
Nonlinear Dyn (2018) 94:1835–1850
https://doi.org/10.1007/s11071-018-4460-2

ORIGINAL PAPER

Investigation of nonlinear characteristics of the motor-gear
transmission system by trajectory-based stability preserving
dimension reduction methodology

Changzhao Liu · Datong Qin · Jing Wei ·
Yinghua Liao

Received: 18 October 2017 / Accepted: 28 June 2018 / Published online: 4 July 2018
© Springer Nature B.V. 2018

Abstract Gear-motor system is a typically nonlin-
ear system because of many nonlinear factors, such as
time-varying meshing stiffness, backlash, and the non-
linear relationship between the electric motor torque
and speed. At present, the nonlinear analytical methods
can only be used for simplified gear dynamic model.
Though the numericalmethods canbeused for the com-
plicated dynamic model, the quantitative analysis of
stability is difficult and rarely conducted. Therefore,
a kind of trajectory-based stability preserving dimen-
sion reduction (TSPDR) methodology is proposed to
investigate nonlinear dynamic characteristics of the
gear-motor system. In the TSPDRmethodology herein,
the complementary cluster center of inertia-relative
motion (CCCOI-RM) transformation is chosen and the
stability margins are specially defined for distinguish-
ing the stable motion modes of the motor-gear system,
to make the TSPDR methodology used in the nonlin-
ear analysis of the gear-motor system. Furthermore, the
critical values are obtained for alteration of different
motion modes and the nonlinear characteristics of each
motion modes are analyzed. At last, combined with
modal analysis, the relationship between the stability
and resonance of the gear-motor system is revealed.
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1 Introduction

Gear-motor system is a typically nonlinear system
because of many nonlinear factors, such as time-
varying meshing stiffness, backlash, and the nonlin-
ear relationship between the electric motor torque
and speed. At present, numerous investigations are
carried out for the gear systems, but a few for the
gear-motor system. Considering time-varying mesh-
ing stiffness, viscous damping, and gear errors, Ama-
bili [1] constructed a single degree-of-freedom model
of a pair of low contact ratio spur gears, and then
obtained a continuous closed-form solution. At last,
transition curves which separate stable and unstable
regions were computed by Hill infinite determinant
to investigate the influences of the damping and con-
tact ratio. Sika [2] proposed a one degree-of-freedom
model which considered time-varying mesh stiffness
and unsteady input rotations because of engine speed
fluctuation. Then, the stability is analyzed by calcu-
lating the monodromy matrix. The influences of the
mesh stiffness variations and damping on the stabil-
ity are also discussed. Han [3] carried out a paramet-
ric stability research for a spur gear pair system with
consideration of the effect of ETC (Extended Tooth
Contact, caused by pre-mature and post-mature con-
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tact of tooth pairs). The effects of ETC, operating
torques, and mesh damping were also discussed on
unstable regions. Moradi [4] obtained forced vibra-
tion responses of the gear system based on the clas-
sical single degree-of-freedom (SDOF) gear dynamic
model by multiple scale method, and investigated the
jump phenomenon, stability, as well as the effect of
gear dynamic and manufacturing parameters on the
dynamic transmission error (DTE). Litak [5] simu-
lated the nonlinear vibration of a gear pair includ-
ing shaft flexibility, observed that the extra degree of
freedom, which may represent a flexible shaft or a
vibration neutraliser, has a considerable effect on the
dynamics. For example, in their paper, there were a
number of chaotic and regular attractors in Poincare
sections with respect to the shaft stiffness. Consid-
ering the contact loss of gears, Eritenel [6] inves-
tigates the three-dimensional nonlinear vibration of
gear pairs, finding that resonances of twist and mesh
deflection modes are shown to be nonlinear because
of partial and total contact loss. Zhou [7] proposed
an eight-degree-of-freedom (8-DOF) nonlinear gear-
rotor-bearingmodel. Based on themodel, the nonlinear
vibration characteristics are investigated by theRunge–
Kutta method, finding that the nonlinear dynamic char-
acteristics, such as periodic motion, quasi-periodic
motion, chaotic behaviors, and impacts, are strongly
attributed to the interaction between internal and exter-
nal excitations. Theodossiades [8] investigated the
dynamics of a motor-gear system, demonstrating that
the quasi-periodic and chaotic long-time responses
existed for selected combinations of the system param-
eters.

From above literature analysis, some deficiencies
can be found for the investigation of nonlinear charac-
teristics of the motor-gear transmission sys
tem:

(1) There is much research on nonlinear characteris-
tics of the gear transmission system, but little on
the motor-gear transmission system.

(2) The analytical methods can only be used for sim-
plified gear dynamic model. Though the numeri-
cal methods can be used for the complicated gear
dynamic model, the quantitative analysis of stabil-
ity is difficult and rarely conducted.

(3) At present, the critical values are usually obtained
between the stability and instability. In reality, var-
ious modes of motion exist as the system parame-

ters changes when the system is stable, but critical
values between these various modes of motion are
seldom investigated in present studies of motor-
gear nonlinear dynamics.

The main cause of the second deficiency is that
it is difficult to obtain the closed-form solution and
conduct quantitative stability analysis of complicated
dynamic model. Therefore, Xue [9] proposed the
trajectory-based stability preserving dimension reduc-
tion (TSPDR) methodology to quantitatively investi-
gate the nonlinear stability of complicated dynamic
system and applied it to electrical power system suc-
cessfully. Thismethodology can be summarized to four
steps:

Step 1 Obtaining the system motion trajectory by
numerical computation method;

Step 2 Stability preserving dimension reduction, that
is, the number of degrees of freedom of system
decreases from n to 1 with the system stabil-
ity preserving. There are three kinds of dimen-
sion reduction methods which are described
detailedly by Xue [9]. For the sake of descrip-
tive integrality, these methods are depicted
herein by citation and paraphrasing based on
Xue’s [9] literature.

(1) CCCOI-RM (Complementary Cluster Cen-
ter of Inertia-RelativeMotion) transformation.
Firstly, CCCOI (Complementary Cluster Cen-
ter of Inertia) transformation is used. It divides
the whole set of disturbed trajectories into
complementary subsets in all possible ways.
For each pair of complementary clusters, the
trajectories within either cluster are aggre-
gated into an equivalent trajectory at the inertia
center of the relevant cluster, thus trajectories
of the equivalent two-rigid-body system are
formed. Then RM (relative motion) transfor-
mation is used to obtain the relative displace-
ment between the trajectories of the equivalent
two-rigid-body system.

(2) CAP (coordinate-axis projection) transforma-
tion. It uses a unit-matrix transformation to
realize the reduction in degree of freedom from
n to 1.

(3) CPP (coordinates-plane projection) transfor-
mation. It divides the system into a pair of
complementary subsets, namely subset X1 of
2 dimensions and its complementary subset
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X2 of n-2 dimensions by using a two-block
unit-matrix transformation. Independent of the
actual trajectory, the nonlinear characteristics
of the subsystem X1 are analyzed with X2 act-
ing as parameters.

Step 3 Defining the stabilitymargin in the phase plane
after transformation. The stability margin can
be defined in various ways, such as, definition
for distinguishing the stability and instability
or distinguishing the stable motion modes.

Step 4 Obtaining the critical value by sensitivity anal-
ysis.

If the CCCOI-RM combined with the stability mar-
gin defined for distinguishing the stability and instabil-
ity is chosen for stability analysis, it is called CCEBC
(Complementary Cluster Energy Barrier Criterion),
which has been widely used by power grids in China,
France, Canada and USA for system planning, opera-
tion, as well as for preventive and emergency controls
[9] and also used for nonlinear dynamic analysis of
modified Lorenz system [10], Zhou system [11], and
Liu chaotic system [12]. The CAP is chosen, combined
with the stability margin defined for distinguishing the
stable motion modes, for stability analysis of nonlin-
ear rotor systems [13]. The CCEBC just can be used

for bounded stability analysis, while, the interaction
between motions of each DOF is not considered in the
CAP transformation.

In this study, the nonlinear dynamic characteris-
tics of the gear-motor system are investigated by
trajectory-based stability preserving dimension reduc-
tion (TSPDR) methodology. In the TSPDR method-
ology herein, the CCCOI-RM is chosen and the sta-
bility margins are specially defined for distinguishing
the stable motion modes of the motor-gear system, to
make the TSPDR methodology be used in the nonlin-
ear analysis of the gear-motor system. At last, com-
bined with modal analysis, the relationship between
the stability and resonance of the gear-motor system is
revealed.

2 Dynamic model of the motor-gear system

Figure 1 illustrates the dynamic model of the motor-
gear system. The symbols θm, θ1, θ2, and θl denote
the angular displacements of the electric motor rotor,
driving gear, driven gear, and load, respectively. The
symbols Jm, J1, J2, and Jl denote the rotational iner-
tias of the electric motor, driving gear, driven gear, and
load, respectively. The symbols km1 and cm1 denote
the connecting stiffness and damping between elec-
tric motor and driving gear, respectively. The sym-
bols km and cm denote the meshing stiffness and
damping between the driving gear and driven gear,
respectively. The symbols k2l and c2l denote the con-
necting stiffness and damping between the driven
gear and load, respectively. The symbols Tm and Tl
denote the electromagnetic torque and loading torque,
respectively. The mathematical model is given as Eq.
(1).

⎧
⎪⎪⎨

⎪⎪⎩

Jm θ̈m + km1(θm − θ1) + cm1(θ̇m − θ̇1) = Tm
J1θ̈1−km1(θm − θ1)−cm1(θ̇m−θ̇1)+ kmδ12 + cm δ̇12 = 0
J2θ̈2 − km δ̇12 − cm δ̇12 + k2l(θ2 − θl) + c2l(θ̇2 − θ̇l) = 0
Jlθ̈l − k2l(θ2 − θl) − c2l(θ̇2 − θ̇l) = −Tl

(1)

where δ12 is the gear teeth deformation;

δ12 =
⎧
⎨

⎩

rb1θ1 − rb2θ2 − e − b/2 if rb1θ1 − rb2θ2 − e > b/2
0 if − b/2 ≤ rb1θ1 − rb2θ2 − e ≤ b/2
rb1θ1 − rb2θ2 − e + b/2 if rb1θ1 − rb2θ2 − e ≤ −b/2

(2)

e is the gear error; b is the backlash. If the tooth separa-
tion does not appear, the dynamic characteristics will
not be affected by the backlash.

In Eq. (1), the meshing stiffness km is the period
function of θ1 and the period Tkm is 2π/c1,where θ1 and
c1 is the angular displacement and teeth number of the
driving gear. Considering the effect of extended tooth
contact (ETC), the mesh stiffness in the pre-mature and
post-mature contact regions is gradually rather than
abruptly varying with θ1; therefore, the mesh stiffness
is approximated linearly by trapezoidal waveforms [3]
as shown in Fig. 2. The transition period between the
single-pair mesh and double-pair mesh is taken as 0.06
times of themeshing period [14,15]. Themeshing stiff-
ness can be derived as Eq. (3).
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Fig. 1 Dynamic model of
the motor-gear system
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km =

⎧
⎪⎪⎨

⎪⎪⎩

kmin if 0 ≤ mod(θ1, 2π/c1)/(2π/c1) < 1.88 − ε

kmin + (kmax−kmin)
0.06 [mod(θ1, 2π/c1)/(2π/c1) − (1.88 − ε)] if 1.88−ε ≤ mod(θ1, 2π/c1)/(2π/c1) < 1.94 − ε

kmax if 1.94 − ε ≤ mod(θ1, 2π/c1)/(2π/c1) < 0.94

kmax − (kmax−kmin)
0.06 [mod(θ1, 2π/c1)/(2π/c1) − 0.94] if 0.94 ≤ mod(θ1, 2π/c1)/(2π/c1) < 1

(3)

where the symbols kmin and kmax denote the meshing
stiffness of single-pair and double-pair mesh, respec-
tively; the symbols θ1 and c1 is the angular displace-
ment and teeth number of the driving gear; the symbols
ε is the contact ratio; mod(a, m) returns the remainder
after division of a by m.

In motor-gear system, except backlash and varying
meshing stiffness, which are non-ignorable nonlinear
factors [5,16], the nonlinear electromagnetic torque
is also an important nonlinear factor. In Eq. (1), the
electromagnetic torque Tm can be obtained by steady-
state model of the electric motor [17]. The steady-state
model, namely, the mechanical characteristic of the
electricmotor, reflects the relationship of the torque and
the rotating speed of the electric motor. The mechani-
cal characteristic of the electric motor can be derived
by steady-state electric circuit analysis of the electric
motor as shown in Fig. 3. The mechanical characteris-
tic of the electric motor is derived as Eq. (4). Figure 4
shows the curve of the mechanical characteristic of the
asynchronousmotor. AC is the stable operation interval
of the motor. B is the rated power point.

Tm = m1

ωs

U 2
φ
R′

2
s

(
R1 + R′

2
s

)2 + (Xσ1 + X ′
σ2)

2
(4)

Tm Electromagnetic torque of the electric motor,
Nm;

m1 Phase number, m1 = 3 here;
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Fig. 2 Gear meshing stiffness

123



Investigation of nonlinear characteristics 1839

R1 Xσ1 X'σ2 R'2

Xm R'2(1-s)/s

I'2I1

ImUϕ

Fig. 3 Equivalent circuit of the asynchronous electric motor
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Fig. 4 Mechanical characteristic of the asynchronous motor

ωs Synchronous angular velocity, rad s−1;
Uφ Phase voltage, v;
R1 Stator resistance, 	;
R′
2 Equivalent rotor resistance, 	;

Xσ1 Stator leakage reactance, 	;
X ′

σ2 Equivalent rotor leakage reactance, 	;
Xm Magnetizing inductance, 	;
s Slip ratio, s = (ωs − ω)/ωs;
ω Angular velocity of the motor rotor, rad s−1.

Because the system parameters are varying with the
state variables, for example, the electromagnetic torque
varies with the angular velocity of motor rotor and the
meshing stiffness varies with the angular displacement
of the driving gear, obvious nonlinearity is induced in
this model, and it is nearly impossible to obtain the
closed solution, though the model herein is relatively
simple. In addition, the gear teeth deformation will
reach 0 if the tooth separation appears, that is, dead
zone emerges, which will induce obvious nonlinear-
ity into this model. The parameters of the gear-motor
system are shown in Table 1.

3 Procedures to obtain the critical values by
TSPDR

It is mentioned that TSPDR includes four steps, so this
section is arranged according to the four steps. The

Table 1 The parameters of the gear-motor system

Parameters

Electric motor m1 = 3; ωs = 157.08 rad s−1;
Uφ = 220 V; R1 = 0.76942 	;
R′
2 = 0.39568 	; Xσ1 = 2.2745 	;

X ′
σ2 = 2.2745 	; Jm = 0.0214 kg m2

Mechanical system J1 = 7.84 × 10−5 kg m2;
J2 = 1.29 × 10−4 kg m2; c1 = 25;
rb1 = 46.98 mm; rb2 = 56.38 mm;
J2 = 1.29 × 10−4 kg m2; ε = 1.633;
kmax = 2.06 × 108 Nm−1;
kmin = 1.03 × 108 Nm−1;
km1 = 106 Nm rad−1;
cm1 = 102 Nm s rad−1;
k2l = 107 Nm rad−1;
c2l = 103 Nm s rad−1;
cm = 103 Nm−1 s

first step, obtaining the system motion trajectory by
numerical computation method, can be seen in much
literature about numerical calculation; therefore, the
first step will not introduced herein, and the later three
steps will presented in detail.

3.1 Step 2: dimension reduction by CCCOI-RM

The dynamic problems can be expressed as Eq. (5).
Where, X = [δT, ωT] is a vector of motion state vari-
ables consisting of generalized position δ and speed ω;
vectorZ stands for non-motion state variables; vectorY
stands for algebraic variables; Mk is generalized iner-
tia; τ is generalized scenario; Pmk is driving force (or
torque); Pek is the brake force (or torque); Pmk , Pek , f,
and � are nonlinear functions; k = 1, 2, . . ., n stands
for one of the n rigid-body.

Mk δ̈k = Pmk(X, Z, Y, t, τ ) − Pek(X, Z, Y, t, τ )

Ż = f(X, Z, Y, t, τ )

0 = �(X, Z, Y, t, τ ) (5)

The trajectories δk (k = 1, 2, . . ., n) can be obtained
by numerical calculation method, then these trajecto-
ries can be divided in two complementary cluster, S and
A, as shown in Fig. 5. The symbols δs and δa denote the
equivalent trajectory at the inertia center of the S and A
cluster, respectively, which can be obtained by CCCOI
transformation as Eq. (6). Then, the relative displace-
ment of δs and δa, denoted by δ, can be obtained by RM
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Fig. 5 Trajectories of the nonlinear dynamic system

transformation as Eq. (7). Thus, the CCCOI-RM trans-
formation is finished. The nonlinear characteristics of
the dynamic system can be analyzed in phase plane of
δ and δ̇. Emphatically, if the reducer is included in the
system, the δ and M in Eq. (6) must be the transformed
displacements and inertias as Eq. (8), where, i , δ′, and
M ′ are the transmission ratio, displacement and inertia
at low speed stage, respectively.
{

δs = ∑
i∈S Miδi/

∑
i∈S Mi

δa = ∑
j∈A M jδ j/

∑
j∈A M j

(6)

δ = δs − δa (7)
{

δ = iδ′
M = M ′/ i2 (8)

In this study, the gear meshing is main cause of non-
linearity of the gear-motor system, so the generalized
displacements before and after the gear meshing are
separated in two cluster, that is, the θm and θ1 are clas-
sified in S cluster, while the θ2 and θl are classified
in A cluster. Therefore, the trajectory after dimension
reduction (δ) of the model in Sect. 2 can be obtained
by CCCOI-RM transformation.

3.2 Step 3: definition of the stability margin

The phase orbits of the gear-motor system for different
load rotational inertias (Jl) are shown in Fig. 6. Two
focal points (O1 and O2) emerge in Fig. 6a, which
are corresponding to the meshing stiffness zones of
single-pair and double-pair mesh, respectively. When
the meshing stiffness is single-pair meshing stiffness,
the phase orbit attenuates around O1. When the mesh-
ing stiffness is double-pair meshing stiffness, the phase
orbit attenuates around O2. The phase orbit changes to
attenuates around from one focal point to another focal
point when the meshing stiffness alternates.

In Fig. 6a and b, the phase orbit has several intersec-
tion points in the right part of the phase diagram. As
the load rotational inertia increases, if the alteration of
meshing stiffness from single-pair to double-pair mesh
emerges in point A (A′ in Fig. 6c), the phase orbit has
only one intersection point in the right part of the phase
diagram, as shown in Fig. 6c, which is a critical con-
dition. As the load rotational inertia continues increas-
ing, the phase orbits also have only one intersection
point in the right part of the phase diagram, as shown
in Fig. 6d and e. If the alteration of meshing stiffness
from single-pair to double-pair mesh emerges in point
C (C ′ in Fig. 6g), the phase orbit has no intersection
point in the right part of the phase diagram, as shown
in Fig. 6g, which is a critical condition. As the load
rotational inertia continues increasing, the phase orbit
has no intersection point in the right part of the phase
diagram either, as shown in Fig. 6h.

As the load rotational inertia increases, if the alter-
ation of meshing stiffness from double-pair to single-
pair mesh emerges in point B (B ′ in Fig. 6e), the phase
orbit has only one intersection point in the left part of
the phase diagram, as shown in Fig. 6e, which is a crit-
ical condition. As the load rotational inertia continues
increasing, the phase orbits also have only one intersec-
tion point in the left part of the phase diagram, as shown
in Fig. 6f and g. If the alteration of meshing stiffness
from double-pair to single-pair mesh emerges in point
D (D′ in Fig. 6i), the phase orbit has no intersection
point in the right part of the phase diagram, as shown
in Fig. 6i, which is a critical condition. The intersec-
tion points in the both left and right parts disappear in
Fig. 6i. As the load rotational inertia continues increas-
ing, the phase orbit has no intersection point as shown
in Fig. 6j.

From above analysis, four critical conditions can be
found as shown in Fig. 6c, e, g and i. The stability mar-
gins need to be defined to search these critical condi-
tions. The phase orbits of the gear-motor system when
Jl = 3×10−4 kg m2 is given in Fig. 7a. In Fig. 7, points
1–5 are the extreme value of vibrating velocity, where
the system kinetic energy reaches the extreme value,
while the potential energy reaches 0, which is similar to
spring oscillator. Therefore, the system energy is equal
to kinetic energy (mv2/2, m is mass and v is speed) at
points 1–5. Because just the ratio of energy is used in
thedefinition stability inEq. (9), them/2 canbe ignored
in the expression of system energy. Therefore, the sys-
tem energy can be represents by the square of velocity
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Fig. 6 Phase orbits of the gear-motor system at different values of load rotational inertia (Jl)
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Fig. 6 continued

at points 1–5, that is, E1−5 = (v1−5)
2, where, the

symbol E1−5 and v1−5 are system energy and vibrat-
ing speed at point 1–5, respectively, v1−5 = δ̇1−5 in
Fig. 7.

In the damped vibration system, the system energy
attenuates as exponential function, which is fitted by
points 1–5 as Fig. 7b. In Fig. 7b, the time of point
1 is regarded as the starting point of time axis, and
time of point 2–4 on time axis is the relative time to
point 1. The system energy at A, C , and K can be
obtained with the fitting formula. K is the point where
meshing stiffness alters from single-pair to double-pair
mesh. A and C are the points where the velocity is
zero. If K coincides with A, the phase orbit has only
one intersection point in the right part of the phase
diagram, and the stability margin is denoted as ηA for

this critical condition. If K coincides withC , the phase
orbit has no intersection point in the right part of the
phase diagram, and the stabilitymargin is denoted asηC
for this critical condition. It can be considered that if the
energy of point K is equal to point A or C , the critical
conditions appear. Therefore, the stability margins are
defined as Eq. (9). Similarly, the stability margins for
points B and D.

ηA = 1 − EK

EA

ηC = 1 − EK

EC
(9)

where EK , EA, and EC are the system energy at point
K , A, andC , respectively. ηA or ηC reflect the difficulty
degree of change from K to A or C , respectively, in
another words, the amount of energy injected to system
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Fig. 8 The phase orbit of the gear-motor system when Jl = 1.351 × 10−2 kg m2

to make K move to A or C . The larger ηA or ηC is, the
more difficult change from K to A orC is, and themore
energy need to be injected to system, that is, the more
stable the system is.

When the load rotational inertia (Jl) is large, for
example, Jl = 1.351× 10−2 kg m2, some special con-
ditions will be encountered for calculation of stability
margins as shown in Fig. 8. Point O is corresponding to
K in Fig. 7, where the meshing stiffness alters of from
single-pair to double-pair mesh. Point P is correspond-
ing to L in Fig. 7, where the meshing stiffness alters of
from double-pair to single-pair mesh. Point Q is cor-

responding to D in Fig. 7, where the angular velocity
reaches 0. The point P is ahead of Q in time in Fig. 8,
while, the point L is behind D in time correspondingly
in Fig. 7. The definition of stabilitymargins in Eq. (9) is
not suitable herein. Therefore, the absolute value of the
angular velocity at point R, where the angular velocity
reaches the extreme after passing through zero value,
is defined as the stability margin, as shown in Eq. (10).
When the stability margin ηR reaches zero, the critical
condition appears.

ηR = |δ̇R| (10)
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3.3 Step 4: obtaining the critical value

The procedure to obtain the critical value is shown as
the flow chart in Fig. 9. Firstly, 2–3 initial parame-
ters are chosen to be substitute into the dynamic model
for simulation. Then, the dimensions of the simula-
tion results are reduced for calculation of the stabil-
ity margins. Next, if stability margin is equal to zero,
the critical value is output, otherwise, the next param-
eter value is obtained by the interpolation based on
the pre-existing parameter and corresponding stabil-
ity values, as illustrated in Fig. 10, and substituted
into the dynamic model for next dynamic simulation.
In Fig. 10, points 1–3 are the pre-existing parameter
and corresponding stability values, while point 4 is the
next parameter value obtained by interpolation under
the condition that the corresponding stability margin is
zero.

With the method above, the critical values of load
inertia Jl, where the stability margins ηA, ηB , ηC ,
and ηD are equal to zero, can be obtained, which
are 6.605 × 10−4, 2.653 × 10−3, 3.622 × 10−3, and
1.52×10−2 kg m2, respectively. The search process for
the critical values is presented in Table 2. The variation
trends of stability margins with load rotational inertia
are given in Fig. 11. It should be noted that, when the
load rotational inertia is larger, especially near the criti-
cal value, as the condition shown in Fig. 8, the stability
margin should be calculated by Eq. (10). Therefore,
the curve is not continuous near the critical value as
the dashed line show in Fig. 11d. The parameter of
load rotational inertia is divided into several intervals
by these critical values, and the representative phase
diagrams of each interval are given in Fig. 6.

4 Nonlinear dynamic analysis of the motor-gear
system

As the above analysis, the parameter of load rota-
tional inertia is divided into several intervals by these
critical values, that is, Jl < 6.605 × 10−4 kgm2,
6.605 × 10−4 kgm2 < Jl < 2.653 × 10−3 kgm2,
2.653 × 10−3 kgm2 < Jl < 3.622 × 10−3 kgm2,
3.622 × 10−3 kgm2 < Jl < 1.52 × 10−2 kgm2,
and Jl > 1.52 × 10−2 kgm2. Therefore, the nonlinear
dynamic characteristics will be analyzed in each inter-
val. In the interval of Jl < 6.605 × 10−4 kgm2, for
example, Jl = 5 × 10−5 kgm2, the dynamic meshing
force in time (a) and frequency (b) domain is given in
Fig. 12. The frequency spectrum contains the compo-
nents of the meshing frequency ( fm) and its all kinds
of multiplication, that is, the vibration energy spread
among all the components of meshing frequency and
its multiplication.

In the interval of 6.605 × 10−4 kgm2 < Jl <

2.653 × 10−3 kgm2, for example, Jl = 1.443 ×
10−3 kgm2, The dynamic meshing force in time (a)
and frequency (b) domain is given in Fig. 13. The fre-
quency spectrum contains the components of themesh-
ing frequency and its multiplications, and the ampli-
tudes of 4 fm and its nearby frequency multiplications
are relatively higher, that is, the vibration energy spread
among all the components of meshing frequency, but
mainly concentrates on the frequency components of
4 fm and its nearby multiplications. In the interval of
2.653 × 10−3 kgm2 < Jl < 3.622 × 10−3 kgm2,
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Table 2 The search process
for the critical values

Jl (kgm2) ηA ηB ηC ηD

5 × 10−5 0.9977 0.9999999997 0.9999 0.999999999992

3 × 10−4 0.7674 0.9983 0.9721 0.9998

5 × 10−4 0.3520 0.9863 0.9020 0.9977

6.216 × 10−4 0.0825 – – –

6.605 × 10−4 0 – – –

1.443 × 10−3 0.7218 0.4789 0.9533

2.214 × 10−3 0.2349 0.1785 0.8784

2.487 × 10−3 0.0752 – –

2.653 × 10−3 0 – –

2.738 × 10−3 0.0756 0.8117

3.622 × 10−3 0 0.7041

7.499 × 10−3 0.4019

1.219 × 10−2 0.03725

1.265 × 10−2 0.0283

1.34 × 10−2 0.0030

1.351 × 10−2 0.0346

1.409 × 10−2 0.0214

1.503 × 10−2 0.0029

1.52 × 10−2 0

for example, Jl = 2.783 × 10−3 kgm2, the dynamic
meshing force in time (a) and frequency (b) domain is
given in Fig. 14. The frequency components and energy
distribution is similar with that in Fig. 14.

In the interval of 3.622×10−3 kgm2 < Jl < 1.52×
10−2 kgm2, for example, Jl = 7.499 × 10−3 kgm2,
the dynamic meshing force in time (a) and frequency
(b) domain is given in Fig. 15. The frequency spec-
trum contains the components of the meshing fre-
quency and multiplications, and the amplitude of 2 fm
is relatively higher, that is, the vibration energy mainly
concentrates on the frequency components of 2 fm. In
the interval of Jl > 1.52 × 10−2 kgm2, for exam-
ple, Jl = 3.589 × 10−2 kgm2, the dynamic meshing
force in time (a) and frequency (b) domain is given
in Fig. 16. The frequency spectrum contains the com-
ponents of the meshing frequency and multiplications,
and the amplitude of fm is relatively higher, that is, the
vibration energy mainly concentrates on the frequency
components of fm.

From the above analysis, it is found that the fluctu-
ation of dynamic meshing force is lower and the fluc-

tuation energy is scattered among the frequency com-
ponents, when Jl < 3.622 × 10−3 kgm2, while, the
fluctuation of dynamic meshing force is higher and the
fluctuation energy are concentrated the frequency com-
ponents of 2 fm and fm, when 3.622 × 10−3 kgm2 <

Jl < 1.52× 10−2 kgm2 and Jl > 1.52× 10−2 kgm2,
respectively. The meshing forces are the main internal
excitation sources of motor-gear system, so, the sys-
tem resonance trends to appear in these two intervals,
when the frequency components of meshing forces are
low-order meshing frequencies.

In the interval of 3.622 × 10−3 kgm2 < Jl <

1.52 × 10−2 kgm2, the phase orbit has only one
intersection point, similar to the phase orbit of the
double period motion. The dynamic meshing force
is excitation source with the main frequency compo-
nents of 2 fm (1240.6 Hz). According to the linear
vibration theory, the resonance emerges if the exci-
tation frequency is equal to the natural frequency.
However, the motor system is nonlinear dynamic
system with time-varying meshing stiffness param-
eters. Therefore, the natural frequencies are calcu-
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Fig. 11 The variation trends of stability margins with load rotational inertia
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Fig. 12 The dynamic meshing force in time (a) and frequency (b) domain when Jl = 5 × 10−5 kgm2

lated with single-pair meshing stiffness, meanmeshing
stiffness, and double-pair meshing stiffness, respec-
tively, and then, the corresponding values of Jl lead-
ing to the natural frequency of 1240.6 Hz can be
obtained as shown in Table 3. The phase orbits and
dynamic meshing forces for Jl = 0.00485, 0.00762,
0.00910 kgm2 are given in Fig 17. The phase orbits

of these three values are similar as shown in Fig. 17a.
In Fig. 17b, the amplitude of dynamic meshing force
is largest for 0.00910 kgm2 which is obtained with
double-pair meshing stiffness. The tooth separation
also appears, that is, the dynamic meshing force
reaches zero, which reflects that the system resonance
occurs.
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Fig. 15 The dynamic meshing force in time (a) and frequency (b) domain when Jl = 7.499 × 10−3 kgm2

In the interval of Jl > 1.52×10−2 kgm2, the phase
orbit has no intersection point, similar to the phase orbit
of the period motion. The dynamic meshing force is
excitation source with the main frequency components
of fm (620.3 Hz). The values of Jl leading to the nat-

ural frequency of 620.3 Hz are given in Table 4, when
single-pair meshing stiffness, mean meshing stiffness,
and double-pair meshing stiffness are used, respec-
tively. The phase orbits and dynamic meshing forces
for Jl = 0.03835, 0.1243, 0.3525 kgm2 are given
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Table 3 The values of Jl leading the natural frequency of 1240.6 Hz

Meshing stiffness Jl(kgm2) 1st order natural
frequency (Hz)

2nd order natural
frequency (Hz)

3rd order natural
frequency

4th order natural
frequency

Single-pair 0.00485 0 1240.6 1987.9 4553.7

Mean 0.00762 0 1240.6 2090.6 4582.5

Double-pair 0.00910 0 1240.6 2145.5 4606.3
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Fig. 17 The phase orbits (a) and dynamic meshing forces (b) for different value of Jl leading the natural frequency of 1240.6 Hz

in Fig 18. The phase orbits of these values are sim-
ilar as shown in Fig. 18a. In Fig. 17b, the dynamic
meshing forces for Jl = 0.03835, 0.1243 kgm2 all
reached zero, and the amplitude of dynamic meshing
force for 0.1243 kgm2 is larger. Though Jl = 0.03835,
0.1243 kgm2 are obtained by setting the natural fre-
quency as 620.3 Hz when the single-pair and mean
meshing stiffness are used, respectively, the amplitudes
of dynamic meshing force for these two values are
smaller than 0.01 kgm2 which is obtained by simu-

lating trial to get the maximal amplitude of dynamic
meshing force.

In a summary, when the phase orbit is similar to
that of the period doubling motion, the main frequency
component of the dynamicmeshing force is 2 fm,where
fm is meshing frequency, while, when the phase orbit
is similar to that of the period motion, the main fre-
quency component of the dynamic meshing force is
fm. The dynamic meshing force can act as excitation
source, causing system resonance. The parameters val-
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Table 4 The values of Jl leading the natural frequency of 620.3 Hz

Meshing stiffness Jl(kgm2) 1st order natural
frequency (Hz)

2nd order natural
frequency (Hz)

3rd order natural
frequency

4th order natural
frequency

Single-pair 0.03835 0 620.3 1986.9 4505

Mean 0.1243 0 620.3 2089.1 4550.3

Double-pair 0.3525 0 620.3 2143.6 4578.9
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Fig. 18 The phase orbits (a) and dynamic meshing forces (b) for different value of Jl leading the natural frequency of 620.3 Hz

ues obtained with single-pair, mean, and double-pair
meshing stiffness should all be paid attention to when
the system resonance parameters are searching.

5 Conclusion

(1) A kind of trajectory-based stability preserving
dimension reduction (TSPDR) methodology is
proposed to investigate nonlinear dynamic charac-
teristics of the gear-motor system. In the TSPDR
methodology herein, the CCCOI-RM is chosen
and the stability margins are specially defined
for distinguishing the stable motion modes of the
motor-gear system, to make the TSPDR method-
ology be used in the nonlinear analysis of the gear-
motor system.

(2) Based on the proposed TSPDR methodology, the
critical values are obtained for alteration of dif-
ferent motion modes, and the nonlinear character-
istics of each motion modes are analyzed. When
the phase orbit is similar to that of the period dou-
bling motion, the main frequency component of
the dynamic meshing force is 2 fm, where fm is
meshing frequency, while, when the phase orbit is

similar to that of the period motion, the main fre-
quency component of the dynamic meshing force
is fm. The fluctuation of dynamic meshing force
is lower and the fluctuation energy are scattered
among the frequency components, if the phase
orbits are other shapes in this investigation.

(3) Combined with modal analysis, the relationship
between the stability and resonance of the gear-
motor system is revealed. The dynamic meshing
force can act as excitation source, causing sys-
tem resonance. However, the motor-gear system
is different from the generic linear system in the
aspect that the resonancemayhappen at the natural
frequency calculated with single-pair, mean, and
double-pair meshing stiffness and its neighbor-
ing frequency. Therefore, all the parameters values
obtained with single-pair, mean, and double-pair
meshing stiffness should be paid attention to when
the system resonance parameters are searched.
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