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Abstract This paper first formulates a Hamiltonian
system with hyperchaotic phenomena and investigates
the equilibrium point and double Hopf bifurcation of
the system. We obtain the result that the Hamiltonian
system has hyperchaotic behaviors when any system
parameter varies. The influences of holonomic con-
straint and nonholonomic constraint on the equilib-
rium points, invariance and the hyperchaotic state of
the Hamiltonian system are then studied. Finally, we
achieve the hyperchaotic control of the Hamiltonian
system by introducing the constraint method. The stud-
ies indicate that the constraint can not only change the
Hamiltonian system fromhyperchaotic state to periodic
state or chaotic state, but also make the Hamiltonian
system become globally asymptotically stable. Numer-
ical simulations, including Lyapunov exponents, bifur-
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cation diagrams, Poincaré maps and phase portraits for
systems, exhibit the complex dynamical behaviors.
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1 Introduction

The Hamiltonian system is a very important dynamical
system in physics, mechanics, life sciences and engi-
neering applications, wheremanyHamiltonian dynam-
ical models have emerged in recent years [1–5]. Since
many systems can be written in a Hamiltonian form
easily, the Hamiltonian systems have been investigated
widely in mechanics, mathematics and engineering
applications and many remarkable research results are
obtained, such as Refs. [6–10]. Recently, the chaotic
behaviors of Hamiltonian systems have attracted many
scientists and have been introduced to almost every
field of natural science [11–14]. Chaos is a universal
phenomenon of nature. Study on chaos is in the front
field of nonlinear systems. Nowadays, we can observe
a growing interest in the higher-dimensional dynamical
systems as a result of extensive studies of the chaotic
systems. Any system containing at least one positive
Lyapunov exponent is defined to be hyperchaotic [15].
The Lyapunov exponents are the average exponential
rates of divergence or convergence of nearby trajecto-
ries in the phase space. It means that hyperchaotic sys-
tems generate much more complex dynamical behav-
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iors compared with chaotic systems [16]. Chaos has
two sides in practice. On the one hand, the chaos is
useful in image encryption scheme [17], secure key
distribution [18] and secure communications [19]. On
the other hand, the chaos is harmful in vehicles vibra-
tion [20], permanent magnet synchronous machine
[21] and complex networks with disturbances [22].
Therefore, it is necessary to control chaos accord-
ing to the actual needs of different disciplines and
fields. Based on different strategies, variousmethods of
chaos control are proposed, such as parameter switch-
ing algorithm for the Hastings-Pouwll system [23],
the decreasing-impulse-induced chaos-controlling sce-
nario in starlike networks [24] and the state feedback
control strategy and pole-placement technique for a
modified Nicholson-Bailey model [25].

Compared to a chaotic system, the hyperchaotic sys-
tem has better application prospects when the chaos is
useful in practical application. For instance, the appli-
cation of hyperchaotic system can make the informa-
tionmore secure [26–28]. In recent years, it has become
a hot spot to formulate and investigate the hyperchaotic
system because of its useful applications, and various
hyperchaotic systems were discovered and studied. For
example, Ma and his cooperators [29] proposed a time-
varying hyperchaotic system by introducing change-
able electric power source into circuit. Jajarmi et al. [30]
constructed a hyperchaotic financial system by adding
a new state variable into a three-dimensional chaotic
economic model. Based on the four-dimensional Rabi-
novich differential system [31], He et al. formulated a
fractional-order hyperchaotic Rabinovich system and
discussed the hyperchaos control of the system by
using the linear feedback control and the active control
method [32]. In this paper, we will propose a hyper-
chaotic Hamiltonian system through the Hamiltonian
function and discuss the influences of holonomic con-
straint and nonholonomic constraint on the Hamilto-
nian system behaviors. Furthermore, we will achieve
the hyperchaotic control of the Hamiltonian system by
introducing the constraint method, which is different
from the methods in Refs. [23–25,32].

The organization of this paper is as follows. In
Sect. 2, we formulate a hyperchaotic Hamiltonian sys-
tem. The invariance, the type of equilibrium points,
double Hopf bifurcation and hyperchaotic behaviors
of the system changing with any system parameter
are analyzed. In Sect. 3, we present a holonomic con-
strained system and a nonholonomic constrained sys-

tem, respectively. By using the methods of Ref. [33]
and Lagrangemultiplier, the explicit equations for con-
strained systems are obtained. The influences of con-
strained parameters on the equilibrium points, sym-
metry and the hyperchaotic behaviors of the Hamilto-
nian system are investigated. In Sect. 4, by introducing
the constraint method, how to control the hyperchaotic
behavior of theHamiltonian system is studied. The con-
clusions are summarized in Sect. 5.

2 Hyperchaotic Hamiltonian system

2.1 Model

In general, the dynamics of Hamiltonian system with
s degrees of freedom is described by a Hamiltonian
function H(q, p, t), where q = (q1, q2, . . . , qs) is the
generalized coordinate, p = (p1, p2, . . . , ps) is the
canonical momentum and t denotes time. The uncon-
strained Hamilton’s equations are

{
q̇i = ∂H(q,p,t)

∂pi
,

ṗi = − ∂H(q,p,t)
∂qi

,
(1)

here i = 1, 2, . . . , s. Because of its clear structure
and convenience of use, the Hamiltonian function has
been widely used to represent physical processes and
physical phenomena, such as the dynamical motion of
Rydberg atoms in the crossed magnetic and electric
fields [34], the motion of the Foucault pendulum and
Lagrange top [35] and the nonlinear vibration of the
damped and unloaded cylindrical shells [36].

In this subsection, we assume that the Hamiltonian
system is described by a function

H(q, p, t) = p21 + p22 − θq21 − θq22
2

+ β(q41 + q42 )

4
+ ηq1

(
q2 − ηq1

2

)
.

Then, according to (1), the Hamiltonian system can be
obtained⎧⎪⎪⎨
⎪⎪⎩
q̇1 = p1,
q̇2 = p2,
ṗ1 = θq1 − βq31 − ηq2 + η2q1,
ṗ2 = θq2 − βq32 − ηq1,

(2)

where θ ,β,η are positive parameters. The dot expresses
the derivative with respect to t .
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Obviously, system (2) is invariant for the coordinate
transformation

(q1, q2, p1, p2) → (−q1,−q2,−p1,−p2).

It is easy to visualize that system (2) always has the
equilibrium point E0 = (0, 0, 0, 0). The Jacobian
matrix at E0 is

J(E0) =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

θ + η2 −η 0 0
−η θ 0 0

⎞
⎟⎟⎠ .

The characteristic equation of J(E0) is

λ4 − (2θ + η2)λ2 + θ2 + θη2 − η2 = 0.

Based on computation results, the roots of the charac-
teristic equation are

λ1,2 = ±
√
2θ + η2 + η

√
η2 + 4

2
,

(λ3,4)
2 = 2θ + η2 − η

√
η2 + 4

2
.

Thus, E0 is an unstable equilibrium point. In addition,

E0 is a saddle point when
2θ+η2

η
√

η2+4
> 1, and a saddle-

center point when 2θ+η2

η
√

η2+4
< 1. System (2) also has

equilibria E j = (q j1, q j2, 0, 0) , when(
θ

η2
+ 1 − βq2j1

η2

)(
θ − βq2j2

)
= 1.

It can be seen that there aremultiple equilibriumpoints;
those points meet the condition. For the equilibria E j ,
the Jacobian matrix is

J(E j ) =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

θ − 3βq2j1 + η2 −η 0 0
−η θ − 3βq2j2 0 0

⎞
⎟⎟⎠ .

By using |λI− J(E j )| = 0, the characteristic equation
of J(E j ) is obtained as follows:

f (λ) = λ4 + a2λ
2 + a0,

where

a2 = 3βq2j1 + 3βq2j2 − 2θ − η2,

a0 = 6β2q2j1q
2
j2 + 2η2 − 2θ(θ + η2).

Thus,

λ2 = 2θ + η2 − 3βq2j1 − 3βq2j2 ± √
δ

2
,

where

δ = 4η2 +
(
η2 − 3β

(
q2j1 − q2j2

))2
.

For the equilibrium point E j , by analysis and calcu-
lation, we obtain

(I) E j is a saddle-center point, when
6β2q2j1q

2
j2

2θ(θ+η2)
< 1,

(II) E j is a saddle point, when
6β2q2j1q

2
j2

2θ(θ+η2)
> 1 and

3β(q2j1+q2j2)

2θ+η2
< 1,

(III) the double Hopf bifurcation will occur at E j of

system (2), when
6β2q2j1q

2
j2

2θ(θ+η2)
> 1 and

3β(q2j1+q2j2)

2θ+η2
> 1.

Thus, E j is unstable in the case of (I), (II) and the
system exhibits equilibrium center. In the case of (III),
f (λ) has two paris of conjugate purely imaginary roots

λ1,2 = ±
√

−2θ − η2 + 3β(q2j1 + q2j2) + √
δ

2
i,

λ3,4 = ±
√

−2θ − η2 + 3β(q2j1 + q2j2) − √
δ

2
i.

From the above analyses, we can see that system (2)
may have many equilibria and they almost are unsta-
ble. In chaos theory, the equilibrium points of the sys-
tem are of great importance to understand its nonlinear
dynamics [37]. It has been long supposed that the exis-
tence of chaotic behavior in the microscopic motions is
responsible for their equilibrium and non-equilibrium
properties [38]. Meanwhile, the double Hopf bifurca-
tion indicates the possible existence of a chaotic attrac-
tor [39]. Therefore, it is necessary to further analyze
the complex behaviors of the Hamiltonian system.

2.2 Hyperchaos and simulation

Because there is large difficulty in theory analysis of
hyperchaotic phenomena [40], we give some simula-
tions to study system (2). In this subsection, we com-
pute the Lyapunov spectrum and bifurcation diagram
to explore the complex dynamics of system (2) using
MATLAB. In order to show hyperchaotic phenomenon
of system (2), by taking the parameters

θ = 1, η = 0.01, β ∈ (0.1, 10),

and initial values

(q10, q20, p10, p20) = (1, 0.1, 0.01, 0.001).
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Fig. 1 Surface of (q j1, q j2, β)

In this case, eigenvalues of J(E0) are

λ1,2 = ± 0.9913271003, λ3,4 = ± 1.008647897.

E0 is an unstable equilibrium point. According to the
discussion of nonzero equilibrium point in Sect. 2.1,
q j1, q j2 and β satisfy F(q j1, q j2, β) = 0, where

F(q j1, q j2, β) = βq2j1q
2
j2 − q2j1 − 1.0001βq2j2 + 1.

Tomore directly illustrate the relationship between q j1,
q j2 and β, the (q j1, q j2) of rest equilibrium points with
different β are on the surface in Fig. 1. It shows the
distribution of q j1, q j2 under different parameter β.

To study equilibria E j , we transform the last two
equations of (2) into

βq2j1 = θ + η2 − η
q j2

q j1
, βq2j2 = θ − η

q j1

q j2
,

then

a2 = 4θ + 2η2 − 3η

(
y + 1

y

)
,

a0 = 6

(
θ + η2 − η

y

)
(θ − ηy) + 2η2 − 2θ(θ + η2),

where y = q j1
q j2

and satisfies

ηy4 − θy3 +
(
θ + η2

)
y − η = 0.

When θ = 1, η = 0.01, the results of the direct calcu-
lations are as follows:

Fig. 2 Lyapunov exponents of (2) by adjusting β

y1 = 0.0099999999, a2 = 0.99989997, a0 = − 1.9994;
y2 = 1.000051019, a2 = 3.9402, a0 = 3.881193999;
y3 = 99.989998, a2 = 1.00020003, a0 = − 1.99939988;
y4 = − 1.000049018, a2 = 4.0602, a0 = 4.121206.

Hence, there are saddle-center equilibrium points and
double Hopf bifurcations in system (2) under certain
conditions of β. For example, if β = 1.131, then

(− 0.9403048916,− 0.9403989503, 0, 0),

(0.9403048916, 0.9403989503, 0, 0),

(− 0.00940257,− 0.9402578799, 0, 0),

(0.00940257, 0.9402578799, 0, 0)

are saddle-center equilibrium points, and the system
occurs double Hopf bifurcations at

(− 0.93563905,− 0.9355913178, 0, 0),

(0.93563905, 0.9355913178, 0, 0),

(− 0.94504128, 0.9449949547, 0, 0),

(0.94504128,− 0.9449949547, 0, 0).

In the same way, system (2) still has the equilibrium
points which satisfy the one of (I), (II) and (III) under
certain conditions of θ or η.

Any system with more than two positive Lya-
punov exponents is defined to be hyperchaotic [15,41].
The Lyapunov exponents of system (2) with different
parameters β are displayed in Fig. 2. It is shown that
the unconstrained Hamiltonian system has two positive
Lyapunov exponents, which exhibits the hyperchaotic
behavior. From Fig. 2, we can see that two Lyapunov
exponents are positive and negative variations when
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Hyperchaos in constrained Hamiltonian system and its control 1707

Fig. 3 Bifurcation diagram of (2) by adjusting β

parameter β varies in (0.1, 1.735). In particular, the
system has three positive Lyapunov exponents when β

varies in (1.131, 1.735). The Lyapunov exponents and
the bifurcation diagram match very well. The bifur-
cation diagram of system (2) by adjusting parameter
β is shown in Fig. 3, which also indicates the change
of dynamic behaviors of Hamiltonian system (2) with
different parameters β.

Figures 4 and 5 show that the Hamiltonian system
(2) is hyperchaotic when the parameters

β = 1, η = 0.01, θ ∈ (0.1, 10),

and θ = 1, β = 1, η ∈ (0.001, 1), respectively. It
indicates that in system (2), three Lyapunov exponents
and positive and negative variations of Lyapunov expo-
nents in a certain interval of parameter θ or η also occur.
Based on above analysis, we can see that the Hamilto-
nian system is hyperchaotic when any system parame-
ter varies, and the Hamiltonian system has rich hyper-
chaotic behaviors when the system parameter varies in
certain interval.

3 Constrained Hamiltonian system

The constrainedHamiltonian systems havemany appli-
cations, for instance in multi-body dynamics, electri-
cal circuits, molecular dynamics, chemistry and statis-
tical mechanics [42–48]. In the following, we mainly
investigate the hyperchaotic phenomenon in system (2)
under constraint condition.

Fig. 4 Lyapunov exponents of (2) by adjusting θ

Fig. 5 Lyapunov exponents of (2) by adjusting η

3.1 Holonomic constraint

Assume the constraint on Hamiltonian system (2) is

q21 + q22 = L2. (3)

Here, we use the three-step approach of Ref. [33] for
obtaining the explicit equations which are equivalent
to the equations of holonomic Hamiltonian system (2),
(3). Differentiating Eq. (3) with respect to time, we get

φ(q, p) := qpT = 0. (4)

Differentiating Eq. (4) with respect to time, we obtain

ApṗT = bp,
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1708 J. Li et al.

where

Ap = q, bp = −ppT.

The matrix

H−1
pp =

(
∂2H

∂p2

)−1

= I2.

The Hamiltonian system (2) is subjected to the single
constraintφ(q, p) = 0, and the holonomicHamiltonian
system (2), (3) becomes

{
q̇ = ∂H

∂p ,

ṗ = − ∂H
∂q + C(q, p),

(5)

where

C(q, p)T = (I2)−1qT(qI2−1qT)−1

×
(

−ppT + ∂H

∂q
qT

)
.

Then,

C(q, p)T = I2

(
q1
q2

)
(q21 + q22 )

−1
(
−p21 − p22

+ ∂H

∂q

(
q1
q2

))
= 1

L2

(
q1
q2

)
C1(q, p),

where

C1(q, p) = −p21 − p22 − θL2 + βL4 − 2βq21q
2
2

+ 2ηq1q2 − η2q21 .

Thus, the holonomic Hamiltonian system is trans-
formed into⎧⎪⎪⎨
⎪⎪⎩
q̇1 = p1,
q̇2 = p2,
ṗ1 = βL2q1 + η2q1 − ηq2 − P1h(q, p),
ṗ2 = βL2q2 − ηq1 − P2h(q, p),

(6)

where

P1h(q, p) = βq31

+ η2q31 − 2ηq21q2 + p21q1 + p22q1 + 2βq31q
2
2

L2 ,

P2h(q, p) = βq32

+ η2q21q2 − 2ηq1q22 + p21q2 + p22q2 + 2βq21q
3
2

L2 .

It can be seen from (6) that the system is also invariant
for the coordinate transformation

(q1, q2, p1, p2) → (−q1,−q2,−p1,−p2).

The Jacobian matrix J(E0) is⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

βL2 + η2 −η 0 0
−η βL2 0 0

⎞
⎟⎟⎠ .

The eigenvalues of J(E0) are

λ1,2 = ±
√
2βL2 + η2 + η

√
η2 + 4

2

and

(λ3,4)
2 = 2βL2 + η2 − η

√
η2 + 4

2
.

E0 is also an unstable equilibrium point. In addition,
E0 is a saddle point when

2βL2 + η2

η
√

η2 + 4
> 1,

and a saddle-center point when

2βL2 + η2

η
√

η2 + 4
< 1.

Similarly, system (6) exhibits equilibria E j = (q j1,
q j2, 0, 0), when

(2ηq2j2−L2η+2βq3j1q j2)(2ηq2j1 − L2η+2βq j1q3j2)

(β2L4−η4)q2j1q
2
j2

= 1.

Let

P11(q1, q2)

= −−(βL4 + L2η2)q1 + L2ηq2 + (βL2 + η2)q31 − 2ζ10
L2 ,

P12(q1, q2)

= −−βL4q2 + L2ηq1 + βL2q32 + η2q21q2 − 2ηq j q22 + 2ζ20
L2 .

ζ10 = (η − βq1q2)q
2
1q2, ζ20 = βq21q

3
2 ,

the Jacobian matrix J(E j ) is⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 1

∂P11
∂q1

|(q j1,q j2)
∂P11
∂q2

|(q j1,q j2) 0 0
∂P12
∂q1

|(q j1,q j2)
∂P12
∂q2

|(q j1,q j2) 0 0

⎞
⎟⎟⎟⎠ .

The characteristic equation can be obtained as follows:

λ4 −
(

∂P11
∂q1

∣∣∣∣(q j1,q j2) + ∂P12
∂q2

∣∣∣∣
(q j1,q j2)

)
λ2

+ ∂P11
∂q1

∣∣
(q j1,q j2)

×∂P12
∂q2

∣∣∣∣
(q j1,q j2)

− ∂P11
∂q2

∣∣∣∣(q j1,q j2)

∂P12
∂q1

∣∣∣∣
(q j1,q j2)

= 0.
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Then,

2λ2 = ∂P11
∂q1

∣∣∣∣(q j1,q j2) + ∂P12
∂q2

∣∣∣∣
(q j1,q j2)

±
√√√√(

∂P11
∂q1

∣∣∣∣(q j1,q j2) + ∂P12
∂q2

∣∣∣∣
(q j1,q j2)

)2

+ 4ε,

ε = ∂P11
∂q2

∣∣∣∣(q j1,q j2)

∂P12
∂q1

∣∣∣∣
(q j1,q j2)

−∂P11
∂q1

∣∣∣∣(q j1,q j2) × ∂P12
∂q2

∣∣∣∣
(q j1,q j2)

.

Obviously, for the equilibrium point E j of constraint
system (6), we can obtain the conclusions:

(I) E j is a saddle-center point, when ε > 0,
(II) E j is a saddle point, when

ε < 0,
∂P11
∂q1

∣∣∣∣(q j1,q j2) + ∂P12
∂q2

∣∣∣∣
(q j1,q j2)

> 0,

(III) the double Hopf bifurcation occurs at E j of (6),
when

ε < 0,
∂P11
∂q1

∣∣∣∣(q j1,q j2) + ∂P12
∂q2

∣∣∣∣
(q j1,q j2)

< 0

and(
∂P11
∂q1

∣∣∣∣(q j1,q j2) + ∂P12
∂q2

∣∣∣∣
(q j1,q j2)

)2

+ 4ε > 0,

(IV) when(
∂P11
∂q1

∣∣∣∣(q j1,q j2) + ∂P12
∂q2

∣∣∣∣
(q j1,q j2)

)2

+ 4ε < 0,

the focus point will occur in system (6).
Thus, it can be seen that the equilibrium points and

their characteristics of (2) have changed because of
constraint (3). Furthermore, based on the Helmholtz’s
theorem [49], the energy function HL(q, p) satisfies

dHL

dt
= −q1 p21

∂HL
∂p1

+ q2 p22
∂HL
∂p2

L2 .

So, the energy of (6) is changed over time. In conclu-
sion, the constrained system (6) has different complex
dynamical behaviors from system (2).

System (6) may be of hyperchaos under some con-
ditions according to the conclusions of Refs. [34,35]
and the results of Sect. 2. In order to find the effect
of the constraint parameter L on the hyperchaotic sys-
tem (2) and to study the complex dynamic behaviors of
system (6), the parameters are fixed η = 0.01, L = 1,

Fig. 6 Surface of (q j1, q j2, β)

β ∈ [0.1, 10], and the same initial values as given in
Sect. 2. Using the same method in previous section,
the (q j1, q j2) of rest equilibrium points with different
β is shown in Fig. 6. It shows the relationship between
(q j1, q j2) and β when the constraint parameter L = 1.

The Lyapunov exponents of system (6) by adjusting
parameter β are given in Fig. 7, which indicates that
the system has at least two positive Lyapunov expo-
nents and has three positive Lyapunov exponents in the
several values of parameter β. Therefore, system (2) is
still hyperchaotic under the nonholonomic constraint
qqT = 1 when β varies in [0.1, 10]. We can see from
ṗ1, ṗ2 of (6) that the constant coefficient θ of q1, q2,
q32 of (2) has turned into βL2. From the comparison,
we know that the variation trend of the Lyapunov expo-
nents of system (6)withβ varying in [0.1, 10] is similar
to that of the hyperchaotic system (2) with θ varying
in [0.1, 10], which is shown in Fig. 4. But what is dif-
ferent is that the hyperchaotic degree of system (6) is
weakened because of the constraint.

Fig. 8 shows that the system (6) is also hyperchaotic
when β = 1, L = 1, η ∈ [0.001, 1], and that indicates
the rich dynamic behaviors of the holonomic system.
As can be seen from the illustration, there exists a Lya-
punov exponent undulating between positive and nega-
tive value and three positive Lyapunov exponents occur
when η ∈ [0.295, 0.413] and η ∈ [0.687, 1]. Com-
pared with Fig. 5, the illustration shows that Hamilto-
nian system (2) has more complicated dynamic behav-
ior under constraint φ(q, p) = 0, such as stronger
hyperchaotic phenomena. In the above studies, the con-
straint parameter L = 1, that is, we have selected the
constraint qqT = 1 on Hamiltonian system (2) and
have found the hyperchaotic phenomena of holonomic
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1710 J. Li et al.

Fig. 7 Lyapunov exponents of (6) by adjusting β

Fig. 8 Lyapunov exponents of (6) by adjusting η

system. In fact, system (6) has different hyperchaotic
behaviors with different constraint parameters. Fig-
ure 9 illustrates that system (6) has at least two positive
Lyapunov exponents and has three positive Lyapunov
exponents in the several values of parameter L; here,we
fix the parameter β = 1, η = 0.01, and the constraint
parameter L varies in [1, 10]. As shown in Fig. 9, there
are three positive Lyapunov exponents in system (6)
when the constraint parameter L is 1.359, 1.963, 2.052,
2.617, 3.093, etc. Table 1 shows the partial results of the
three positive Lyapunov exponents values for (6) under
different constraint parameters L; here, LE1, LE2 and
LE3 denote the corresponding Lyapunov exponent val-
ues of the points on the green curve, magenta curve and
blue curve, respectively. Thus, (2) still is hyperchaotic
under the holonomic constraint (3).

Fig. 9 Lyapunov exponents of (6) by adjusting L

Table 1 Three positive Lyapunov exponents for (6) under dif-
ferent constrained parameters L

L LE1 LE2 LE3

0.8036 0.01564 0.2558 0.7384

1.359 0.04975 0.2582 1.094

1.963 0.3291 0.5337 1.457

2.052 0.06491 0.513 1.335

2.617 0.03625 0.4485 1.41

3.093 0.09755 0.9211 1769

3.638 0.09551 0.7572 2.076

4.242 0.08503 1.061 2.145

4.787 0.3987 1.114 2.475

5.204 0.5815 1.061 2.807

5.768 0.1569 0.6962 2.52

6.274 0.7986 1.447 3.058

6.948 0.2956 1.446 3.259

7.126 0.6242 1.364 3.493

7.503 0.6379 1.641 3.947

8.167 0.05117 0.9808 4.409

8.444 0.5542 1.543 4.255

9.078 0.8617 1.83 4.218

9.643 0.7395 1.792 4.62

In order to further investigate the influence of con-
straint φ(q, p) = 0 on the hyperchaotic character of
the Hamiltonian system (2), we give the hyperchaotic
attractor in phase space and Poincaré maps with differ-
ent parameters. Here, we fix the parameters

θ = 1, β = 1, η = 0.7
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and the initial values are

(q10, q20, p10, p20) = (1, 0.1, 0.01, 0.001).

For system (2), we obtain that (0, 0, 0, 0) is a saddle
point, and

(0.4224087642, 0.7914557371, 0, 0),

(− 0.4224087642,− 0.7914557371, 0, 0)

are saddle-center points, and double Hopf bifurcations
occur at (− 1.458779774, 1.329653647, 0, 0) and

(1.458779774,− 1.329653647, 0, 0).

For system (6), we obtain the results as follows:
(I) (0, 0, 0, 0) is a saddle point,

(0.4347738172, 0.900539687, 0, 0),

(− 0.4347738172,− 0.900539687, 0, 0)

are saddle-center points, and double Hopf bifurcations
occur at

(0.7751444429,− 0.6317840553, 0, 0),

(− 0.7751444429, 0.6317840553, 0, 0),

where L = 1.
(II) (0, 0, 0, 0) is a saddle point,

(0.3139420099, 1.975206423, 0, 0),

(− 0.3139420099,− 1.975206423, 0, 0),

(1.956888096, 0.413024187, 0, 0),

(− 1.956888096,− 0.413024187, 0, 0)

are saddle-center points, and double Hopf bifurcations
occur at

(1.476918143,− 1.348596604, 0, 0),

(− 1.476918143, 1.348596604, 0, 0),

(1.542965390, 1.272500611, 0, 0),

(− 1.542965390,− 1.272500611, 0, 0),

where L = 2. The next simulations show the influence
of L on the dynamic behaviors of (2).

Figure 10 shows the hyperchaotic attractor and
Poincaré map in q1 − p1 plane of Hamiltonian sys-
tem without constraint, respectively, and indicates the
complex dynamic behavior. The hyperchaotic attrac-
tor and Poincaré map in q1 − p1 plane of Hamiltonian
system with constraint parameter L = 1 and L = 2
are given in Fig. 11. By comparison with Fig. 10, we
can see that the constraint φ(q, p) = 0 can change
the status of the Hamiltonian system and different

Fig. 10 iHyperchaotic attractor in q1− p1 plane of Hamiltonian
system (2). ii The Poincaré map in q1 − p1 plane of Hamiltonian
system (2)

constraint parameters will result in different dynamic
behaviors. Figure 11 shows that the hyperchaotic attrac-
tor and Poincaré map of Hamiltonian system (2) have
obviously changed due to the constraint φ(q, p) = 0
and Hamiltonian system (2) becomes different hyper-
chaotic system with the constraint parameter L = 1
and L = 2.

It shows that the constraint parameter L influences
the dynamic behaviors of (2), including equilibrium
points and their characteristics, energy and the peri-
odic orbits from the double Hopf bifurcations; then,
(6) exhibits different hyperchaotic attractors under dif-
ferent L .

123



1712 J. Li et al.

Fig. 11 (1) Hyperchaotic attractor (a) and the Poincaré map (b) in q1 − p1 plane of (6) with L = 1. (2) The hyperchaotic attractor (a)
and the Poincaré map (b) in q1 − p1 plane of (6) with L = 2

3.2 Nonholonomic constraint

Assume the constraint on Hamiltonian system (2) is

q̇21 + q̇22 = l2. (7)

For the system (2) with nonholonomic constraint

ϕ(qs, q̇s, t) := q̇21 + q̇22 − l2 = 0,

The Lagrange multiplier method is used to reduce the
variational equation to a system

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= Fi + λ

∂ϕ(qi , q̇i , t)

∂q̇i
(i = 1, 2),

where

F1 = θq1 − βq31 − ηq2 + η2q1,

F2 = θq2 − βq32 − ηq1.

T = q̇21+q̇22
2 denotes the kinetic energy of the system. λ

is the Lagrange multiplier.
Then, the nonholonomic system (2), (7) can be writ-

ten as

{
q̈1 = θq1 − βq31 − ηq2 + η2q1 + 2λq̇1,
q̈2 = θq2 − βq32 − ηq1 + 2λq̇2.

(8)

Differentiating ϕ(qs, q̇s, t) with respect to time, we
have

q̇1q̈1 + q̇2q̈2 = 0. (9)
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Substituting (9) into (8), we obtain

2λ = [(βq31 + ηq2)q̇1 + (βq32 + ηq1)q̇2

− (θ + η2)q1q̇1 − θq2q̇2]/ l2
The nonholonomic system becomes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
q̇1 = p1,
q̇2 = p2,
ṗ1 = θq1 − βq31 − ηq2 + η2q1 + P1n

l2
,

ṗ2 = θq2 − βq32 − ηq1 + P2n
l2

,

(10)

where

P1n = [(βq31 + ηq2)p1 + (βq32 + ηq1)p2

− (θ + η2)q1q̇1 − θq2 p2]p1,
P2n = [(βq31 + ηq2)p1 + (βq32 + ηq1)p2

− (θ + η2)q1q̇1 − θq2 p2]p2.
It can be seen from (10) that the system is also invariant
under the coordinate transformation

(q1, q2, p1, p2) → (−q1,−q2,−p1,−p2).

It follows that the holonomic constraint φ(q, p) = 0
and the nonholonomic constraint ϕ(qs, q̇s, t) = 0
do not affect the symmetric invariant of the system.
By computations, we obtain that system (10) and the
Hamiltonian system (2) have the same equilibria and
their stability. Therefore, the Hamiltonian system (2)
may have hyperchaotic phenomena under the nonholo-
nomic constraint ϕ(qs, q̇s, t) = 0. For illustration, we
fix the parameters

θ = 1, η = 1, l = 10,

and initial values

(q10, q20, p10, p20) = (1, 0.1, 0.01, 0.001),

and the parameter β varies in the interval [0.1, 10].
Figure 12 shows that the nonholonomic system has
two positive Lyapunov exponents when β varies in
[0.1, 4.901) and has three positive Lyapunov exponents
when β varies in [4.901, 10]. Compared with Fig. 2,
under the nonholonomic constraint ϕ(qs, q̇s, t) = 0,
the hyperchaotic degree of the system is becoming
stronger and exhibits abundant hyperchaotic phenom-
ena with the increase of parameter β.

Next, we investigate the effect of the parameters
θ and η on the nonholonomic system (10) with the
same initial values and constraint parameter l. Fig-
ure 13 shows that system (10) is hyperchaotic when

Fig. 12 Lyapunov exponents of (10) by adjusting β

Fig. 13 Lyapunov exponents of (10) by adjusting θ

β = 1, η = 0.01 and θ varies in [0.1, 10]. Compared
with Fig. 4, the variation of the largest Lyapunov expo-
nent value is smaller, but there exists an exponential
curve changing between positive and negative when θ

varies in [5.233, 10].
It can be seen from Fig. 14 that system (10) also

is hyperchaotic when β = 1, θ = 1 and η varies in
[0.001, 1]. Compared with Fig. 5, the variation of the
largest Lyapunov exponent value is larger, and there
exists an exponential curve changing between positive
and negative when η varies in [0.577, 1]. These results
indicate the richer hyperchaotic behaviors of the non-
holonomic system.

The Lyapunov exponents by adjusting l are given in
Fig. 15. It shows that system (10) is hyperchaotic when
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Fig. 14 Lyapunov exponents of (10) by adjusting η

Fig. 15 Lyapunov exponents of (10) by adjusting l

θ = 1, β = 1, η = 1, initial values

(q10, q20, p10, p20) = (1, 0.1, 0.01, 0.001)

and l varies in [1, 10]. Therefore, the Hamiltonian sys-
tem (2) is still hyperchaotic under the nonholonomic
constraint ϕ(qs, q̇s, t) = 0. As well as system (6), the
nonholonomic constraint ϕ(qs, q̇s, t) = 0 will cause
new hyperchaotic phenomena in system (10). To illus-
trate this, the hyperchaotic attractor and Poincaré map
are given in Fig. 16, where θ = 1, β = 1, η = 0.7,
l = 10.

Comparing Figs. 16 with 10, we can see that in both
system (6) and system (2), double Hopf bifurcations
occur at the same points

(− 1.458779774, 1.329653647, 0, 0),

(1.458779774,− 1.329653647, 0, 0),

Fig. 16 iHyperchaotic attractor in q1− p1 plane of system (10).
ii The Poincaré map in q1 − p1 plane of system (10)

but the periodic orbits from the double Hopf bifur-
cations are different. Thus, there are different hyper-
chaotic attractors between the Hamiltonian system (2)
and constrained system (10). To further illustrate the
influence of constraint parameter l on (2), we use the
energy function to analytically evaluate the energy
variation of system (10) and system (2). Based on
Helmholtz’s theorem [49], we obtain that the energy
function of both (10) and (2) is

Hl(q1, q2, p1, p2) = p21 + p22 − θq21 − θq22
2

+ β(q41 + q42 )

4
+ ηq1

(
q2 − ηq1

2

)
.

Thus, dHl
dt = 0 for system (2), and for system (10)

dHl

dt
=

(−η2 p1q1+ηq1 p2+ηp1q2+βp1q
3
1−θp1q1+βp2q

3
2 − θp2q2)

l2
.
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Fig. 17 Evolution process of Hl
dt versus t

The energy evolution of system (10) is shown inFig. 17,
which shows the energy in the constrained system
changes disorderly. It indicates that the Hamiltonian
system has complex hyperchaotic behavior under con-
straint ϕ(qs, q̇s, t) = 0.

4 Hyperchaos control

In some cases, since chaos can be harmful in sev-
eral contexts, the complex behavior should be con-
trolled [50]. The chaos control has receivedmuch atten-
tion, and many valuable methods have been appeared
to effectively control the chaotic phenomena [51–55].
From the above discussion, we can see that constraints
(3) and (7) have changed the status of the hyperchaotic
system, but these constraints cannot make the hyper-
chaos disappear. So, a method of finding the constraint
under which the hyperchaotic behaviors of the Hamil-
tonian system disappear is given as follows.

To achieve hyperchaos control,we propose amethod
of introducing constraint to reduce the dimension of
the hyperchaotic system, because the dimension of the
hyperchaotic system is at least four.We assume that the
Hamiltonian system (2) is subjected to the constraint
ψ(q, p, t) = 0; then, the system becomes [33]

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q̇1 = p1,
q̇2 = p2,

ṗ1 = A1 +
∂ψ
∂p1

∂ψ
∂p

(
∂ψ
∂p

)T
(
− ∂ψ

∂q p
T − ∂ψ

∂t − ∂ψ
∂p A

T
)

,

ṗ2 = A2 +
∂ψ
∂p2

∂ψ
∂p

(
∂ψ
∂p

)T
(
− ∂ψ

∂q p
T − ∂ψ

∂t − ∂ψ
∂p A

T
)

,

(11)

where

A1 = θq1 − βq31 − ηq2 + η2q1,

A2 = θq2 − βq32 − ηq1,

A = (A1 A2).

Here, we assume

∂ψ(q, p, t)
∂p

= (μ1, μ2), ρ = −∂ψ

∂q
pT − ∂ψ

∂t
. (12)

Substituting (12) into (11), we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q̇1 = p1,
q̇2 = p2,

ṗ1 = μ1ρ+μ2
2A1−μ1μ2A2

μ2
1+μ2

2
,

ṗ2 = μ2ρ+μ2
1A2−μ1μ2A1

μ2
1+μ2

2
.

(13)

For simplicity, we further assume μ1 = 0, μ2 = 1;
then, ṗ1 = A1 and ṗ2 = −p1

∂ψ
∂q1

− p2
∂ψ
∂q2

− ∂ψ
∂t .

Therefore, when ∂ψ
∂q1

= ∂ψ
∂t = 0 and ∂ψ

∂q2
= θ , we

obtain the constraint ψ1(q, p, t) := θq2 + p2 = 0
which can reduce the dimension of the hyperchaotic
system. So under the constraint ψ1(q, p, t) = 0,
the four-dimensional system is equivalent to a three-
dimensional system, which is described by

⎧⎨
⎩
q̇1 = p1,
q̇2 = −θq2,
ṗ1 = (θ + η2)q1 − βq31 − ηq2.

(14)

Obviously, the three-dimensional system (14) has not
shown hyperchaotic phenomena [15]. It shows that sys-
tem (14) has three equilibrium points Eo = (0, 0, 0)

and E1,2 = (±
√

θ+η2

β
, 0, 0) by computing. The Jaco-

bian matrix at Eo is

J(Eo) =
⎛
⎝ 0 0 1

0 −θ 0
θ + η2 −η 0

⎞
⎠ .

By using |λI − J(Eo)| = 0, we can obtain

λ1 = −θ, λ2,3 = ±
√

θ + η2,

Eo is a saddle point. The Jacobian matrix at E1,2 is

J(E1,2) =
⎛
⎝ 0 0 1

0 −θ 0
−2θ − 2η2 −η 0

⎞
⎠ .
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The eigenvalues of J(E1,2) are

λ1 = −θ, λ2,3 = ±
√
2θ + 2η2i.

For E1, define

M =
⎛
⎜⎝

1 1 1√
2(θ + η2) −√

2(θ + η2) −θ

0 0 − θ2+2θ+2η2

η

⎞
⎟⎠ ,

and let⎛
⎜⎝q1 −

√
θ+η2

β

p1
q2

⎞
⎟⎠ = M

⎛
⎝ x1
x2
x3

⎞
⎠ .

Then, system (14) becomes

⎧⎨
⎩
ẋ1 = −√

2(θ + η2)x2,
ẋ2 = √

2(θ + η2)x1 + F(x1, x2, x3),
ẋ3 = − θx3,

(15)

where

F(x1, x2, x3)

=
√
2(x1 + x2 + x3)2(β(x1 + x2 + x3) + 3

√
β(θ + η2))

4
√

θ + η2
.

According to the procedures proposed by Hassard et
al. [56], we have

g11 = 3
√
2
√

β(θ + η2)i

4
√

θ + η2
, g02 = −3

√
2
√

β(θ + η2)

4
√

θ + η2
,

g20 = 3
√
2
√

β(θ + η2)

4
√

θ + η2
,

g21 = 3
√
2βi

8
√

θ + η2
− 3

√
2β

16
√

θ + η2
.

Therefore,

2Re(c1(0)) = 2Re

(
g20g11 − 2 |g11|2 − 1

3 |g02|2
2
√
2(θ + η2)

+ g21
2

)

= − 4β

3
√
2(θ + η2)

< 0.

Because system (14) is invariant for the coordinate
transformation (q1, q2, p1) → (−q1,−q2,−p1), the
system has the same dynamical behavior at E2 and
E1. Then, in the system, Hopf bifurcation can occur
at E1,2 and the bifurcating periodic solutions on the
center manifold are unstable, which indicates that two
equilibrium points undergo Hopf bifurcations in sys-
tem (14).

Fig. 18 Lyapunov exponents of (14) by adjusting η

Fig. 19 q1 − p1 plane with different values of η

Fig. 20 Poincaré map with different values of η
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Tonumerical simulations,we take the parameter val-
ues θ = 1, β = 1, η ∈ [0.01, 10], (q10, q20, p10) =
(1, 0.1, 0.01). Figure 18 shows that in system (14)
chaotic attractor exists when η ∈ (1.909, 10] and
periodic solutions and chaos state coexist when η ∈
(1.234, 1.909]. The phase diagrams on q1 − p1 plane
under different parameters η are shown in Fig. 19. The
corresponding Poincarémapswith different values of η
are shown in Fig. 20. This illustrates that the constraint
ψ1(q, p, t) = 0 can transform the Hamiltonian system
from hyperchaotic state into periodic state or chaotic
state.

In order to make the chaos disappear and achieve
the global stability of system, we further introduce the
constraint

ψ2(q, p, t) := (θ + η2)q1 − βq31 + p1 = 0;
therefore, ṗ1 becomes −ηq2 − p1, the expressions of
both ṗ1 and q̇2 do not include q1 and the system (14)
is translated into the equivalent system

{
q̇2 = −θq2,
ṗ1 = −ηq2 − p1.

(16)

It can be seen that there is only one equilibrium point
E00 = (0, 0) in system (16). To study the stability of
E00, we formulate the Lyapunov function

V (q2, p1) =
(
p1 − ηq2

θ

)2
2

+ η2q22
4θ3

,

and the derivative of the function satisfies

V̇ (q2, p1) = −
(
p1 − ηq2

2θ

)2 ≤ 0.

According to the asymptotic stability theorem [57],E00

is globally asymptotically stable. Figure 21 shows the
time series of q2 and p1 of system (16) with θ = 1
and η = 0.7. It shows that system (16) is globally
asymptotically stable at E00.

5 Conclusions

In this paper, a hyperchaotic Hamiltonian system is for-
mulated, and then the existence of equilibrium point
and double Hopf bifurcation and the type of equilib-
rium point are investigated. The results show that the
Hamiltonian system is always hyperchaotic with any
system parameter varying, which is not the same as
other Refs. [40,58]. It also indicates that the system

Fig. 21 Time series of q2 and p1, respectively

exhibits not only chaotic attractor [39] but also hyper-
chaotic attractor when the double Hopf bifurcations
occur. Then, the influences of holonomic constraint and
nonholonomic constraint on the dynamic behaviors of
(2) are studied. Comparing with (2), the energies of
the constrained Hamiltonian systems are changed over
time; hence, the state variable trajectories of the system
have changed accordingly. The multiple equilibrium
points and doubleHopf bifurcation still exist in the con-
strainedHamiltonian system.Moreover, the holonomic
constraint can influence the number and characteristic
of the equilibrium point and the double Hopf bifurca-
tion of the Hamiltonian system. Thus, the Hamiltonian
system also exhibits hyperchaotic behaviors with the
system parameter varying under the constraint condi-
tions. From the analysis results, it is shown that the con-
straint parameters can influence the hyperchaotic state
of the Hamiltonian system in different degrees. Fur-
thermore, the results indicate that the constraints can
not only enhance or diminish the hyperchaotic state of
(2), but also generate new hyperchaotic systems with
different constraint parameters. In addition, the con-
straints can achieve hyperchaos control and make the
hyperchaotic behavior change into chaotic state, peri-
odic state, even globally stable state. In order to deter-
mine the constraint of hyperchaos control, we firstly
obtain the explicit equations for the constrained Hamil-
tonian system using the method in Ref. [33]. Next, the
suitable constraint is selected to make hyperchaos dis-
appear and the Hopf bifurcation and chaotic attractor
occur in the constrained system. Then, the chaotic state
is transformed into global asymptotic stable state by
introducing constraint. The results illustrate that the
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Table 2 Performance analysis of chaos control methods

Control method Performance analysis

Parameter switching
algorithm [23]

A real stable orbit of the HP
system is obtained by simple
switching of the control
parameter within a chosen finite
set. This method does not affect
the intrinsic complexity of the
underlying system dynamics

Decreasing-impulse-
induced
chaos-controlling
scenario[24]

Applying the method to control the
chaotic behavior of the starlike
networks of dissipative nonlinear
oscillators leads to both
synchronous periodic states and
oscillation death

State feedback control
strategy and
pole-placement
technique [25]

The state feedback control method
can stabilize the chaotic orbits at
an unstable equilibrium point of
the discrete-time system. The
pole-placement method can
move the trajectory of the
discrete-time system toward the
desired orbit for very small range
of controlled parameters

Linear feedback control
and active control [32]

The fractional-order hyperchaotic
system is controlled entirely to
the equilibrium point by using the
linear feedback control method.
The active control method makes
the fractional-order hyperchaotic
and chaos controlled systems
entirely synchronous

Introducing constraints
control

The hyperchaotic Hamiltonian
system can be controlled to a
chaotic system and then to a
globally stable system by
introducing suitable constraints.
This method can be used for
hyperchaos control in any
Hamiltonian systems. And the
method can generate new
hyperchaotic system, chaotic
system and globally stable
system

hyperchaotic Hamiltonian system can be controlled to
a chaotic system and then to a globally stable sys-
tem by selecting specific constraints. In the future, we
will investigate the constraints in general form which
make hyperchaotic attractor become chaotic attractor
and globally asymptotically stable point, respectively.
The proposed method is different from the methods in
Refs [23–25,32]. The introducing constraint method
can be used for hyperchaos control in any Hamilto-

nian systems. The new hyperchaotic attractor, chaotic
attractor and globally stable point can be generated by
applying themethod. For comparison, the performance
analysis of these methods is shown in Table 2.
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