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Abstract In the present work, we observe the dynam-
ical behavior of nonlinear and supernonlinear traveling
waves for Sharma–Tasso–Olver (STO) equation. Exact
solutions are derived using 1/G

′
expansion and modi-

fied Kudryashov methods. The wave transformation is
used to transform STO equation into an ordinary differ-
ential equation. Combining Runge–Kutta fourth-order
and Fourier spectral technique, we use a mixed scheme
for the numerical study of STO equation. Since spec-
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tralmethods expand the solution in trigonometric series
resulting into higher-order technique and Runge–Kutta
produces improved accuracy, we extract these qualities
for a mixed scheme. Results so produced are presented
graphically which provide a useful information about
the dynamical behavior. Bifurcation behavior of non-
linear and supernonlinear travelingwaves of STOequa-
tion is studiedwith the help of bifurcation theory of pla-
nar dynamical systems. It is observed that STO equa-
tion supports nonlinear solitary wave, periodic wave,
shock wave, stable oscillatory wave and most impor-
tant supernonlinear periodic wave.
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1 Introduction

Various physical phenomenon occurring around us can
be modeled in the form of nonlinear models [1–3]. So,
nonlinear equations are of utmost importance to study.
While working with these nonlinear models, we come
to know about the underlying process and the impor-
tance of parameters involved which cannot be under-
stood at a cursory look on the model. It is important to
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observe that a completely integrable nonlinear model
equation has extensive practical application from both
mathematical and physical point of view [4,5]. In addi-
tion to this, the study of nonlinear and supernonlinear
traveling waves [6], solitons, water waves and shock
waves, etc., has experienced a revolution over past few
decades. For a complete scenario of a model equation,
the qualitative behavior of the model equation is very
important along with the exact traveling wave solu-
tions. Recently, the qualitative behavior of a singular
nonlinear equation of second class was studied and suf-
ficient conditions were established for the existence of
propagation wave solutions [7,8]. In 2012, the bifurca-
tion analysis of KP–MEW equation was reported [9].

In the present study, we deal with Sharma–Tasso–
Olver (STO) equation of the form

ut + a
(
u3

)
x

+ b
(
u2

)
xx

+ cuxxx = 0, (1)

which is an odd ordered hierarchy of the well-known
Burger’s equation which produces shock wave solu-
tions [10].

In the recent years, many researchers tried to explore
Eq. (1) in various directions which include the frac-
tional sub-equation method [11], first integral method
[12], the sine–cosinemethod [13], Lucas Ricatti expan-
sion method [14], etc. Also, many researchers used
variety of transformations like Cole–Hopf transfor-
mation, fractional complex transform [15] and Dar-
boux transformation [16,17]. In addition to this, using
Hirota’s direct method, fission and fusion of solitary
wave solutions are obtained by using Bäcklund trans-
formation [16,18]. While coming to the higher dimen-
sional studies, we come across [19,20]. During the lit-
erature survey of STO equation, limited detail on the
solution schemes based on 1/G

′
expansion method,

Kudryashov method, Runge–Kutta fourth-order and
Fourier spectral scheme is available. Also, there is
hardly any study performed on the behavior of nonlin-
ear and supernonlinear traveling waves for STO equa-
tion (1).

In the present study, we make several investigations
to have a detailed study of the nature of solutions so
obtained. Our study includes 1/G

′
expansion method,

Kudryashov method, Runge–Kutta fourth-order and
Fourier spectral scheme. All these have been detailed
in the proceeding sections. Furthermore, we investigate
the bifurcation behavior of nonlinear and supernonlin-

ear travelingwaves of STO equation (1) applying bifur-
cation theory of planar dynamical systems [21–23].

This paper is organized as: After introductory part,
Sect. 2 is dedicated to exact solutions of STO equation
in hand. This part includes 1/G

′
expansion method

and modified Kudryashov method. In Sect. 3, we
obtain components of conservation law using multi-
plier method. After having an analytical view, we pro-
ceed for the numerical aspect in Sect. 4. In Sect. 5, we
study bifurcation behavior of traveling wave solutions
of STO equation. In Sect. 6, final conclusion is drawn
followed by the list of references used for the study.

2 Exact solutions of Sharma–Tasso–Olver
equation

We consider Sharma–Tasso–Olver (STO) equation (1)
for the calculation of the exact solution with 1/G

′

expansion method [24] and modified Kudryashov
method [25]. We apply the wave transformation of the
form ξ = x − vt on Eq. (1). This will transform the
nonlinear STO equation into another nonlinear ODE as
given below

−vu′ + 3au2u′ + 2b
(
u′)2 + 2buu′′ + cu′′′ = 0. (2)

2.1 1/G
′
expansion method

Using balance equationmethod we obtainm = 1. Now
the solution will take the following form

u(ξ) = u = a0 + a1

(
1

G ′

)
, (3)

where a0 and a1 are the constants to be determine and
1/G

′
is expressed as

1

G ′ = λ

−μ + λc1 [cosh (λξ) − sinh (λξ)]
, (4)

where c1, λ and μ are constants. Also, G
′
satisfy the

differential equation

G
′′ = −μ − λG

′
. (5)

Substituting the values of u and its derivatives in Eq.
(2) and comparing the different powers of 1/G

′
, we
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obtain the following system

(
1

G ′

)4

: 3aa31μ + 6ba21μ
2 + 6ca1μ

3 = 0,

(
1

G ′

)3

: 3aa31λ + 6aa0a
2
1μ

+ 10ba21μλ + 4a0a1bμ
2 + 12a1cλμ2 = 0,

(
1

G ′

)2

: 6aa0a12λ + 4ba1
2λ2 − a1μ

+ 3aa20a1μ + 6ba0a1μλ + 7ca1μλ2 = 0,(
1

G ′

)
: −a1vλ + 3aa20a1λ

+ 2ba0a1λ
2 + ca1λ

3 = 0. (6)

Solving the above system, we obtain
Set 1:

a0 = λ(−b + √
b2 − 2ac)

2a
, (7)

a1 = μ(−b + √
b2 − 2ac)

a
, (8)

v = λ2(b2 − ac − b
√
b2 − 2ac)

2a
, (9)

Set 2:

a0 = −λ(b + √
b2 − 2ac)

2a
, (10)

a1 = −μ(b + √
b2 − 2ac)

a
, (11)

v = λ2(b2 − ac + b
√
b2 − 2ac)

2a
, (12)

Now putting the values of a0, a1 and v in Eq. (3), we
get

From set 1:

u1 = λ(−b + √
b2 − 2ac)

2a

+
[

μ(−b + √
b2 − 2ac)

a

] (
1

G ′

)
, (13)

where

1

G ′ = λ

−μ+λc1[cosh(λ(x − vt))−sinh(λ(x−vt))] ,
(14)

and

v = λ2(b2 − ac − b
√
b2 − 2ac)

2a
. (15)

From set 2:

u2 = −λ(b + √
b2 − 2ac)

2a

−
[

μ(b + √
b2 − 2ac)

a

](
1

G ′

)
, (16)

where

1

G ′ = λ

−μ+λc1[cosh(λ(x − vt))−sinh(λ(x−vt))] ,
(17)

and

v = λ2(b2 − ac + b
√
b2 − 2ac)

2a
. (18)

The 3D surfaces of the solution Eq. (13) are showed
for different values of λ in Fig. 1.

2.2 Modified Kudryashov method

Using balance equation method, we obtain m = 1.
Therefore, solution will take the form as

u(ξ) = a0 + a1Q (ξ) . (19)

Substitute Eq. (19) in Eq. (2) and equating the coeffi-
cients of different powers of Q (ξ), it gives

[Q (ξ)]1 : −3aa20a1 (ln σ)

+ 2a0a1b (ln σ)2 − (ln σ)3 a1c + a1v (ln σ) = 0,

[Q (ξ)]2 : 3aa20a1 (ln σ)

− 6aa0a
2
1 (ln σ) − 6a0a1b (ln σ)2 + 4a21b (ln σ)2

+ 7a1c (ln σ)3 − a1v (ln σ) = 0,

[Q (ξ)]3 : 6aa0a21 (ln σ) − 3aa31 (ln σ)

+ 4a0a1b (ln σ)2 − 10a21b (ln σ)2

− 12a1c (ln σ)3 = 0,

[Q (ξ)]4 : 3aa31 (ln σ) + 6a21b (ln σ)2

+ 6a1c (ln σ)3 = 0. (20)

where σ is a positive constant.
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1794 M. N. Ali et al.

Fig. 1 The 3D surfaces of the solution Eq. (13) for different values of λ, when t = 0, a = −1, b = −3, c = −1, c1 = 10 and μ = 5
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Exact solutions, conservation laws, bifurcation 1795

Fig. 2 The 3D surfaces of
solution Eq. (27) for
different values of d, when
t = 0, a = −1, b = −3,
c = 1 and σ = 5

Fig. 3 The 3D surfaces of
solution Eq. (27) for
different values of d, when
t = 0, a = 1, b = −5,
c = 3 and σ = 2

By solving the above system, we get sets of
unknowns as follows:

Set 1:

v =
(ln σ)

[
b
√

(ln σ)2
(
b2 − 2ac

) + (ln σ)
(
b2 − 2ac

)]

2a
,

(21)

a0 =
b (ln σ) +

√
(ln σ)2

(
b2 − 2ac

)

2a
, (22)

a1 = −
b (ln σ) +

√
(ln σ)2

(
b2 − 2ac

)

a
, (23)

Set 2:

v =
(ln σ)

[
−b

√
(ln σ)2

(
b2 − 2ac

) + (ln σ)
(
b2 − 2ac

)]

2a
,

(24)

a0 =
b (ln σ) −

√
(ln σ)2

(
b2 − 2ac

)

2a
, (25)

a1 =
−b (ln σ) +

√
(ln σ)2

(
b2 − 2ac

)

a
, (26)

Now the exact solutions of the nonlinear equation are:
From set 1:

u1 (ξ) =
b (ln σ) +

√
(ln σ)2

(
b2 − 2ac

)

2a

−
b (ln σ) +

√
(ln σ)2

(
b2 − 2ac

)

a(
1

1 + dσ ξ

)
. (27)

From set 2:

u2 (ξ) =
b (ln σ) −

√
(ln σ)2

(
b2 − 2ac

)

2a

+
−b (ln σ)

√
(ln σ)2

(
b2 − 2ac

)

a(
1

1 + dσ ξ

)
. (28)

where d is a constant.
The 3D surfaces of the solution Eq. (27) are illus-

trated for different values of d in Figs. 2, 3.
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3 Conservation laws with multiplier method

In this section, we study the conservation laws of STO
equation (1) of the form

ut + a
(
u3

)
x

+ b
(
u2

)
xx

+ cuxxx = 0, (29)

with multiplier method [26]. Consider the zeroth order
multiplier of the form �1 (t, x, u). It yields the follow-
ing determining system

(�1)t = 0

(�1)x = 0

(�1)x = 0

(�1)ux = 0

(�1)uxx = 0. (30)

Solution of this system is

�1 (t, x, u) = c1, (31)

where c1 is the arbitrary constant. Hence, the compo-
nents conservation law for Eq. (1) are

ct = u,

cx = au3 + 2buux + cuxx . (32)

4 Fourier transform method

Consider the equation

ut + a(u3)x + b(u2)xx + cuxxx = 0. (33)

initial condition u(x, 0) = f (x).
Here, we are interested to integrate Eq. (33) using

Fourier transforms [27,28]. The Fourier transform for
any w(x), x ∈ R can be defined by

ŵ(ξ) =
∫ ∞

−∞
e−iξ xw(x)dx, ξ ∈ R, (34)

and its inverse can be defined by

w(x) = 1

2π

∫ ∞

−∞
eiξ x ŵ(ξ)dx, x ∈ R. (35)

Here, ŵ(ξ) is the amplitude density of w(x) at wave
number ξ . For simplicity we define the Fourier trans-
form operator by the ŵ(ξ) = F{w} and the inverse
Fourier transform operator by ŵ(x) = F−1{w}(k).
Applying Fourier transform on (33) for the spatial vari-
able, we get

ût + iak

2
(̂u)3 − bk2 (̂u)2 − cik3û = 0, (36)

where F{u} = û. The resulting time-dependent ODE
(36) is a stiff one. To reduce the higher-order linear
term, we again apply the following variable transfor-
mation defining

Û = e−ick3t û. (37)

Here,

e−ick3t ût = Ût + ick3Û . (38)

Thus, with the variable transformation (36) can bewrit-
ten as

Ût + ia

2
e−ick3t k (̂u)3 − be−ick3t k2 (̂u)2 = 0. (39)

With the above-mentioned transformation, we can dis-
cretize Eq. (36) by

Ût + ia

2
e−ick3t kF

[
F−1

(
eick

3t Û
)]3

− be−ick3t k2F
[
F−1

(
eick

3t Û
)]2 = 0, (40)

with the initial function we obtain

F{u(x, 0)} = F{ f (x)}. (41)

Then, we apply standard Runge–Kutta 4 scheme for
differential equation (40) subject to initial condition
(41). Here, one may use any standard implicit/semi-
implicit scheme for time integration. Here, the exact
detail of the Fourier transformations, its accuracy
results and accuracy of time integration schemes are
well known [29–31]. In Fig. 4, we plot the solution of
Eq. (40).

In Fig. 5, we plot the solution of Eq. (40) with a
different set of parameters.
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Fig. 4 u0(x) = sech(10x),
with a = −1, b = −3 and
c = −3

Fig. 5 u0(x) = sech(10x) (left), and u0(x) = (1/2)sech[20(x + 1)] + sech(10x) + .05sech[20(x − 1)] (right) with a = b = c = 3

5 Bifurcation behavior

In this section, we study bifurcation behavior of nonlin-
ear and supernonlinear traveling waves of STO equa-
tion (1). For this purpose, we have transformed STO
equation (1) to an ordinary differential equation (2)
using traveling wave transformation ξ = x−vt , where
v is the velocity of the traveling wave in the positive
direction of the x-axis. Then, integrating equation (2)
with respect to ξ , one can obtain

−vu + au3 + 2buu′ + cu′′ = 0. (42)

System (42) can be expressed as a nonlinear planar
dynamical system given by

{
u′ = z,
z′ = 1

c u(v − au2) − 2b
c uz.

(43)

It is important to note that phaseportraits of a dynamical
system can vary significantly depending on the number
of equilibrium points and number of enveloped sepa-
ratrix layers [6]. Any orbit in the phase portrait of a
dynamical system represents one wave solution for the
corresponding nonlinear evolution equation. For clas-
sification of different orbits in the phase portrait, we use
following notations: SNPOm,n for supernonlinear peri-

odic orbit [6], NHOm,n for nonlinear homoclinic orbit,
and NHTOm,n for nonlinear heteroclinic orbit, where
m is the number of equilibrium points enveloped by the
orbit and n is the number of separatrix layers enveloped
by the orbit.

The bifurcation theory of planar dynamical systems
[21–23] plays an important role in the study of nonlin-
ear dynamical system (43). Let u(ξ) be a continuous
solution of (1) for ξ ∈ R with limξ→+∞ u(ξ) = α and
limξ→−∞ u(ξ) = β. Then, u(ξ) is called a nonlinear
solitary wave solution if α = β. In general, a solitary
wave solution of system (1) corresponds to a nonlin-
ear homoclinic orbit (NHO1,0) of nonlinear dynamical
system (43). A nonlinear periodic orbit (NPO1,0) of
nonlinear dynamical system (43) corresponds to a non-
linear periodic traveling wave solution of system (1). A
supernonlinear periodic orbit (SNPOm,n) of nonlinear
dynamical system (43) corresponds to a supernonlinear
periodic traveling wave solution of system (1). Hence
for the investigation of all possible bifurcations of non-
linear solitary waves, nonlinear shock wave, nonlin-
ear periodic waves and supernonlinear periodic waves
of nonlinear system (1), we need to find all nonlinear
homoclinic orbits, nonlinear periodic orbits, nonlinear
heteroclinic orbits and supernonlinear periodic orbits of
nonlinear dynamical system (43), which depend on the
parameters a, b, c and v involved in system (43).When
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Fig. 6 Phase portraits of nonlinear dynamical system (43) for a a = 0.2, b = 0.02, c = 0.3, v = 0.2, and b a = 0.2, b = 0.02, c =
−0.3, v = 0.2

Fig. 7 Phase portraits of nonlinear dynamical system (43) for a a = 0.2, b = 0, c = 0.3, v = 0.2, and b a = 0.2, b = 0, c =
−0.3, v = 0.2

a > 0, then there exist three equilibrium points of non-
linear dynamical system (43) at E0(u0, 0), E1(u1, 0),

and E2(u2, 0),withu0 = 0,u1 =
√

v
a , andu2 = −

√
v
a .

Let M(ue, ze) be the coefficient matrix of the lin-
earized system of (43) at an equilibrium point (ue, ze).
Also let J =det(M(ue, ze)),T1 =trace(M(ue, ze)) and
T2 = (trace(M(ue, ze)))2. Then, (ue, ze) is a saddle
point if J < 0, a center point if J > 0, T1 = 0, a cusp
if J = 0 and Poincaré index of (ue, ze) is zero, a node
if J > 0 and T2 − 4J > 0.

Based on the above qualitative analysis, we present
all possible phase portraits of nonlinear dynamical sys-
tem (43) in Figs. 6 and 7 and all possible traveling

wave solutions of STO equation (1) in Figs. 8, 9 and
10. In Fig. 6a, we depict phase portrait of the nonlinear
dynamical system (43) for a = 0.2, b = 0.02, c = 0.3
and v = 0.2. This phase portrait contains a family of
supernonlinear periodic orbits (SNPO3,1) which enve-
lope three equilibrium points E0(u0, 0), E1(u1, 0), and
E2(u2, 0), where E0(u0, 0) is a saddle point and there
are two stable spirals at E1(u1, 0), and E2(u2, 0). There
is also a nonlinear homoclinic orbit (NHO2,0) at the
equilibrium point E0(u0, 0) enclosing the stable spi-
rals at E1(u1, 0), and E2(u2, 0). In Fig. 6b, phase por-
trait of nonlinear dynamical system (43) is shown for
a = 0.2, b = 0.02, c = −0.3 and v = 0.2. This phase
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Fig. 8 a Supernonlinear periodic wave, and b stable oscillatory wave of STO equation (1) with same parametric values as Fig. 6a

Fig. 9 a Supernonlinear periodic wave, and b nonlinear periodic wave of STO equation (1) with same parametric values as Fig. 7a

portrait contains a pair of nonlinear heteroclinic orbits
(NHTO1,0) joining two saddle points E1(u1, 0) and
E2(u2, 0). Furthermore, this pair of NHTO1,0 enve-
lope the center E0(u0, 0) surrounded by a family of
nonlinear periodic orbits (NPO1,0).

In Fig. 7a, we manifest phase portrait of the nonlin-
ear dynamical system (43) for a = 0.2, b = 0, c = 0.3
and v = 0.2. This phase portrait contains a fam-
ily of supernonlinear periodic orbits (SNPO3,1) which
envelope three equilibrium points E0(u0, 0), E1(u1, 0)
and E2(u2, 0), where E0(u0, 0) is a saddle point and
E1(u1, 0) and E2(u2, 0) are centers. There is also a
pair of nonlinear homoclinic orbits (NHO1,0) at sad-
dle point E0(u0, 0) surrounding the centers E1(u1, 0)

and E2(u2, 0). Furthermore, there are two families
of nonlinear periodic orbits (NPO1,0) about centers
E1(u1, 0), and E2(u2, 0). In Fig. 7b, phase portrait
of the nonlinear dynamical system (43) is shown for
a = 0.2, b = 0, c = −0.3 and v = 0.2. This phase
portrait contains a pair of nonlinear heteroclinic orbits
(NHTO1,0) joining two saddle points E1(u1, 0) and
E2(u2, 0). Furthermore, this pair of NHTO1,0 envelope
the center E0(u0, 0) which is surrounded by a family
of nonlinear periodic orbits (NPO1,0).
InFig. 8a, b,we showsupernonlinear periodicwave and
nonlinear periodic wave of STO equation (1) with same
parametric values as Fig. 7a corresponding to the super-
nonlinear periodic orbit (SNPO3,1) enveloped three
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Fig. 10 a Shock waves, and b nonlinear periodic wave of STO equation (1) with same parametric values as Fig. 7b

equilibrium points E0(u0, 0), E1(u1, 0) and E2(u2, 0),
and stable spiral at the equilibrium point E1(u1, 0) of
dynamical system (43) in the phase portrait Fig. 6a.
In Fig. 9a, b, we present supernonlinear periodic wave
and stable oscillatorywave of the Sharma–Tasso–Olver
(STO) equation (1) with same parametric values as
Fig. 7a corresponding to the supernonlinear periodic
orbit (SNPO3,1) enveloped three equilibrium points
E0(u0, 0), E1(u1, 0) and E2(u2, 0), and nonlinear peri-
odic orbit about the equilibrium point E1(u1, 0) of the
dynamical system (43) in the phase portrait Fig. 7a.
In Fig. 10a, b, we manifest nonlinear shock waves and
nonlinear periodic wave of STO equation (1) with same
parametric values as Fig. 7b corresponding to the non-
linear heteroclinic orbits (NHTO1,0) joining the equi-
librium points E1(u1, 0) and E2(u2, 0) enveloped the
equilibrium point E0(u0, 0), and nonlinear periodic
orbit (NPO1,0) about the equilibrium point E0(u0, 0)
of the dynamical system (43) in the phase portrait Fig.
7b.

6 Conclusion

In this work, we applied 1/G
′
expansion and modified

Kudryashov method in a satisfactory way to get the
exact solutions of Sharma–Tasso–Olver equation. For
numerical analysis, we combined Runge–Kutta fourth-
order and Fourier spectral technique and developed a
mixed scheme for the numerical study of STO equa-
tion. Since spectral methods expand the solution in

trigonometric series resulting into higher-order tech-
nique and Runge–Kutta produces improved accuracy,
we extract these qualities for a mixed scheme. Graphi-
cal and numerical consequences are introduced to fetch
the useful information about the dynamical behavior of
the Sharma–Tasso–Olver equation. From the output,
we observe that the scheme is quite simple and effec-
tive which can be further used to handle a variety of
other nonlinear problems. Using bifurcation theory of
planar dynamical systems, we successfully studied the
bifurcation behavior of nonlinear and supernonlinear
traveling waves of STO equation through numerical
simulation. It was seen that STO equation underpins
nonlinear solitary wave, periodic wave, shock wave,
stable oscillatory wave and most paramount two types
of supernonlinear periodic waves.

Compliance with ethical standards

Conflict of interest The authors declare that they have no con-
flict of interest concerning the publication of this manuscript.

References

1. Ak, T., Triki, H., Dhawan, S., Bhowmik, S.K., Moshokoa,
S.P., Ullah, M.Z., Biswas, A.: Computational analysis of
shallow water waves with Korteweg–de Vries equation. Sci.
Iran. (2017). https://doi.org/10.24200/SCI.2017.4518

2. Ak, T., Dhawan, S.: A practical and powerful approach to
potential KdV and Benjamin equations. Beni-Suef Univ. J.
Basic Appl. Sci. 6(4), 383–390 (2017)

123

https://doi.org/10.24200/SCI.2017.4518


Exact solutions, conservation laws, bifurcation 1801

3. Ak, T., Dhawan, S., Karakoc, S.B.G., Bhowmik, S.K.,
Raslan, K.R.: Numerical study of Rosenau–KdV equation
using finite element method based on collocation approach.
Math. Modell. Anal. 22(3), 373–388 (2017)

4. Yan, Z.-Y., Zhang, H.-Q.: Symbolic computation and new
families of exact soliton-like solutions to the integrable
Broer–Kaup (BK) equations in (2+ 1)-dimensional spaces.
J. Phys. A Math. Gen. 34, 1785–1792 (2001)

5. Daghan, D., Donmez, O.: Exact solutions of the Gardner
equation and their applications to the different physical plas-
mas. Braz. J. Phys. 46(3), 321–333 (2016)

6. Dubinov, A.E., Kolotkov, DYu., Sazonkin, M.A.: Supernon-
linear waves in plasma. Plasma Phys. Rep. 38(10), 833–844
(2012)

7. Nguetcho, A.S.T., Jibin, L., Bilbault, J.M.: Bifurcations of
phase portraits of a singular nonlinear equation of the second
class. Commun. Nonlinear Sci. Numer. Simul. 19(8), 2590–
2601 (2014)

8. Jiang, B., Lu, Y., Zhang, J., Bi, Q.: Bifurcations and some
new traveling wave solutions for the CH-γ equation. Appl.
Math. Comput. 228, 220–233 (2014)

9. Saha, A.: Bifurcation of travelling wave solutions for the
generalized KP–MEW equations. Commun. Nonlinear Sci.
Numer. Simul. 17(9), 3539–3551 (2012)

10. Dhawan, S., Kapoor, S., Kumar, S., Rawat, S.: Contempo-
rary review of distinguish simulation process for the solution
of nonlinear Burgers equation. J. Comput. Sci. 3(5), 405–
419 (2012)

11. Zhang, S., Zhang, H.-Q.: Fractional sub-equation method
and its applications to nonlinear PDEs. Phys. Lett. A 375(7),
1069–1073 (2011)

12. Lu, B.: The first integral method for some time fractional
differential equations. J. Math. Anal. Appl. 395(2), 684–693
(2012)

13. Wazwaz, A.-M.: A sine–cosine method for handling nonlin-
ear wave equations. Math. Comput. Modell. 40(5–6), 499–
508 (2004)

14. Abdel-Salam, E.A.B.: Quasi-periodic, periodic waves, and
soliton solutions for the combined KdV–mKdV equation. Z.
Naturforschung 64a, 639–645 (2009)

15. He, J.-H., Elagan, S.K., Li, Z.B.: Geometrical explanation
of the fractional complex transform and derivative chain rule
for fractional calculus. Phys. Lett. A 376(4), 257–259 (2012)

16. Chen, A.:Multi-kink solutions and soliton fission and fusion
of Sharma–Tasso–Olver equation. Phys. Lett. A 374(23),
2340–2345 (2010)

17. Ablowitz, M.A., Clarkson, P.A.: Solitons, Nonlinear Evolu-
tion Equations and Inverse Scattering. Cambridge Univer-
sity Press, Cambridge (1991)

18. Wang, S., Tang, X.-Y., Lou, S.-Y.: Soliton fission and fusion:
Burgers equation and Sharma–Tasso–Olver equation. Chaos
Solitons Fractals 21(1), 231–239 (2004)

19. Wazwaz,A.-M., El-Tantawy, S.A.:New (3+1)-dimensional
equations of Burgers type and Sharma–Tasso–Olver type:
multiple-soliton solutions. Nonlinear Dyn. 87, 2457–2461
(2017)

20. Wazwaz, A.-M.: New (3+ 1)-dimensional nonlinear evolu-
tion equations with Burgers and Sharma–Tasso–Olver equa-
tions constituting the main parts. Proc. Rom. Acad. Ser. A
16, 32–40 (2015)

21. Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations,
Dynamical Systems, and Bifurcations of Vector Fields.
Springer, New York (1983)

22. Saha, A.: Bifurcation, periodic and chaotic motions of
the modified equal width-Burgers (MEW-Burgers) equation
with external periodic perturbation. Nonlinear Dyn. 87(4),
2193–2201 (2017)

23. Chow, S.-N., Hale, J.K.: Methods of Bifurcation Theory.
Springer, New York (1981)

24. Daghan, D., Donmez, O.: Exact solutions of Gardner equa-
tion and their application to the different physical plasma.
Braz. J. Phys. 46(3), 321–333 (2016)

25. Hosseini, K., Ansari, R.: New exact solutions of nonlin-
ear conformable time-fractional Boussinesq equations using
the modified Kudryashovmethod.Waves RandomComplex
Media 27(4), 628–636 (2017)

26. Anco, S.C., Bluman,G.:Direct constructionmethod for con-
servation laws of partial differential equations. Part I: exam-
ples of conservation law classifications. Eur. J. Appl. Math.
13(5), 545–566 (2002)

27. Bhowmik, S.K.: Stability and convergence analysis of a one
step approximation of a linear partial integro-differential
equation. Numer. Methods Partial Differ. Equ. 27(5), 1179–
1200 (2011)

28. Bhowmik, S.K.: Stable numerical schemes for a partly con-
volutional partial integro-differential equation. Appl. Math.
Comput. 217(8), 4217–4226 (2010)

29. Bhowmik, S.K., Stolk, C.C.: Preconditioners based on win-
dowed fourier frames applied to elliptic partial differen-
tial equations. J. Pseudo Differ. Oper. Appl. 2(3), 317–342
(2011)

30. Mallat, S.: A Wavelet Tour of Signal Processing, 3rd edn.
Academic Press, Cambridge (2008)

31. Trefethen, L.N.: Spectral Methods inMATLAB. Society for
Industrial and Applied Mathematics, Philadelphia (2000)

123


	Exact solutions, conservation laws, bifurcation of nonlinear and supernonlinear traveling waves for Sharma–Tasso–Olver equation
	Abstract
	1 Introduction
	2 Exact solutions of Sharma–Tasso–Olver equation
	2.1 1/G expansion method
	2.2 Modified Kudryashov method

	3 Conservation laws with multiplier method
	4 Fourier transform method
	5 Bifurcation behavior
	6 Conclusion
	References




