2 ,

λ2 = λmin(P̄i ),

γ = λ1a1
[
1 − 1

α

(
(1 − eαh)

(

1 + h

α

)

+ h2
)]

,

HTWi H = R̂
1
2 W̄i R̂

1
2 ,

λ1 = max
i∈N

{
λmax(P̄i ), λmax(Q̄i ), λmax(W̄i )

}
,

HT Qi H = R̂
1
2 Q̄i R̂

1
2 .

Proof Construct the following Lyapunov–Krasovskii
functional for system (8)

Vi (x̃t , t) = x̃ Tt Pi x̃t +
∫ t

t−dt
eα(t−s) x̃ Ts HTWi H x̃sds

+ h
∫ 0

− h

∫ t

t+θ

eα(t−s) ˙̃xTs HT Qi H ˙̃xsdsdθ

= x̃ Tt Pi x̃t +
∫ t

t−dt
eα(t−s)xTs Wi xsds

+ h
∫ 0

− h

∫ t

t+θ

eα(t−s) ẋ Ts Qi ẋsdsdθ. (14)

The derivative of Vi (x̃t , t) along the trajectory of sys-
tem (8) is described by

V̇i (x̃t , t) = x̃ Tt ( ÃT
i Pi + Pi Ãi − αPi )x̃t

+ 2x̃ Tt Pi Ãdi xt−dt + xTt Wi xt

+ 2x̃ Tt Pi L̃i esr,νh + αVi (x̃t , t)

+ h2 ẋ Tt Qi ẋt + 2x̃ Tt Pi D̃iωt

− h
∫ t

t−h
eα(t−s) ẋ Ts Qi ẋsds. (15)

From Lemma 1, we derive

− h
∫ t

t−h
eα(t−s) ẋ Ts Qi ẋsds ≤ −h

∫ t

t−dt
ẋ Ts Qi ẋsds

≤ −
[

xt − xt−dt

xt + xt−dt − 2
dt

∫ t
t−dt

xsds

]T

[
Qi 0
03Qi

] [
xt − xt−dt

xt + xt−dt − 2
dt

∫ t
t−dt

xsds

]

=
⎡

⎣
xt

xt−dt
1
dt

∫ t
t−dt

xsds

⎤

⎦

T ⎡

⎣
− 4Qi − 2Qi 6Qi

− 2Qi − 4Qi 6Qi

6Qi 6Qi − 12Qi

⎤

⎦

⎡

⎣
xt

xt−dt
1
dt

∫ t
t−dt

xsds

⎤

⎦

=

⎡

⎢
⎢
⎣

x̂t
x̄t

xt−dt
1
dt

∫ t
t−dt

xsds

⎤

⎥
⎥
⎦

T ⎡

⎢
⎢
⎣

− 4Qi− 4Qi− 2Qi 6Qi

− 4Qi− 4Qi− 2Qi 6Qi

− 2Qi− 2Qi− 4Qi 6Qi

6Qi 6Qi 6Qi − 12Qi

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x̂t
x̄t

xt−dt
1
dt

∫ t
t−dt

xsds

⎤

⎥
⎥
⎦ . (16)

Due to x̄t = xt − x̂t , we have

h2 ẋ Tt Qi ẋt = h2

⎡

⎣
x̂t
x̄t
ωt

⎤

⎦

T ⎡

⎣
�(1, 7)
AT
i

DT
i

⎤

⎦

Qi
[
�(1, 7)T Ai Di

]
⎡

⎣
x̂t
x̄t
ωt

⎤

⎦ . (17)

Define Pi =
[
Pi
1 0
0 Pi

2

]

. From (2), (8), and (15)–(17),

we get

V̇i (x̃t , t) ≤ ξ Tt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�(1, 1) �(1, 2) �(1, 3) 0 −Pi
1 Li 6Qi

∗ �(2, 2) �(2, 3) Pi
2Di Pi

2 Li 6Qi

∗ ∗ �(3, 3) 0 0 6Qi

∗ ∗ ∗ −G 0 0
∗ ∗ ∗ ∗ −�i 0
∗ ∗ ∗ ∗ ∗ − 12Qi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

ξt

+ h2

⎡

⎣
x̂t
x̄t
ωt

⎤

⎦

T ⎡

⎣
�(1, 7)
AT
i

DT
i

⎤

⎦

Qi
[

�(1, 7)T Ai Di
]
⎡

⎣
x̂t
x̄t
ωt

⎤

⎦

+ ωT
t Gωt + αVi (x̃t , t), (18)

where

ξt = col
{
x̂t , x̄t , xt−dt , ωt , esr,ν ,

1

dt

∫ t

t−dt
xTs ds

}
.
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Then, applying Schur complement and taking (11) into
account, we derive

V̇i (x̃t , t) ≤ ωT
t Gωt + αVi (x̃t , t). (19)

This together with (12) implies that when t ∈ [tk, tk+1)

Vσt (x̃t , t) ≤ eα(t−tk )Vσtk
(x̃tk , tk)

+
∫ t

tk
eα(t−s)ωT

s Gωsds

≤ μeα(t−tk )Vσ
t−k

(x̃t−k
, t−k )

+
∫ t

tk
eα(t−s)ωT

s Gωsds

≤ μeα(t−tk−1)Vσtk−1
(x̃tk−1 , tk−1)

+ μ

∫ t

tk−1

eα(t−s)ωT
s Gωsds

...

≤ μNσ (0,t)eαt Vσ0(x̃0, 0)

+ μNσ (0,t)
∫ t

0
eα(t−s)ωT

s Gωsds. (20)

By Definition 1, (9) and (14), we have

x̃ Tt R̂x̃t ≤ 1

λ2
Vσt (x̃t , t)

≤ 1

λ2
μNσ (0,T f )eαT f (Vσ0(x̃0, 0) + 1), (21)

and

Vσ0(x̃0, 0) ≤ γ. (22)

Using the average dwell time (ADT) technique in [25],
we get Nσ (0, T f ) ≤ N0 + T f

τa
. Further, from (13),

(21), and (22), one can see x̃ Tt R̂x̃t < a2. As a result,
ET closed-loop error switched system (8) is FTBs wrt
(a1, a2, R̂, T f ). ��
Remark 7 For theADT technique, the parameters τa >

0, N0 ≥ 0 are, respectively, called the ADT and the
chatter bound.We say a switching signal σ(t) ∈ N sat-
isfying the ADT condition if the total switching num-
bers meet with Nσ (t1, t2) ≤ N0 + t2−t1

τa
.

Theorem 2 For switched system (1), given positive
constants a1, a2, T f , α, δi , μ, h, with a2 ≥ a1, μ > 1,

and positive define matrices R̂, G, �, there is a con-
troller in the form of (5) making the corresponding
ET closed-loop error switched system (8) IO-FTS wrt
(W, �, T f ), if there exist positive definite matrices Pi ,
Qi , and Wi , such that (11)–(13) and the following
inequalities hold:
[− e−2αT f Pi ẼT

∗ −�−1

]

< 0, (23)

τa > τ ∗
a,2 = T f lnμ

αT f − N0 lnμ
. (24)

Proof Under zero initial condition, from (20) and (24),
we know

x̃ Tt Pi x̃t ≤ Vi (x̃t , t) ≤ μNσ (0,t)
∫ t

0
eα(t−s)ωT

s Gωsds

≤ e2αT f

∫ T f

0
ωT
s Gωsds. (25)

Thus, the following inequality holds:

yTt �yt −
∫ T f

0
ωT
s Gωsds

≤ x̃ Tt (ẼT� Ẽ − e−2αT f Pi )x̃t . (26)

From (23) and Schur complement formula, we get

yTt �yt <

∫ T f

0
ωT
s Gωsds < 1. (27)

Therefore, ET closed-loop error switched system (8) is
IO-FTSy wrt (W, �, T f ). ��

From Theorems 1 and 2, we can get the following
result:

Theorem 3 For switched system (1), given positive
constants a1, a2, T f , α, δi , μ, h, with a2 > a1, μ > 1,
and positive definite matrices R̂, G, �, there is a con-
troller in the form of (5)marking the corresponding ET
closed-loop error switched system (8) both FTB and
IO-FTS wrt (a1, a2, R̂,W, �, T f ), if there exist posi-
tive definite matrices Pi , Qi , Wi such that (11)–(13)
and (23)–(24) hold.

Remark 8 It should be pointed out that Theorem 1 is
concerned with the FTBs of the state of system (8).
However, sometimes it is not the state, but the output
required to be restrained within a bound. In such cases,
Theorem 2 ensures the IO-FTSy of system (8). Here,
Theorem 3 proposes conditions about FTBs and IO-
FTSy for system (8).
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3.2 Both FTB and IO-FTS resilient controller design
of the ET closed-loop error switched system

Based on the result in Theorem 3, a resilient controller
is designed in this section to guarantee that ET closed-
loop error switched system (8) is bothFTBand IO-FTS.

Theorem 4 For switched system (1), given positive
constants a1, a2, T f , α, δi ,μ, h, �with a2 > a1,μ > 1,
and positive definite matrices R̂, G, �, there is a con-
troller in the form of (5)marking the corresponding ET
closed-loop error switched system (8) both FTB and
IO-FTS wrt (a1, a2, R̂,W, �, T f ), if there exist pos-
itive definite matrices Xi , �̄i , P̂ i

1 , Q̂i , Ŵi , and real
matrices Yi , Ȳi , such that the following inequalities
hold:

[
�1 �2

∗ �3

]

< 0, (28)

⎡

⎢
⎢
⎢
⎣

−μP̂ j
1 0 XT

j 0
∗ −μX j 0 XT

j

∗ ∗ P̂i
1 − 2Xi 0

∗ ∗ ∗ −Xi

⎤

⎥
⎥
⎥
⎦

≤ 0, (29)

[
−μQ̂ j XT

j

∗ Q̂i − 2Xi

]

≤ 0,

[
−μŴ j XT

j

∗ Ŵi − 2Xi

]

≤ 0,

(30)
⎡

⎣
−e−2αT f P̂i

1 0 XT
i E

T

∗ − e−2αT f Xi XT
i E

T

∗ ∗ −�−1

⎤

⎦ < 0, (31)

τa > τ ∗
a = max{τ ∗

a,1, τ
∗
a,2}, (32)

where

�1 =

⎡

⎢
⎢
⎣

−XT
i − Xi �(1, 2) 0 Ȳi E
∗ �(2, 2) ET Ȳ T

i − 4Q̂i −2Q̂i

∗ ∗ �(3, 3) −Ȳi E − 2Q̂i

∗ ∗ ∗ − 4Q̂i

⎤

⎥
⎥
⎦ ,

�2 =

⎡

⎢
⎢
⎣

0 − Ȳi 0 0 Bi Mi 0 0
0 0 6Q̂i �(2, 8) 0 XT

i NT
i 0

Di Ȳi 6Q̂i XT
i AT

i 0 0 0
0 0 6Q̂i 0 0 0 ET

⎤

⎥
⎥
⎦,

�3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−G 0 0 DT
i 0 0 0

∗ − �̄i 0 0 0 0 0
∗ ∗ − 12Q̂i 0 0 0 0
∗ ∗ ∗ �(8, 8) Bi Mi 0 0
∗ ∗ ∗ ∗ − �I 0 0
∗ ∗ ∗ ∗ ∗ − �−1 I 0
∗ ∗ ∗ ∗ ∗ ∗ �(11, 11)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

�(1, 2) = P̂i
1 + Ai Xi + BiYi − Ȳi E,

�(2, 2) = −α P̂i
1 + Ŵi − 4Q̂i ,

�(2, 8) = XT
i AT

i + Y T
i BT

i ,

�(3, 3) = XT
i AT

i + Ai Xi − αXi − 4Q̂i ,

�(8, 8) = h−2(Q̂i − 2Xi ),

�(11, 11) = δ−1
i (�̄i − 2I ).

Moreover, the admissible gains of controller and
observer can be given by

Ki = Yi X
−1
i , Li = Ȳi X̄

−1
i .

Proof Firstly, define Pi−1

2 = Xi , XT
i Pi

1Xi = P̂i
1 ,

XT
i Wi Xi = Ŵi , XT

i Qi Xi = Q̂i , and Yi = Ki Xi .
The SVD for E can be described as E = J1[Z 0]J T2 ,
where J1 · J T1 = I and J2 · J T2 = I . Thus, for Xi =
J2

[
Xi
1 0
0 Xi

2

]

J T2 , there exists X̄i = J T1 Z Xi
1Z

−1 J−1
1

such that EXi = X̄i E .
Then, letting

�̄i = X̄ T
i �i X̄i , Ȳi = Li X̄i .

Next, usingSchur complement and applying the inequal-
ities − �̄−1

i ≤ �̄i − 2I , − Q−1
i ≤ Q̂i − 2Xi , (28) can

be transformed to
[

�̃1 �̃2

∗ �̃3

]

< 0, (33)

where

�̃1 =

⎡

⎢
⎢
⎢
⎣

− XT
i − Xi �(1, 2) 0 Ȳi E
∗ �(2, 2) ET Ȳ T

i − 4Q̂i − 2Q̂i

∗ ∗ �(3, 3) − Ȳi E − 2Q̂i

∗ ∗ ∗ − 4Q̂i + δi ET �̄i E

⎤

⎥
⎥
⎥
⎦

,

�̃2 =

⎡

⎢
⎢
⎢
⎣

0 −Ȳi 0 0 Bi Mi 0
0 0 6Q̂i XT

i AT
i + Y T

i BT
i 0 XT

i NT
i

Di Ȳi 6Q̂i XT
i AT

i 0 0
0 0 6Q̂i 0 0 0

⎤

⎥
⎥
⎥
⎦

,

�̃3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−G 0 0 DT
i 0 0

∗ − �̄i 0 0 0 0
∗ ∗ −12Q̂i 0 0 0
∗ ∗ ∗ − h−2Q−1

i Bi Mi 0
∗ ∗ ∗ ∗ − �I 0
∗ ∗ ∗ ∗ ∗ −�−1 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Pre- and post-multiplying (33) by

diag
{
X−1
i , X−1

i , X−1
i , X−1

i , I, X̄−1
i , X−1

i , I, I, I
}

and its transpose, respectively, one can see that inequal-
ities (28) imply
[

�1 �2

∗ �3

]

< 0, (34)

123



Event-triggered finite-time resilient control 2417

where

�1 =

⎡

⎢
⎢
⎣

− PiT
2 − Pi

2 �(1, 2) 0 Pi
2 Li E

∗ �(2, 2) �(1, 2) −2Qi

∗ ∗ �(2, 2) �(2, 3)
∗ ∗ ∗ �(3, 3)

⎤

⎥
⎥
⎦ ,

�2 =

⎡

⎢
⎢
⎣

0 − Pi
2 Li 0 0 Pi

2 Bi Mi 0
0 0 6Qi AT

i + KT
i BT

i 0 NT
i

Pi
2Di Pi

2 Li 6Qi AT
i 0 0

0 0 6Qi 0 0 0

⎤

⎥
⎥
⎦ ,

�3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−G 0 0 DT
i 0 0

∗ −�i 0 0 0 0
∗ ∗ − 12Qi 0 0 0
∗ ∗ ∗ − h−2Q−1

i Bi Mi 0
∗ ∗ ∗ ∗ −�I 0
∗ ∗ ∗ ∗ ∗ − �−1 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

�(1, 2) = Pi
1 + Pi

2 Ai + Pi
2 Bi Ki − Pi

2 Li E,

�(2, 2) = − αPi
1 + Wi − 4Qi .

From (34), we know that

[
�̂1 �̂2

∗ �̂3

]

< 0, (35)

where

�̂1 =

⎡

⎢
⎢
⎣

− PiT
2 − Pi

2 Pi
1 + Pi

2 Âi 0 Pi
2Li E

∗ �(2, 2) �(1, 2) − 2Qi

∗ ∗ �(2, 2) �(2, 3)
∗ ∗ ∗ �(3, 3)

⎤

⎥
⎥
⎦ ,

�̂2 =

⎡

⎢
⎢
⎣

0 − Pi
2Li 0 0

0 0 6Qi �(1, 7)
Pi
2Di Pi

2Li 6Qi AT
i

0 0 6Qi 0

⎤

⎥
⎥
⎦ ,

�̂3 =

⎡

⎢
⎢
⎣

−G 0 0 DT
i∗ −�i 0 0

∗ ∗ −12Qi 0
∗ ∗ ∗ − h−2Q−1

i

⎤

⎥
⎥
⎦ ,

where Âi (t) = Ai + Bi K̄i (t) − Li E . Moreover, (35)
can be also rewritten as

ϒ + �T PiT
2 
 + 
T Pi

2� < 0, (36)

where

� =
[

− I Âi (t) 0 Li E 0 − Li 0 0
]
,


 = [
I 0 0 0 0 0 0 0

]
,

ϒ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 Pi
1 0 0 0 0 0 0

∗ �(2, 2) �(1, 2) − 2Qi 0 0 6Qi �(1, 7)
∗ ∗ �(2, 2) �(2, 3) Pi

2Di Pi
2Li 6Qi ATi

∗ ∗ ∗ �(3, 3) 0 0 6Qi 0
∗ ∗ ∗ ∗ −G 0 0 DT

i
∗ ∗ ∗ ∗ ∗ −�i 0 0
∗ ∗ ∗ ∗ ∗ ∗ −12Qi 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ − h−2Q−1
i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then, pre- and post-multiplying (36) by

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ÂT
i (t) I 0 0 0 0 0 0
0 0 I 0 0 0 0 0

ET LT
i 0 0 I 0 0 0 0

0 0 0 0 I 0 0 0
− LT

i 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and its transpose, respectively,we can obtain�ϒ�T <

0, i.e., inequality (11) holds. Therefore, inequality (28)
implies (11).

Pre- and post-multiplying (29) by diag
{
X−1

j , X−1
j ,

I, I }, using Schur complement and applying the
inequalities −Pi−1

1 ≤ P̂i
1 − 2Xi , we get Pi ≤ μPj .

Pre- and post-multiplying (30) by diag
{
X−1

j , I
}

and its transpose, respectively, using Schur comple-
ment and applying the inequalities−Q−1

i ≤ Q̂i −2Xi ,

−W−1
i ≤ Ŵi − 2Xi , we get Qi ≤ μQ j and Wi ≤

μWj .
In addition, pre- and post-multiplying (31) by diag

{
X−1
i , X−1

i , I
}
and combining with Pi =

[
Pi
1 0
0 Pi

2

]

,

Ẽ = [
E E

]
, we can have (23).

Finally, from (28) to (32), one can see thatETclosed-
loop error switched system (8) is both FTB and IO-FTS
wrt (a1, a2, R̂,W, �, T f ). ��

Remark 9 Noting that the nonlinear terms Pi
1Li E −

2Qi and −Pi
2Li E − 2Qi exist in (11), the MATLAB

LMIToolbox cannot bedirectly used to solve thematrix
inequalities. Different from P = diag{P̄, P̄} in [39],
we let Pi = diag{Pi

1 , P
i
2} (with Pi

1 �= Pi
2) and adopt

SVD method to cast them into LMI forms.

Remark 10 It isworthmention that the feasibility prob-
lem of (11) cannot be directly expressed in terms of
LMIs-based feasibility problem, since the presence
of the nonlinear terms in (11). The usual calcula-
tion methods in [22,23,35] to deal with this problem
may increase the conservativeness. Here, the feasibility
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Fig. 2 A boost converter circuit system

problem of (11) has been transformed into the feasibil-
ity problem of (35), which can be recast in terms of
LMIs (28). Then, the gains of controller and observer
in this paper can be acquired simultaneously by solving
strict LMIs.

4 Simulation example

In this part, we borrow the boost converter circuit from
[40] to verify the availability of our event-triggered
finite-time control technique.

As shown in Fig. 2, under the different modes (σt =
qt + 1 ∈ {1, 2}), the system matrices of the boost
converter circuit are given by

qt = 0 : A1 =
[
0 − 1

L
1
C − 1

RC

]

, B1 =
[ 1

L
0

]

, (37)

qt = 1 : A2 =
[
0 0
0 − 1

RC

]

, B2 =
[ 1

L
0

]

. (38)

Let the state variable xt = [iL , VC ]T and the control
input ut = Vin . Suppose that the other systemmatrices
are

E = [
0.8 0.2

]
, D1 =

[− 0.15
0.2

]

,

D2 =
[− 0.13

0.2

]

.

Now, we choose the circuit parameters as L = 1H ,
C = 1F , and R = 1�. Take the parameters α = 0.28,
a1 = 0.12, a2 = 19, μ = 2.1, T f = 7, h = 0.1,
R = I2×2, � = 0.1, � = 0.1, and G = 2. And the
external disturbance input is taken as ωt = 0.1

1+t .
To investigate the effect of the triggered parameters

on the release interval, we will divide them into two
cases.

Case 1 Choosing the same triggered thresholds as
δ1 = 5.0 × 10−8, δ2 = 5.0 × 10−8 and solving LMIs
in Theorem 4, we can get the controller gains:

0 1 2 3 4 5 6 7
0.5

1

1.5

2

2.5

t(s)

S
w

itc
hi

ng
 s

ig
na

l

Fig. 3 The switching signal
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Fig. 4 Response of x̃ Tt R̂x̃t

K1 = [− 1.5932 1.0993
]
,

K2 = [− 1.7311 − 0.0391
]
,

the observer gains:

L1 =
[

0.4176
− 0.0830

]

, L2 =
[

0.3121
− 0.0097

]

,

and the event-triggered matrices �1 = 23.3314, �2 =
8.1242.

From (32), we have τ ∗
a = 2.7641. Choose τa = 2.8

and the initial state as [− 0.2− 0.010.15− 0.15]T . The
switching signal is depicted in Fig. 3. The responses of
x̃ Tt R̂ x̃t and the corresponding event-triggered release
intervals (ETRIs) for the closed-loop error switched
system are depicted in Fig. 4. The responses of the esti-
mation error and the corresponding ETRIs are shown
in Fig. 5. From Fig. 5, we can know that the observer
state x̂t can track the real state xt smoothly, where
x̄t = xt − x̂t indicates the estimation error.

Next, letting the initial values be zero, the responses
of yTt �yt versus the corresponding ETRIs of the ET
closed-loop error switched system are provided in
Fig. 6.

Case 2 Choosing the different triggered thresholds
as δ1 = 1.0×10−6, δ2 = 5.0×10−8 and solving LMIs
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Fig. 5 Response of the estimation error
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Fig. 6 Response of yTt �yt under zero initial condition

in Theorem 4, we can get the controller gains:

K1 = [− 1.5935 1.0952
]
,

K2 = [− 1.7369 − 0.0453
]
,

the observer gains:

L1 =
[

0.4216
− 0.0980

]

, L2 =
[

0.3084
− 0.0144

]

,

and the event-triggered matrices �1 = 24.1247, �2 =
8.0772.

From (32), we have τ ∗
a = 2.7336. In order to com-

pare with the results in Case 1, we choose the same
switching rule in Fig. 3 and the same initial state. Cor-
respondingly, the response of x̃ Tt R̂x̃t , the estimation
error x̄t = xt − x̂t , and its ETRIs are plotted in Figs. 7
and 8. Under the zero initial values, the responses of
yTt �yt versus the corresponding ETRIs are provided in
Fig. 9.

Remark 11 From the comparisons of the two cases and
the simulation results in Figs. 4, 5, 6, 7, 8 and 9, one can
clearly see that the triggered thresholds δi can affect the
number of sampling points transmitted to the observer.
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Fig. 7 Response of x̃ Tt R̂x̃t
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Fig. 8 Response of the state error
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Fig. 9 Response of yTt �yt under zero initial condition

The smaller triggered parameters indicate the less sam-
pled data can be transmitted to the observer.

Remark 12 From Figs. 4, 5 and 6, in the finite-time
interval [0, 7], under theobserver-based event-triggered
resilient controller, the response of xTt R̂xt keeps below
a2 when the initial condition satisfies xT0 R̂x0 ≤ a1 and
yTt �yt < 1 when the initial condition is zero. There-
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fore, from Definitions 1 and 2, we conclude that ET
closed-loop error switched system (8) is both FTB and
IO-FTS. The same conclusion can be obtained from
Figs. 7, 8 and 9.

5 Conclusion

In this paper, we have investigated the FTBs and
IO-FTSy problems for switched system under ETCS
by applying observer-based resilient control approach.
First, we have concentrated on the design of output-
based event-triggered scheme to improve the utiliza-
tion of network resources. Then, an event-triggered
observer was constructed to estimate the unmeasur-
able states. Furthermore, the observer-based resilient
controller was designed for the ET closed-loop error
switched system. By constructing the mode-dependent
Lyapunov–Krasovskii functional and resorting to the
ADT approach, sufficient conditions of FTBs and IO-
FTSy have been established for ET closed-loop error
switched system. Finally, as an application, the boost
converter circuit model has been provided to verify
its FTB and IO-FTS characteristics through simula-
tions. In future research, we shall extend the pro-
posed results to the semi-Markovian jump systemswith
event-triggered scheme.
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