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Abstract General bright and dark soliton solutions
to the partial reverse space–time nonlocal Mel’nikov
equationwith parity–time symmetry are constructed by
the Hirota bilinear method with KP hierarchy reduc-
tion method. These solutions of arbitrary order are
given in forms of Gram-type determinants. The proper-
ties of propagation and collision of analytical solution
including both bright and dark solitons are discussed in
details. In the end, we provide a simple variable trans-
formation to convert the nonlocal Mel’nikov equation
to a local Mel’nikov equation.
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1 Introduction

Very recently, Ablowitz andMusslimani [1] considered
a new reduction

r(x, t) = ± q∗(−x, t), (1)
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for the coupled nonlinear Schrödinger (NLS) equation

iqt (x, t) = 1

2
qxx (x, t) − q2(x, t)r(x, t),

irt (x, t) = −1

2
rxx (x, t) + r2(x, t)q(x, t),

(2)

where q(x, t) and r(x, t) are complex dynamical vari-
ables, and proposed the following reverse space nonlo-
cal NLS equation

iqt (x, t) = 1

2
qxx (x, t) ± q2(x, t)q∗(−x, t). (3)

This newly proposed equation is obviously distinctive
from the local NLS equation [2]

iqt (x, t) = 1

2
qxx (x, t) ± q2(x, t)q∗(x, t), (4)

which can also be reduced from the coupled NLS equa-
tion (2) by letting

r(x, t) = ± q∗(x, t). (5)

The equations which possess such new symmetries (1)
have important applications in nonlinear optics [3,4];
various nonlocal NLS equations have been proposed
and studied [5–8]. The reverse space–time nonlocal
NLS:

iqt (x, t) = 1

2
qxx (x, t) ± q2(x, t)q(−x,−t), (6)
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and the reverse time nonlocal NLS:

iqt (x, t) = 1

2
qxx (x, t) ± q2(x, t)q(x,−t), (7)

are such examples. The reverse space–time nonlocal
NLS (6) is reduced from the coupled NLS equation (2)
by taking

r(x, t) = ± q(−x,−t), (8)

while the reverse time nonlocal NLS (7) is obtained via
letting

r(x, t) = ± q(x,−t). (9)

Yang [9] discussed general N -solitons in the three non-
local NLS equations (3), (6) and (7) by employing the
Riemann–Hilbert method and observed the solitons in
these three nonlocal NLS equations would blow up in
a finite time. Before the work of Yang, Ablowitz and
Musslimani [1] also found such singular behaviours
in the one soliton of the reverse space nonlocal NLS
equation (3). Recently, Feng et.al. [10] constructed all
possible soliton solutions for the reverse space non-
local NLS equation (3) via using the Hirota’s bilin-
earmethod combinedwith theKadomtsev–Petviashvili
(KP) hierarchy reduction method, including the singu-
lar and nonsingular bright solitons with zero bound-
ary condition and the dark and antidark solitons with
nonzero boundary condition. Besides, the singular and
nonsingular localized waves such as rogue waves in the
nonlocal NLS equations have also been investigated by
different methods [11–17].

In addition to the nonlocal NLS equations, Ablowitz
and Musslimani [8] also proposed a series of other
nonlocal equations, such as the nonlocal Davey–
Stewartson (DS) equation, nonlocalmodifiedKortweg–
de Vries equation, and nonlocal sine-Gordon equation.
We note that Fokas also introduced the nonlocal DS
equations as multidimensional versions of the nonlo-
cal NLS equation [18]. Before the work of Ablowitz
and Musslimani [1], integrable equations which pos-
sess such symmetries did not attract attention, which
leads to such nonlocal equations mathematically inter-
esting. There are increasingworks of investigating inte-
grable nonlocal equations with such symmetries and
their properties [19–33].

In this paper, the main focus is on the partial reverse
space–time nonlocal Mel’nikov equation [34]

3uyy(x, y, t) − uxt (x, y, t) − [3u2 + uxx

+ κΨ (x, y, t)Ψ ∗(−x, y,−t)]xx = 0,

iΨy(x, y, t) = u(x, y, t)Ψ (x, y, t) + Ψxx (x, y, t),

(10)

where u and Ψ are functions of x, y, t , κ = ±1. The
nonlocal Mel’nikov equation can be regarded as a spe-
cial reduction of the following coupled system

3uyy(x, y, t) − uxt (x, y, t) − [3u2 + uxx

− κΨ (x, y, t)Φ(x, y, t)]xx = 0,

iΨy(x, y, t) = u(x, y, t)Ψ (x, y, t) + Ψxx (x, y, t),

iΦy(x, y, t) = −u(x, y, t)Φ(x, y, t)−Φxx (x, y, t).

(11)

Indeed, the nonlocal Mel’nikov equation (10) is obtai-
ned by taking the reduction in (11)

Φ(x, y, t) = −Ψ ∗(−x, y,−t). (12)

Besides, the local (usual) Mel’nikov equation [35–38]

3uyy(x, y, t) − uxt (x, y, t) − [3u2 + uxx

+ κ|Ψ (x, y, t)|2)]xx = 0,

iΨy(x, y, t) = u(x, y, t)Ψ (x, y, t) + Ψxx (x, y, t),

(13)

can be obtained by taking the following standard (local)
reduction in (11)

Φ(x, y, t) = −Ψ ∗(x, y, t). (14)

The Mel’nikov equation (13) can be used to describe
the longwaves interactingwith shortwave packets [35–
38]. In themathematical version, this equation could be
considered either as a generalizationof theKadomtsev–
Petviashvili (KP) equation with the addition of a com-
plex scalar field or as a generalization of the nonlin-
ear Schrödinger (NLS) equation with a real scalar field
[39–41]. All possible solitary wave solutions and local-
ized wave solutions of the Mel’nikov equation (13)
have been discussed in Ref. [39–42].

The rational solutions termed lumps and semi-
rational solutions illustrating lumps on a background
of periodic line wave for the nonlocal Mel’nikov equa-
tion (10) have been discussed in Ref. [34]. However,
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soliton solutions of the nonlocal Mel’nikov equation
(10) have not been reported before. In Ref. [43], Yang
found the transformations between many nonlocal and
local integrable equations. A natural motivation is to
search a transformation between the nonlocal and local
Mel’nikov equation. The main purposes of this paper
are to construct bright solitons with zero boundary con-
dition and dark solitons with nonzero boundary con-
dition of the nonlocal Mel’nikov equation (10) and to
construct the transformation of the nonlocal Mel’nikov
equation to the local Mel’nikov equation. In this work,
we focus on the following aspects:

– (i) The general bright and dark soliton solutions of
the nonlocalMel’nikov equation (10) are generated
and presented in forms of Gram-type determinants,
and the dynamical properties of propagation and
collision of the bright and dark solitons are demon-
strated in details.

– (ii) The variable transformation between the non-
local Melnikov equation (10) and a local Melnikov
equation is provided, which converts the obtained
soliton solutions of the nonlocalMelnikov equation
(10) to solutions of a local Melnikov equation.

The structure of this article is as follows. In Sect. 2,
we discuss general bright soliton solutions to the non-
local Mel’nikov equation (10) with zero boundary con-
dition. In Sect. 3, we focus on the dynamical features of
general dark and antidark soliton solutions to the non-
local Mel’nikov equation with nonzero boundary con-
dition. In Sect. 4, we provide a transformation between
the nonlocal and local Mel’nikov equation, and some
conclusions are discussed.

2 The bright N-soliton solution

In this section, we consider general bright N-soliton
solutions to the partial reverse space–time nonlocal
Mel’nikov equation (10)with zero boundary condition:

(Ψ, u) → (0, 0), as x, y, t → ±∞.

We first transform the nonlocal Mel’nikov equation
(10) into the following bilinear equations

⎧
⎨

⎩

(D2
x − iDy)g(x, y, t) · f (x, y, t) = 0,

(D4
x + Dx Dt − 3D2

y) f (x, y, t) · f (x, y, t)
= −2κg(x, y, t)g∗(−x, y,−t),

(15)

by introducing the dependent variable transformations

Ψ = √
2
g(x, y, t)

f (x, y, t)
, u = 2(log f (x, y, t))xx . (16)

Here the function f meets the condition

f ∗(−x, y,−t) = f (x, y, t),

and the operator D is the Hirota’s bilinear differential
operator [44,45] defined by

P(Dx , Dy, Dt , )F(x, y, t . . .) · G(x, y, t, . . .)

= P(∂x − ∂x ′ , ∂y − ∂y′ , ∂t − ∂t ′ , . . .)F(x, y, t, . . .)

G(x
′
, y

′
, t

′
, . . .)|x ′=x,y′=y,t ′=t ,

where P is a polynomial of Dx ,Dy ,Dt , . . .. Obviously,
Ψ = 0, u = 0 are a set of solutions of the equation
(10).

The obtained bilinear equations (15) can be reduced
from the bilinear equations of the two-component KP
hierarchy. Furthermore, by constraining tau functions
of the two-component KP hierarchy, solutions of the
bilinear equations (15) could be constructed. Thus,
general bright N-soliton solutions (16) to the nonlocal
Mel’nikov equation (10) can be presented in the fol-
lowing theorem. The proof procedure of the theorem is
in “Appendix A.”

Theorem 1 General bright N-soliton solutions to the
nonlocal Mel’nikov equation (10) are

Ψ = √
2
g

f
, u = (2log f )xx , (17)

where

f =
∣
∣
∣ 1
pi+p j

e(pi+p j )x−i(p2i −p2j )y−4(p3i +p3j )t + 1
qi+q j

eκ(qi+q j )t+ηi0+η j0)

∣
∣
∣
1≤i, j≤N

,

g =
∣
∣
∣
∣
∣

1
pi+p j

e(pi+p j )x−i(p2i −p2j )y−4(p3i +p3j )t + 1
qi+q j

eκ(qi+q j )t+ηi0+η j0)epi x−i p2i y−4p3i t

−eκq j t+η j00

∣
∣
∣
∣
∣
1≤i, j≤N

,

(18)
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where pi , pi , ηi0 and ηi0 are parameters which sat-
isfy pi + p j = qi + q j (i, j = 1, 2, . . . , N ) and
one of the following two parametric conditions : (i)
pi , p j qi , q j are real and ηi0, ηi0 are purely imag-
inary; (ii) the subset (p j , q j , η j0) or (p j , q j , η j0)

occurs in pair such that pk = p∗
k′ , qk = q∗

k′ , ηk0 = η∗
k′0

or pk = p∗
k′ , qk = q∗

k′ , ηk0 = η∗
k′0.

Below, we examine the dynamical properties of the
one- and two-bright-soliton solutions:
The bright one-soliton solution By taking N = 1 in
equation (18), the tau functions f (x, y, t), g(x, y, t)
of the one-bright-soliton solutions (17) can be yielded
from Theorem 1 as

f (x, y, t) = 1

p1 + p1
e(p1+p1)x−i(p21−p21)y−4(p31+p31)t

+ 1

q1 + q1
eκ(q1+q1)t+η10+η10),

g(x, y, t) = ep1x−i p21 y−4p31 t+κq1t+η10 . (19)

Then, the explicit expression of the one-bright-soliton
solutions is

Ψ (x, y, t) = √
2
g(x, y, t)

f (x, y, t)
= √

2
(p1 + p1)e

p1x−i p21 y−(4p31+kq1)t−iθ1

1 + e(p1+p1)x−i(p21−p21)y−(4(p31+p31)−k(q1+q1))t−i(θ1+θ1)
,

u(x, y, t) = (2log f (x, y, t))xx ,= 2(p1 + p1)e
(p1+p1)x−i(p21−p21)y−(4(p31+p31)−k(q1+q1))t−i(θ1+θ1)

(1 + e(p1+p1)x−i(p21−p21)y−(4(p31+p31)−k(q1+q1))t−i(θ1+θ1))2
.

(20)

Here we have taken η10 = iθ1, η10 = iθ1, and
p1, p1, q1, q1, θ1 and θ1 are real and satisfy p1+ p1 =
q1 + q1. Specially, when one takes p1 = p1, the one-
bright soliton solutions |Ψ | and u are independent of y.
In this case, the one-bright-soliton solutions are given
as

Ψ (x, y, t) = √
2e−i p21 y

2p1ep1x−(4p31+κq1)t−iθ1

1 + e2p1x−(8p31−κ(q1+q1))t−i(θ1+θ1)
,

u(x, y, t) = 4p1e2p1x−(8p31−κ(q1+q1))t−i(θ1+θ1)

(1 + e2p1x−(8p31−κ(q1+q1))t−i(θ1+θ1))2
. (21)

Thus, the corresponding solutions |Ψ | and |u| describe
a line soliton only propagating along the x-directions
and localized along the y-direction. As the two com-
ponents share similar dynamical properties, namely
bright solitons in the short-wave component Ψ and
the long-wave component u, so we only investigate the
properties of the Ψ component in the following con-
text.

The bright two-soliton solution By taking N = 2 in
equation (18), the tau functions f (x, y, t), g(x, y, t)
for the two-bright-soliton solution (17) can be obtained
from Theorem 1, which are given as

f (x, y, t) =
∣
∣
∣
∣
a11 a12
a21 a22

∣
∣
∣
∣ ,

g(x, y, t) =

∣
∣
∣
∣
∣
∣
∣

a11 a12 ep1x−i p21 y−4p31 t

a21 a22 ep2x−i p22 y−4p32 t

−eκ p1t+η10 −eκ p2t+η20 0

∣
∣
∣
∣
∣
∣
∣

,

(22)

where

ai j = 1

pi + p j
e(pi+p j )x−i(p2i −p2j )y−4(p3i +p3j )t

+ 1

qi + q j
eκ(qi+q j )t+ηi0+η j0 ,

(23)

and i, j = 1, 2, and the parameters p j , q j , p j , q j have
the relation pi + p j = qi + q j . Here, the parameters
p j , q j , p j , q j and η j0, η j0 satisfy the following four
cases.

Case i p j , q j , p j , q j are real, and η j0, η j0 are all
purely imaginary. In this case, the two bright solitons
are two parallel line waves propagating along the x-
direction and still keep localized along the y-direction.
For illustrative purposes, we take parameter choices

p1 = 1, p1 = 1, p2 = 3

2
, p2 = 3

2
,

q1 = 1

2
, q1 = 3

2
, q2 = 1, q2 = 2,

κ = 1, η10 = 0, η10 = 0, η20 = 0, η20 = 0.

(24)

The explicit expression of the two-bright-soliton solu-
tion Ψ is
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Fig. 1 (Colour online) The time evolution of the two-bright-soliton solution |Ψ | (25)

Fig. 2 (Colour online) The
time evolution of the
two-bright-soliton solution
(17) with functions
f (x, y, t) and g(x, y, t)
given by (22) with
parameters (26)

Ψ = 5
√
2

2 e− 59 t
2 −iy+4 x − 3 e− 19

2 t− 9
4 iy+ 3

2 x − 3 e− 39 t
2 − 9

4 iy+ 7
2 x + 2 e

t
2−iy+x

48 e−15t+ 5
2 x cos

(
5
4 y

)
− e−35 t+5 x − 25 e−5 t+2 x − 25 e−25 t+3 x − e5 t

. (25)

The time evolution of this two-bright-soliton solution
|Ψ | is plotted in Fig. 1. As can be seen that, at the initial
sate of the evolution, the solution |Ψ | describes two
parallel line solitons moving along the same direction
on the zero background; the left line soliton moves at
a higher speed than the right one (see the panels at
t = −2,−1) and possesses higher amplitude than the
right one. In the intermediate time, the left line soliton
meets with the right line soliton and then interacts with
each other. The interaction leads to wavefronts of the
solution that are breather-type periodic wave, see the
panel at t = 0. At larger time, these two-line solitons
would separate from each other, and the wavefronts of
the solution return to line waves again, see the panel
at t = 2. We note that the line waves only propagate
along the x-direction and not along the y-direction in
the (x, y)-plane at the whole process of the evolution.

Case ii p1, p2, p1, p2, η10, η20, η10, η20 are all
complex and satisfy p1 = p∗

2, q1 = q∗
2 , p1 =

p∗
2, q1 = q∗

2, η10 = −η∗
20, η10 = η∗

20. In this case,
the solution describes two crossed line solitons inter-
acting with each other. To show properties of this two
bright solitons, we take parameter choices in Eq. (22)

p1 = 1

2
+ i, p2 = 1

2
− i, p1 = 1

2
+ i,

p2 = 1

2
− i, q1 = 1

3
+ i, q2 = 1

3
+ i,

q1 = 2

3
+ i, q2 = 2

3
− i, κ = 1, (26)

η j0 = 0, η j0 = 0, j = 1, 2.

The corresponding solution |Ψ | is illustrated in Fig.
2. It is straightforward to see that, during the process of
the evolution, these two crossed solitons pass through
each other without any change in shape, amplitude and
velocity. That feature indicates that there is no energy
exchange between the twobright solitons after collision
of these two bright solitons.

Case iii p1, p2, q1, q2, η10, η20 are complex param-
eters, p1 = p∗

2, q1 = q∗
2 , η10 = −η∗

20; p1, p2, q1, q2
are real, and η10, η20 are purely imaginary.

Case iv p1, p2, q1, q2, η10, η20 are complex param-
eters, p1 = p∗

2, q1 = q∗
2, η10 = η∗

20; p1, p2, q1, q2 are
real, and η10, η20 are purely imaginary.

Since the solutions of case iii and case iv exhibit
similar behaviours as the case i and case ii, we would

123



2182 W. Liu et al.

not shown them again. For larger N , high-order bright
soliton solutions for the nonlocal Mel’nikov equation
(10) could be constructed by Theorem1,which demon-
strate N parallel line waves only propagating along
the x-direction as the two solitons shown in Fig. 1,
or N crossed bright line solitons interacting with each
other all the time as the two bright solitons illustrated
in Fig. 2.

3 The dark N-soliton solution

In this section, we consider general N-dark soliton
solutions to the nonlocal Mel’nikov equation (10) with
nonzero boundary condition:

(Ψ, u) → (
√
2, ε), as x, y, t → ±∞.

To construct dark solitons to the nonlocal Mel’nikov
equation (10), we apply the following dependent vari-
able transformations different from the transformations
(16)

Ψ = √
2e−iεy g(x, y, t)

f (x, y, t)
, u = ε+2(log f (x, y, t))xx ,

(27)

which transform the nonlocal Mel’nikov equation (10)
into the following bilinear equations

⎧
⎪⎨

⎪⎩

(D2
x − iDy)g(x, y, t) · f (x, y, t) = 0,

(D4
x + Dx Dt − 3D2

y) f (x, y, t) · f (x, y, t)

= 2κ[ f 2(x, y, t) − gg∗(−x, y,−t)].
(28)

It is apparent that the bilinear form (28) is different
from the bilinear form (15), see the right sides of the
second bilinear equation in (15) and (28).

We present general dark N-soliton solutions (27) to
the nonlocal Mel’nikov equation (10) by the following
Theorem. The derivation of these solutions is given in
“Appendix B.”

Theorem 2 The general dark soliton solutions to the
nonlocal Mel’nikov equation (10) are

Φ(x, y, t) = √
2e−iεy gM (x, y, t)

fM (x, y, t)
,

u = ε + (2log fM (x, y, t))xx ,
(29)

where

fM (x, y, t) =
∣
∣
∣biδi je

−(ξi+ξ∗
j ) + 1

pi+p∗
j

∣
∣
∣
1≤i, j≤2M

,

gM (x, y, t) =
∣
∣
∣
∣biδi je

−(ξi+ξ∗
j ) + 1

pi+p∗
j

(

− pi
p∗
j

)∣
∣
∣
∣
1≤i, j≤2M

,

(30)

with

ξi = pi x − ip2i y +
(

κ

pi
− 4p3i

)

t + ξi0,

and bM+i = −b∗
i , pM+i = −pi , ξM+i0 = ξi0, i =

1, 2, . . . M, where bi , pi are complex constants.

Below, we first present the explicit form of the two-
soliton solution and detail analysis. By setting M =
1, Theorem 2 would yield the following two-soliton
solutions

Ψ = √
2e−iεy g1

f1
, u = ε + (2log f1)xx , (31)

where

f1 =
∣
∣
∣
∣
∣
∣

b1e−(ξ1+ξ∗
1 ) + 1

p1+p∗
1

1
p1+p∗

2

1
p2+p∗

1
−b∗

1e
−(ξ2+ξ∗

2 ) + 1
p2+p∗

2

∣
∣
∣
∣
∣
∣

= −|b1|2e−(ξ1+ξ∗
1 +ξ2+ξ∗

2 ) − b∗
1e

ξ2+ξ∗
2

p1 + p∗
1

+ b1eξ1+ξ∗
1

p2 + p∗
2

+ (p1 − p2)
(
p∗
1 − p∗

2

)

(
p1 + p∗

1

) (
p2 + p∗

2

) (
p1 + p∗

2

) (
p∗
1 + p2

)

= −|b1|2e2i
(
p21−p∗2

1

)
y−4ξ10 − b1eξ1+ξ∗

1 + b∗
1e

ξ2+ξ∗
2

p1 + p∗
1

+ 4p1 p∗
1

(
p1 + p∗

1

)2 (
p1 − p∗

1

)2 ,

g1 =
∣
∣
∣
∣
∣
∣

b1e−(ξ1+ξ∗
1 ) + 1

p1+p∗
1

(
− p1

p∗
1

)
1

p1+p∗
2

(
− p1

p∗
2

)

1
p2+p∗

1

(
− p2

p∗
1

)
−b∗

1e
−(ξ2+ξ∗

2 ) + 1
p2+p∗

2

(
− p2

p∗
2

)

∣
∣
∣
∣
∣
∣
,

= −|b1|2e−(ξ1+ξ∗
1 +ξ2+ξ∗

2 ) + b∗
1e

ξ2+ξ∗
2

p1 + p∗
1

p1
p∗
1

− b1eξ1+ξ∗
1

p2 + p∗
2

p2
p∗
2

+ (p1 − p2)
(
p∗
1 − p∗

2

)

(
p1 + p∗

1

) (
p2 + p∗

2

) (
p1 + p∗

2

) (
p∗
1 + p2

)
p1 p2
p∗
1 p

∗
2

= −|b1|2e2i
(
p21−p∗2

1

)
y−4ξ10 + b1eξ1+ξ∗

1 + b∗
1e

ξ2+ξ∗
2

p1 + p∗
1

p1
p∗
1

+ 4p31
p∗
1

(
p1 + p∗

1

)2 (
p1 − p∗

1

)2 , (32)

and

ξ1 + ξ∗
1 = −(p1 + p∗

1)x + i(p21 − p∗
1
2
)y

+
[

κ

p1
+ κ

p∗
1

− 4(p31 + p∗
1
3
)

]

t + ξ10 + ξ∗
10,
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Fig. 3 (Colour online) Three types of two-soliton solution |Ψ |
(31) of the nonlocal Mel’nikov equation (10) at the time t = 0: a
two-dark–dark-soliton solution |Ψ | (31) with parameters p1 =
1 + i, b1 = 1 + i

3 , κ = 1; b two-dark–antidark-soliton solution

|Ψ | (31) with parameters p1 = 1 + i, b1 = 1
3 + 2i, κ = 1; c

two-antidark–antidark-soliton solution |Ψ | (31) with parameters
p1 = 1 + i, b1 = 1

3 − i
6 , κ = 1

ξ2 + ξ∗
2 = (p1 + p∗

1)x + i(p21 − p∗
1
2
)y

−
[

κ

p1
+ κ

p∗
1

− 4(p31 + p∗
1
3
)

]

t + ξ10 + ξ∗
10,

= −(ξ1 + ξ∗
1 ) + 2i(p21 − p∗

1
2
)y. (33)

The form of the two-soliton solution is determined by
the parameters p1 and b1. For a given parameter p1,
the form of two-soliton solution alters from two dark–
dark solitons to two dark–antidark solitons or to two
antidark–antidark solitons by changing the parameter
b1. For example, with p1 = 1 + i and three different
choices of b1 = 1 + i

3 ,− 1
2 + 2i,− 1

2 + i
6 , the cor-

responding solutions are two dark–dark solitons, two
dark–antidark solitons and two antidark–antidark soli-
tons. These three types of two solitons are plotted in
Fig. 3a–c, respectively. It is seen that after collision,
the two solitons only pass through each other with-
out any change in velocity and shape, which indicates
energy exchange does not exist during the interaction
between these two solitons. Here, we would like to
emphasize that the two-soliton solutions demonstrated
in Figs. 2, 3c have the similar wave structures, namely
two crossed line waves. However, the two bright soli-
tons shown in Fig. 2 are in the zero background, while
the two-antidark–antidark solitons illustrated in Fig. 3c
are in the nonzero background.

The higher-order dark soliton solutions can also be
yielded from Theorem 2 with larger M in equation
(31), which illustrate the collision of 2M line soliton.
The forms of the solitons are still determined by the
parameters p j , b j , ( j = 1, 2 . . . M). For example,with
M = 2 and fixed choice of parameters p1, p2 in (30),
the status of the four-soliton solution is different for

Fig. 4 (Colour online) The four-soliton solution |Ψ | (29) with
parameters M = 2, p1 = 1 + i, p2 = 2 + i, ξ10 = 0, ξ20 =
0, κ = 1 at time t = 0: a four dark solitons with parameters
b1 = 1+ i

3 , b2 = 1+ i
3 ; b four antidark solitons with parameter

b1 = − 1
2 − 2i, b2 = − 1

2 − 2i

different parameter choices of b1, b2. Figure 4 displays
two types of four solitons with the same parameters
p1, p2 and different choices of parameters b1, b2. Fig-
ure 4a, b shows four dark solitons and four antidark
solitons, respectively. On the other hand, with M = 2
and the same choice of parameters b1, b2, the status
of the four solitons is determined by the parameters
p1, p2. Figure 5a, b shows the four antidark solitons
and two antidark–two dark solitons respectively, which
are generated by the same parameters b1, b2 and dif-
ferent choices of p1, p2.

4 Summary and discussion

In the present paper, we present a thorough inves-
tigation for the partial reverse space–time nonlocal
Mel’nikov equation (10). We construct the N -bright

123



2184 W. Liu et al.

Fig. 5 (Colour online) The four-soliton solution |Ψ | (29) with
parameters M = 2, κ = 1, b1 = − 1

2 − i
6 , b2 = − 1

2 − i
6 , ξ10 =

0, ξ20 = 0 at time t = 0: a four antidark solitons with parameters
p1 = 1 + i, p2 = 1 + i ; b two antidark–two dark solitons with
parameter p1 = 1 − i, p2 = −1 + i

2

and N -dark soliton solutions expressed in terms of
Gramian determinants for the nonlocal Mel’nikov
equation. The bright N-soliton solutions are obtained
by reducing the tau functions of two-component KP
hierarchy, and the dark N -soliton solutions are gen-
erated by constraining the tau functions of single-
component KP hierarchy. The bright solitons are illus-
trated in the zero background, while the dark solitons
are demonstrated in the nonzero background. The prop-
erties of soliton propagation and collision are investi-
gated in details, see Figs. 1, 2, 3, 4 and 5. In the future,
we will try to analyze the orbit stability [46–49] of the
above soliton solutions.

As discussed in Ref. [43], the nonlocal and local
equations can be converted to each other via variable
transformations. Here, we provide a simple variable
transformation for translating the nonlocal Mel’nikov
equation (10) to a local Mel’nikov equation. Under the
variable transformation

x → i x, y → −y, t → i t, u → −u, (34)

the reverse space–time nonlocal Mel’nikov equation
(10)would be converted into the following local (usual)
Mel’nikov equation

3uyy(x, y, t) + uxt (x, y, t) − [3u2(x, y, t)
+ uxx (x, y, t) + κΨ (x, y, t)Ψ ∗(x, y, t)]xx = 0,

iΨy(x, y, t) = u(x, y, t)Ψ (x, y, t) + Ψxx (x, y, t).

(35)

It is obvious that the sign of nonlinearity k is not
switched after the nonlocal-to-local conversion. That

is different from the nonlocal-to-local transformation
of the PT symmetric Davey–Stewartson equations.
The sign of nonlinearity is switched after the nonlocal-
to-local conversion in the PT symmetric Davey–
Stewartson equations. Under the variable transforma-
tion (34), the solutions given in Theorems 1 and 2
would reduce solutions of the localMel’nikov equation
(35). For example, by taking the variable transforma-
tion (34), the bright one-soliton solution of the nonlocal
Mel’nikov equation (10) given by Eq. (21) reduces to
soliton-type solution of the local Mel’nikov equation
(35), which reads as

Ψ (x, y, t) =√
2ei p

2
1 y

2p1ei p1x−i(4p31+κq1)t−iθ1

1 + e2i p1x−i(8p31−κ(q1+q1))t−i(θ1+θ1)
,

u(x, y, t) = − 4p1e2i p1x−i(8p31−κ(q1+q1))t−i(θ1+θ1)

(1 + e2i p1x−i(8p31−κ(q1+q1))t−i(θ1+θ1))2
.

(36)

The combination of the Hirota’s bilinear method
and the KP hierarchy reduction method is a powerful
method to construct solutions to the local and nonlocal
integrable systems. We expect to use other methods to
derive solutions of the nonlocal equations, such as the
Darboux transformation [50,51], the inverse scattering
method [2] and the direct method [52–54].
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Appendix A

In this Appendix, we will provide the proof for Theo-
rem 1 in Sect. (2). Let us first review Gramian deter-
minant expression for the tau functions of the two-
component KP hierarchy [55,56].

Lemma 1 The following bilinear equations in the two-
component KP hierarchy
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(D2
x1 − Dx2)τ1 · τ0 = 0,

Dx1Dy1τ0 · τ0 + 2τ1τ−1 = 0,

(D4
x1 − 3Dx1Dx3 + 4D2

x2)τ0 · τ0 = 0,

(37)

have the following Gramian determinant tau functions

τ0 = |A|,
τ1 =

∣
∣
∣
∣
A BT

−C 0

∣
∣
∣
∣ , τ−1 =

∣
∣
∣
∣
A CT

−B 0

∣
∣
∣
∣ ,

(38)

where the elements of matrix A are

ai j = 1

pi + p j
eξi+ξ j + 1

qi + q j
eηi+η j , (39)

with

ξi = pi x1 + p2i x2 + p3i x3, ξ i = pi x1 − p2i x2 + p3i x3,

ηi = qi y1 + ηi0, ηi = qi y1 + ηi0, (40)

and B, B,C,C are row vectors given by

B = (eξ1 , . . . , eξN ),C = (eη1 , . . . , eηN ),

B = (eξ1 , . . . , eξ N ),C = (eη1 , . . . , eηN ). (41)

This lemma can be proved by the same method as for
Gramian determinant solution to the nonlocal NLS
equation in Ref. [10]; thus, the proof for this lemma
is omitted here.

Taking variable transformation y1 = κt, x1 =
x, x2 = −iy, x3 = −4t in (40), it is easy to find that
the tau functions satisfy

τ ∗
0 (−x, y,−t) = cτ0(x, y, t), τ1(x, y, t)

= cτ ∗−1(−x, y,−t),

c = c1c2, c1 =
N∏

j=1

eξ j+ξ j , c2 =
N∏

j=1

eη j+η j ,

(42)

when the parameters pi , p j , qi , q j meet the parametric
condition pi + p j = qi +q j (1 ≤ i, j ≤ N ) and one of
the following two conditions: (i) pi , p j , qi , q j are real,
ηi , η j are purely imaginary; (ii) the subsets (pi , qi , ηi0)
or (p j , q j , η j0) occur in pairs such that pk = p∗

k′ , qk =
q∗
k′ , ηk0 = η∗

k′0, or pk = p∗
k′ , qk = q∗

k′ , ηk0 = η∗
k′0.

In what follows, we give a short proof for condi-
tion (42). In the case, when pi , p j , qi , q j are real and
ηi0, η j0 are purely imaginary, one can obtain

ξi = pi x − ip2i y − 4p3i t, ξ j = p j x + i p2j y − 4p3j t,

ηi = κpi t + iθi , η j = κ p j t + iθ j (43)

and

ξ∗
i (−x, y,−t) = −ξi (x, y, t), ξ

∗
j (−x, y,−t)

= −ξ j (x, y, t),

η∗
i (−x, y,−t) = −ηi (x, y, t), η

∗
j (−x, y,−t)

= −η j (x, y, t).

(44)

Here, we have chosen ηi0 = iθi , η j0 = iθ j , and θi , θ j

are all real. It then follows

τ0(x, y, t) =
N∏

j=1

eηi+η j

∣
∣
∣ 1
pi+p j

e(pi+p j )x−i(p2i −p2j )y−4(p3i +p3j )t−κ(pi+p j )t−i(θi+θ j ) + 1
qi+q j

∣
∣
∣

=
N∏

j=1

eξi+ξ j

∣
∣
∣ 1
pi+p j

+ 1
qi+q j

e−(pi+p j )x+i(p2i −p2j )y+4(p3i +p3j )t+κ(pi+p j )t+i(θi+θ j )
∣
∣
∣ . (45)

and

τ ∗
0 (−x, y,−t) =

N∏

j=1

e−ηi−η j

∣
∣
∣ 1
pi+p j

e−(pi+p j )x+i(p2i −p2j )y+4(p3i +p3j )t+κ(pi+p j )t+i(θi+θ j ) + 1
qi+q j

∣
∣
∣ . (46)

Since the parameters pi , p j , qi and q j meet the para-
metric condition

pi + p j = qi + q j ,

thus
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τ ∗
0 (−x, y,−t) =

N∏

j=1

e−ηi−η j

∣
∣
∣ 1
pi+p j

+ 1
qi+q j

e−(pi+p j )x+i(p2i −p2j )y+4(p3i +p3j )t+κ(pi+p j )t+i(θi+θ j )
∣
∣
∣ , (47)

which indicates that

τ ∗
0 (−x, y,−t) = cτ0(x, y, t).

Besides,

τ1(x, y, t) =
∣
∣
∣
∣
∣

eξi+ξ j

pi+p j
+ eηi+η j

qi+q j
eξi

−eη j 0

∣
∣
∣
∣
∣

=
N∏

j=1

eηi+η j

∣
∣
∣
∣
∣

eξi+ξ j−ηi−η j

pi+p j
+ 1

qi+q j
e−ηi+ξi

−1 0

∣
∣
∣
∣
∣
,

(48)

and

τ−1(x, y, t) =
∣
∣
∣
∣
∣
∣

eξi+ξ j

pi+p j
+ eηi+η j

qi+q j
eηi

−eξ j 0

∣
∣
∣
∣
∣
∣

=
N∏

j=1

eξi+ξ j

∣
∣
∣
∣
∣

1
pi+p j

+ e−ξi−ξ j+ηi+η j

qi+q j
eηi−ξi

−1 0

∣
∣
∣
∣
∣
.

(49)

On the other hand,

τ ∗
1 (−x, y,−t) =

N∏

j=1

e−ηi−η j

∣
∣
∣
∣
∣

1
pi+p j

+ e−ξi−ξ j+ηi+η j

qi+q j
eηi−ξi

−1 0

∣
∣
∣
∣
∣
,

(50)

thus one can obtain

τ ∗
1 (−x, y,−t) = cτ−1(x, y, t).

Therefore, condition (42) is satisfied in the case when
pi and p j are real andηi0, η j0 are purely imaginary. For
the case, when the subset (p j , q j , η j0) or (p j , q j , η j0)

occurs in pair such that pk = p∗
k′ , qk = q∗

k′ , ηk0 = η∗
k′0

or pk = p∗
k′ , qk = q∗

k′ , ηk0 = η∗
k′0, condition (42) can

be proved by a similar way, we omit its proof here.
Furthermore, under variable transformation

y1 = κt, x1 = x, x2 = −iy, x3 = − 4 t,

namely

Dy1 = 1

κ
Dt , Dx1 = Dx , Dx2 = iDy, Dx3 = −1

4
Dt ,

the bilinear equations of the two-component KP hier-
archy (37) reduce to bilinear equations of the nonlocal
Mel’nikov equation (15) for taking

f (x, y, t) = τ0(x, y, t), g(x, y, t)

= τ1(x, y, t), g
∗(−x, y,−t) = τ−1(x, y, t).

Thus, general bright soliton solutions to the nonlocal
Mel’nikov equation (10) presented in Theorem 1 are
generated.

Appendix B

In this appendix, we prove Theorem 2 by reducing tau
functions for the bilinear equations (28) from tau func-
tions of single-component KP hierarchy [55–58].

Lemma 2 The following bilinear equations in the KP
hierarchy

(D2
x1 − Dx2)τn+1 · τn = 0,

(Dx1Dx−1 − 2)τn · τn + 2τn+1τn−1 = 0,

(D4
x1 − 3Dx1Dx3 + 4D2

x2)τn · τn = 0,

(51)

have the following Gramian determinant tau functions

τn = det
1≤i, j≤N

(m(n)
i j ), (52)

where

m(n)
i j = biδi j + 1

p + q

(

− p

q

)(n)

eξi+η j ,

ξi = 1

p1
x−1 + pi x1 + p2i x2 + p3i x3 + ξi0, (53)

η j = 1

q j
x−1 + q j x1 − q2j x2 + q3j x3 + η j0,

and pi , q j , bi , ξi0 and η j0 are arbitrary complex con-
stants, δi j = 1 when i = j and δi j = 0 elsewhere.
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This lemma can be proved directly by using the
Gramian technique [44,45]; we omit the proof of this
lemma here. By introducing the variable transforma-
tion

y1 = κt, x1 = x, x2 = −iy x3 = −4t,

namely

Dy1 = 1

κ
Dt , Dx1 = Dx , Dx2 = iDy, Dx3 = −1

4
Dt ,

the bilinear equations (51) become

(D2
x − iDy)τn+1 · τn = 0,

(D4
x + Dx Dt − 3D2

y)τn · τn = 2κ(τ 2n − τn+1τn−1).

(54)

If further taking

τ0(x, y, t) = f (x, y, t), τ1(x, y, t)

= g(x, y, t), τ−1(x, y, t) = g(x, y, t),

(55)

then the bilinear equations (54) would be transformed
into bilinear equations

(D2
x − iDy)g(x, y, t) · f (x, y, t) = 0,

(D4
x + Dx Dt − 3D2

y) f (x, y, t) · f (x, y, t)

= 2κ( f 2(x, y, t) − g(x, y, t)g(x, y, t)).

(56)

Furthermore, the bilinear equations (56) reduce to the
bilinear equations of the nonlocal Mel’nikov equation
(28) if functions f (x, y, t), g(x, y, t) and g(x, y, t)
satisfy

f (x, y, t) = f ∗(−x, y,−t), g∗(−x, y,−t)

= g(x, y, t). (57)

In what follows, we constrain functions f (x, y, t),
g(x, y, t) and g(x, y, t) satisfying condition (57) by
taking particular parametric constraints

N = 2M, bM+i = −b∗
i , q j = p∗

j ,

η j0 = ξ j0, pM+i = −pi ,

ξM+i0 = ξi0, 1 ≤ j ≤ 2M, 1 ≤ i ≤ M,

(58)

where η j0 are real, p j , b j are complex. In this case,

ξi (x, y, t) = pi x − ip2i y +
(

κ

pi
− 4p3i

)

t + ξi0,

ηi (x, y, t) = p∗
i x + ip∗2

i y +
(

κ

p∗
i

− 4p∗3
i

)

t + ξi0.

(59)

Since

(ξN+i + ξ∗
N+i )(x, y, t)

= (pN+i + p∗
N+i )x − i(p2N+i − p∗2

N+i )y

+
(

κ

pN+i
+ κ

p∗
N+i

− 4p3N+i − 4p∗3
N+i

)

t + 2ξN+i0

= −(pi + p∗
i )x − i(p2i − p∗2

i )y

−
(

κ

pi
+ κ

p∗
i

− 4p3i − 4p∗3
i

)

t + 2ξi0, (60)

thus one can obtain

(ξN+i + ξ∗
N+i )

∗(−x, y,−t) = (ξi + ξ∗
i )(x, y, t),

(ξi + ξ∗
i )∗(−x, y,−t) = (ξN+i + ξ∗

N+i )(x, y, t).

(61)

Besides, the tau function can be rewritten as

τn (x, y, t) =
2M∏

j=1

eξ j+ξ∗
j

∣
∣
∣
∣
∣
∣
∣
∣

biδi je
−

(
ξi+ξ∗

j

)

+ 1
pi+p∗

j

(

− pi
q∗
j

)n
1

pi+p∗
M+ j

(

− pi
q∗
M+ j

)n

1
pM+i+p∗

j

(

− pM+i
q∗
j

)n

bM+iδM+i,M+ je
−

(
ξM+i+ξ∗

M+ j

)

+ 1
pM+i+p∗

M+ j

(

− pM+i
q∗
M+ j

)n

∣
∣
∣
∣
∣
∣
∣
∣

=
2M∏

j=1

eξ j+ξ∗
j

∣
∣
∣
∣
∣
∣
∣
∣

bM+iδM+i,M+ je
−

(
ξM+i+ξ∗

M+ j

)

+ 1
pM+i+p∗

M+ j

(

− pM+i
q∗
M+ j

)n
1

pM+i+p∗
j

(

− pM+i
q∗
j

)n

1
pi+p∗

M+ j

(

− pi
q∗
M+ j

)n

biδi je
−

(
ξi+ξ∗

j

)

+ 1
pi+p∗

j

(

− pi
q∗
j

)n

∣
∣
∣
∣
∣
∣
∣
∣

=
2M∏

j=1

eξ j+ξ∗
j

∣
∣
∣
∣
∣
∣
∣
∣

−b∗
i δM+i,M+ je

−
(
ξM+i+ξ∗

M+ j

)

− 1
pi+p∗

j

(

− pi
q∗
j

)n

− 1
pi+p∗

M+ j

(

− pi
q∗
M+ j

)n

− 1
pM+i+p∗

j

(

− pM+i
q∗
j

)n

−b∗
M+iδi je

−
(
ξi+ξ∗

j

)

− 1
pM+i+p∗

M+ j

(

− pM+i
q∗
M+ j

)n

∣
∣
∣
∣
∣
∣
∣
∣

,
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which implies

τ ∗
n (−x, y, −t) =

2M∏

j=1

e

(
ξ j+ξ∗

j

)∗
(−x,y,−t)

∣
∣
∣
∣
∣
∣
∣
∣

−b∗
i δM+i,M+ je

−
(
ξM+i+ξ∗

M+ j

)∗
(−x,y,−t) − 1

pi+p∗
j

(

− pi
q∗
j

)n

− 1
pi+p∗

M+ j

(

− pi
q∗
M+ j

)n

− 1
pM+i+p∗

j

(

− pM+i
q∗
j

)n

−b∗
M+iδi je

−
(
ξi+ξ∗

j

)∗
(−x,y,−t) − 1

pM+i+p∗
M+ j

(

− pM+i
q∗
M+ j

)n

∣
∣
∣
∣
∣
∣
∣
∣

,

=
2M∏

j=1

eξ j+ξ∗
j

∣
∣
∣
∣
∣
∣
∣
∣

b∗
i δi, je

−
(
ξi+ξ∗

j

)

+ 1
pi+p∗

j

(

− pi
q∗
j

)n
1

pi+p∗
M+ j

(

− pi
q∗
M+ j

)n

1
pM+i+p∗

j

(

− pM+i
q∗
j

)n

b∗
M+iδM+i,M+ je

−
(
ξM+i+ξ∗

M+ j

)

+ 1
pM+i+p∗

M+ j

(

− pM+i
q∗
M+ j

)n

∣
∣
∣
∣
∣
∣
∣
∣

.

Therefore, τ ∗
n (−x, y,−t) = τ−n(x, y, t). With para-

metric constraints (58), functions f (x, y, t), g(x, y, t),
g(x, y, t) satisfy the conjugate condition (57). By tak-
ing thegauge freedomof functions f (x, y, t), g(x, y, t)
in (16), we have Theorem 2 regarding the general soli-
ton solutions to the nonlocal Mel’nikov equation (10)
with nonzero boundary condition. That ends the proof
for Theorem 2.
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