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Abstract This paper presents a qualitative study of
a predator–prey interaction system with the functional
response proposed by Cosner et al. (Theor Popul Biol
56:65–75, 1999). The response describes a behavioral
mechanism which a group of predators foraging in lin-
ear formation searches, contacts and thenhunts a school
of prey.On account of the response, strongAllee effects
are induced in predators. In the system, we determine
the existence of all feasible nonnegative equilibria; fur-
ther, we investigate the stabilities and types of the equi-
libria. We observe the bistability and paradoxical phe-
nomena induced by the behavior of a parameter. More-
over, we mathematically prove that the saddle-node,
Hopf and Bogdanov–Takens types of bifurcations can
take place at some positive equilibrium. We also pro-
vide numerical simulations to support the obtained
results.
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1 Introduction

Numerous systems of differential equations have been
formulated and studied to explain the dynamics and
interactions observed inpopulationbiology.An increas-
ing number of studies are being conducted on this
topic because it has helped understand the dynamics
and interactions of organisms. In the last half-century,
one of the dominant themes in the discipline has been
studying dynamic interactions between the predators
and their preys. Consequently, a substantial number of
various predator–prey interaction systems have been
proposed and qualitatively analyzed to determine the
underlying dynamics taking place in real ecological
systems.

Traditionally, a prototypical predator–prey model
has the following structure:

⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= f (x)x − g(x, y)y, x(0) > 0,

dy

dt
= εg(x, y)y − μy, y(0) > 0,

(1.1)

where x and y are the respective population densities
of the prey and predator; f (x) is the net growth rate
of the prey in the absence of predators; g(x, y) is the
prey consumption rate of a predator to prey; and μ and
ε are positive constants representing the predator death

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-018-4446-0&domain=pdf
http://orcid.org/0000-0002-0077-1169


1640 K. Ryu et al.

rate and the conversion rate of the captured prey into
the predator, respectively. To demonstrate the crowding
effect, the prey growth rate f (x) is typically negative
in (1.1) when the prey is large. The most well-known
example of f (x) is the logistic form

f (x) = r
(
1 − x

K

)
,

where the positive constants r and K refer to the
prey intrinsic growth rate and the carrying capacity of
the environment for the prey population, respectively.
Thus, in this paper, we assume that f (x) has the logistic
form given above. The behavioral characteristic of the
predator species can be reflected using the key element
g(x, y) called the functional response or the trophic
function. Eventually, the functional response plays an
important role in determining the different dynamical
behaviors, namely, the steady states, the oscillations,
the chaos and the bifurcation phenomena [14]. The
functional response g(x, y) in the population dynam-
ics (and in other disciplines) has several traditional and
interesting forms:

(i) Monotonic g(x, y) = g(x) depending on x only:
mx (Lotka–Volterra type), mx

a+x (Holling type II),
mx2

a+x2
(Holling type III).

(ii) Nonmonotonic g(x, y) = g(x) depending on x
only:
mx

a+x2
(Monod-Haldane), mxe−ax .

(iii) Monotonic g(x, y) depending on x and y:
mx
x+ay (Ratio-dependent), mx

a+bx+cy (Beddington–
DeAngelis).

Here m, a, b and c used above are positive constants,
and they have appropriate biological meanings in each
response function [see [8,16] for (i), [12,22,29] for (ii),
[3,5,11,14,27] for (iii)].

Asymptotic behavior of solutions to the biological
systems [including (1.1)] has the simplest type, equi-
librium points (i.e., nonnegative constant solutions of
the systems). Moreover, in predator–prey interactions,
there is another asymptotic type: periodic. This is sup-
ported by Hudson company lynx-hare data. Studying
the periodic asymptotic behavior (further, limit cycle
and homoclinic loop) is one of the popular research
topics in biological models. In system (1.1) with the
functional responses above, interesting topics such
as permanence, the stability of equilibria, the exis-
tence and nonexistence of a limit cycle, and various
kinds of bifurcations have been extensively studied
by many researchers. For reference, besides ecology,

bifurcation has been studied in various fields (e.g.,
see [1,23,24,30]). In recent years, numerous mathe-
matical studies have been performed on the bifurca-
tion of multiple parameters [18,20] in predator–prey
systems, because they determine all feasible types of
bifurcations according to variations in some parameters
(e.g., see [7,13,17,19,22,26,28,29]). In (1.1),when the
functional response is nonmonotonic as in (ii) above, a
variety of interesting bifurcations, such as saddle-node,
Hopf and codimension-2 cusp (i.e., Bogdanov–Takens
[18,20]), can occur with variations in some parameters
[22,29]. However, if the functional response is mono-
tonic as in (i) or (iii), the cusp bifurcation of the codi-
mension 2 (further, multiple parameters bifurcation)
cannot occur in (1.1). From this viewpoint, we can see
that the nonmonotonicity of the functional responses
plays an important role in inducing the multiple param-
eters bifurcation. Of course, in system (1.1) if we intro-
duce a prey growth rate f (x) with an Allee effect or
introduce a prey or a predator harvesting rate when the
functional response is monotonic, we can observe the
bifurcation phenomenon (e.g., see [13,26,28]).

Even when a harvest rate or Allee effect (on f (x))
is not considered in reaction terms, several functional
responses induce the bifurcation ofmultiple parameters
(at least, of the codimension 2). One response is intro-
duced in [2] (see also [6]); this response was obtained
by adding a cooperation effect to the predation rate.
This response (g(x, y) = (λ + av)u with some posi-
tive constants λ and a) has the monotonicity property;
it increases in both the prey and predator densities.
As a result, the hunting cooperation in the predator–
prey interactions mechanically induces Allee effects in
predators. Therefore, the above-mentioned bifurcation
takes place in the predator–prey system described by
(1.1) with the functional response reflecting the hunt-
ing cooperation effects. In fact, in [2], in addition to
the two-parameter bifurcation, the equilibrium stabil-
ity and Hopf bifurcation were investigated numerically
based on the cooperation rate and the predator basic
reproduction number. Further, the numerical results
obtained were biologically interpreted. To date, there
have been very few studies on the monotonic func-
tional responses with the hunting cooperation [2,6].
In this paper, we briefly introduce another functional
response reflecting the cooperation effects proposed by
Cosner et al. [9], and we investigate the dynamics of
the response mathematically.
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In [9], to propose a functional response for demon-
strating a mechanism of how a group of predators (e.g.,
a school of tuna) searches, contacts and then hunts a
school or a herd of prey, several biological assump-
tions were made. Based on these assumptions and the
logic of Holling [15], the Cosner et al. [9] proposed the
following functional response:

g(x, y) = Ce0xy

1 + hCe0xy
.

Here, the given coefficients C , h and e0 are all pos-
itive constants. In particular, these coefficients have
the following biological meanings: C is the amount
of prey captured by a predator per encounter; h is the
handling time per prey; e0 is the total encounter coef-
ficient between the predator and the prey. Unlike the
conventional responses [e.g., (i), (ii) and (iii)], the func-
tional response has a monotonicity for both x and y,
and the response even increases in y. We may under-
stand the monotonicity and the (upper) boundedness of
this predation function as follows. When the size of the
predators’ population is large, the predators’ hunting
becomes more efficient. However, when the size of the
predators’ population becomes too large, the predation
efficiency is not as good because if the predators’ for-
aging line formation becomes too long, then the signal
transmission between them is not smooth; this happens
because of the assumptions in [9].

The primary purpose of this study is to investigate
mathematically what interesting dynamical behaviors
the above functional response gives to system (1.1); in
particular, we investigate the occurrence of the two-
parameter bifurcation. This functional response has
been proposed many years back [9]; however, to the
best of our knowledge, our proposed study is the first
mathematical investigation of the response. By substi-
tuting the above-derived functional response and the
logistic prey growth rate in ordinary differential equa-
tions (1.1), we eventually have the following predator–
prey system:
⎧
⎪⎨

⎪⎩

dx

dt
= r x

(
1 − x

K

)
− Ce0xy

1 + hCe0xy
y, x(0) > 0,

dy

dt
= εCe0xy

1 + hCe0xy
y − μy, y(0) > 0.

Recall that the given parameters r , K , C , e0, h, ε and
μ are positive constants. For simplicity in studying the
above ODEs, after defining the scaling:

r t = t,
x

K
= x, hCe0Ky = y,

1

Ce0(hK )2r
= α,

ε

rh
= β,

μ

r
= γ,

and then dropping the upper bars, we can rewrite the
simplified system in the form:

⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= x(1 − x) − αxy2

1 + xy
, x(0) > 0,

dy

dt
= βxy2

1 + xy
− γ y, y(0) > 0.

(1.2)

With the previous background on bifurcations, we
study whether system (1.2) exhibits the saddle-node,
Hopf and Bogdanov–Takens types of bifurcations. To
this end, we choose α (with β if necessary in study-
ing the cusp bifurcation) as the main parameter. Before
studying the bifurcations, we investigate the stabilities
of all nonnegative equilibrium points of system (1.2)
with variations in the parameter α. As well known, the
stabilities are determined by the eigenvalues of Jaco-
bian matrix corresponding system (1.2). From these
results, we can find some critical values of α (and
β), which would provide a guide to the study of the
above-mentioned bifurcations. Further, we expect sys-
tem (1.2) to provide distinct and much richer dynam-
ics. First, we investigate a rather well-known bistabil-
ity phenomenon in the system. This phenomenon in
the one-predator one-prey interaction model is usu-
ally observed when an Allee effect is present. The
functional response in (1.2) indeed yields a strong
Allee effect in predators, as in [2]. Second, we obtain
the global stability of the predator-extinction equilib-
rium point when α is greater than the threshold value.
We thereby observe an interesting paradoxical phe-
nomenon (in the sense of Remark 3.3). Along with the
occurrence of the Bogdanov–Takens bifurcation, the
two features discussed above differentiate system (1.2)
from other systems, that is, system (1.1) with g(x, y)
in (i) or (iii) (including the Rosenzweig–MacArthur
model). To emphasize again, the novelty of this paper
is the first analytical study of the predator–prey model
with a (first) proposed functional response that reflects
the cooperation effect in predation rates. More specifi-
cally, three interesting results are obtained for predator–
prey system (1.2) with the functional response that is
biologically and structurally different from the exist-
ing functional responses: Bogdanov–Takens bifurca-
tion, a paradoxical biological phenomenon and bista-
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bility. Thesewill allow us to understand the full dynam-
ics of system (1.2).

The rest of this paper is organized as follows. In
Sect. 2, we obtain all the conditions for system (1.2) to
possess nonnegative equilibria. In Sect. 3, we provide
a general phase portrait analysis of the system. More-
over, we study the stabilities and types of all equilibria
found in the previous section. In Sect. 4, we discuss the
bifurcations that can occur in the system.We show that
the system undergoes the saddle-node, (supercritical)
Hopf and Bogdanov–Takens (codimension 2) types of
bifurcations. Finally, in Sect. 5, we provide a discus-
sion.

2 Equilibria

In this section, we investigate the existence of all non-
negative equilibria in system (1.2).

The origin (0, 0) is apparently the total extinc-
tion equilibrium of (1.2), and (1, 0) is the predator-
extinction equilibrium. If the system has a positive
equilibrium, say (x, y), then the following two alge-
braic equations hold true:

(1 − x) = αy2

1 + xy
and

βxy

1 + xy
= γ,

which is equivalent to

x3 − x2 + αγ 2

β(β − γ )
= 0 and y = γ

(β − γ )x
. (2.1)

Thus, investigating the existence of the root x ∈ (0, 1)
of the cubic polynomial, we obtain the following
results. Note that the function on the left-hand side of
the first equation in (2.1) has critical points 0 and 2/3.
Thus we need to check the sign at 2/3 of the function.

Lemma 2.1 In system (1.2), the following positive
equilibriums hold:

(i) There is no positive equilibrium if

α > αbt (β, γ ) := 4

27

β(β − γ )

γ 2 .

(ii) There is a unique positive equilibrium (x0, y0) :=
( 23 ,

3γ
2(β−γ )

) if α = αbt and β > γ .

(iii) There are two distinct positive equilibria (x1, y1)
and (x2, y2), satisfying (2.1) and x1 < 2

3 < x2, if
α < αbt and β > γ .

Note that using the trigonometric method, we can
also find explicit but very complex forms of (x1, y1)
and (x2, y2).

3 Phase portrait and stability analysis

In this section, we mainly present all the results on the
stabilities and types of all nonnegative equilibria of the
system. Moreover, we perform a simple phase portrait
analysis of system (1.2).

We first point out that the standard and simple argu-
ments show that solutions of (1.2) always exist posi-
tively. Moreover, for the system, we have the bounded-
ness property below.

Theorem 3.1 For the solution (x(t), y(t)) of system
(1.2),

lim sup
t→∞

x(t) ≤ 1 and lim sup
t→∞

y(t) ≤ β

α

M(γ )

γ
,

where M(γ ) = (γ+1)2

4 if γ ≤ 1; M(γ ) = γ if γ > 1.

Proof The first assertion easily holds from a simple
comparison argument. To obtain the second result, we
define w(t) = x(t) + α

β
y(t). Then we easily see that

along the solution of (1.2),

wt = xt + α

β
yt = x(1 − x) − α

β
γ y.

Thus using the first result, we see that for all large t > 0,

wt + γw = x(1 + γ − x) ≤ M(γ ).

Hence the standard comparison argument shows that

lim sup
t→∞

(

x(t) + α

β
y(t)

)

≤ M(γ )

γ
,

which implies that the second assertion holds. ��
Therefore we have shown that system (1.2) has a

compact global attractor.
We notice that if system (1.2) has a positive equi-

librium point (x, y), then the corresponding Jacobian
matrix becomes

123



Bifurcation analysis in a predator–prey system 1643

J (x, y) :=

⎛

⎜
⎜
⎝

1 − x − αy2

1 + xy
+ x

(

−1 + αy3

(1 + xy)2

)

−αxy(2 + xy)

(1 + xy)2

βy2

(1 + xy)2
−γ + βxy

1 + xy
+ βxy

(1 + xy)2

⎞

⎟
⎟
⎠.

In particular, system (1.2), given by (0, 0) and (1, 0),
has the corresponding Jacobian

J (0, 0) =
(
1 0
0 −γ

)

and J (1, 0) =
(−1 0

0 −γ

)

.

Thus we know that (0, 0) is a hyperbolic saddle (whose
stable manifold is the y-axis), and (1, 0) is a sta-
ble node. Moreover, because the positive equilibrium
(xi , yi ) satisfies (2.1), a simple calculation gives

J (xi , yi ) =
⎛

⎜
⎝

γ

β
− β + γ

β
xi −αγ (2β − γ )

β2

β − γ

α
(1 − xi )

γ (β − γ )

β

⎞

⎟
⎠

for i = 0, 1, 2. Then, the characteristic polynomial
corresponding to the Jacobian matrix above is λ2 −
trace(J (xi , yi ))λ + det(J (xi , yi )) with

trace(J (xi , yi )) = β + γ

β

(
γ (1 + β − γ )

β + γ
− xi

)

and det(J (xi , yi )) = γ (β − γ )

β
(2 − 3xi ).

FromLemma2.1(iii), it is obvious that det(J (x1, y1)) >

0 and det(J (x2, y2)) < 0. Thus, (x1, y1) is an anti-
saddle. However, (x2, y2) is always a saddle with
its stable and unstable manifolds denoted by �s and
�u , respectively. From our calculations, the tangential
direction of �s at (x2, y2) is found to be negative and
greater than the tangential direction of the nullcline of
y at (x2, y2); the tangential direction of �u at (x2, y2)
is negative and less than the tangential direction of the
nullcline of x at (x2, y2). Further, we denote the orbit
approaching from the left of (x2, y2) as �l

s , and we
denote the orbits leaving the point in the up and down
directions as �u

u and �d
u , respectively. From the vector

field analysis in (1.2), we have the following informa-
tion and introduce some notations:

(i) �d
u → (1, 0) as t → ∞;

(ii) the orbit �u
u first meets the line {(x, y) : x =

x1, y > 0} at a point, say (x1, yu); yu ≥ y1 holds,
in particular if (x1, y1) is unstable, then yu > y1;

(iii) there is a point, say (x1, ys) at which the orbit �l
s

first meets the line {(x, y) : x = x1, y ≥ y1}; if
(x1, y1) is stable, then ys > y1.

Based on these observations, there are three possibili-
ties (see Fig. 1) in (1.2) when α < αbt .

(1) Case of ys > yu . Here, �l
s has to cross the line

{(x, y) : x = x2, y > y2}. In the region bounded
by �s and the line x = x2, either there is no peri-
odic orbit surrounding the stable (x1, y1) or there
are one or more periodic orbits. Obviously, the
outermost periodic orbit is stable from the out-
side. If the periodic orbit is unique, and (x1, y1) is
unstable, then the orbit is stable; (1, 0) is globally
asymptotically stable with respect to the exterior
(not on �s) of the region bounded by �s .

(2) Case of ys = yu . Since (x1, y1) is an anti-saddle,
we know ys = yu > 0.�l

s and�u
u make one homo-

clinic orbit (surrounding (x1, y1)), which tends to
(x2, y2) as t → ±∞. In the region bounded by
the orbit, if (x1, y1) is unstable, there exists at least
one periodic orbit (surrounding (x1, y1)). (1, 0) is
globally asymptotically stable with respect to the
exterior (not on �s) of the region above.

(3) Case of ys < yu . The orbit �l
s lies in the region

bounded by �u
u and �d

u . In this region, either
there is no periodic orbit surrounding the unstable
(x1, y1), or there are one or more periodic orbits.
Obviously, the outermost periodic orbit is unsta-
ble. There are two distinct heteroclinic orbits �u

u
and �d

u connecting (x2, y2) and (1, 0), and (1, 0)
is globally asymptotically stable with respect to at
least the exterior (not on �s) of the region.

At (1, 0), we can obtain the global stability if the
system does not have a positive equilibrium.

Theorem 3.2 Ifα > αbt , then (1, 0) is globally asymp-
totically stable.

Proof We first notice from Theorem 3.1 that system
(1.2) has a bounded positively invariant region. Fur-
thermore, according to Lemma 2.1, the system has no
positive equilibrium in the region; xt > 0 holds for a
small x > 0 and y > 0. As mentioned earlier, the ori-
gin is a hyperbolic saddle, and (1, 0) is a stable node.
Thus, according to the Poincaré–Bendixson theorem,
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Fig. 1 Three possible phase portraits of system (1.2) a ys > yu , b ys = yu , c ys < yu

there are no periodic and heteroclinic orbits. Hence,
because of the local stability of (1, 0), all solutions
with positive initial values approach (1, 0), which is
globally asymptotically stable. ��

The above result is confirmed by the phase plane
for system (1.2) with α = 0.00362, β = 4.70883 and
γ = 4.6, as in Fig. 6b. We observe that all the orbits
converge to the predator-free equilibrium (1, 0), when
α > αbt . The red and green lines in the phase portrait
are, respectively, the x and y nullclines of (1.2).

Remark 3.3 The given variable α is the food consump-
tion rate of the predator. If this is large, we may expect
either growth of the predator or the total extinction of
both the predator and the prey due to overfishing by the
predators (i.e., overexploitation [21,25]). In any situa-
tion, it is a bad environment for the prey species. Para-
doxically, according to the above theorem, a large con-
sumption rate causes the extinction of only the preda-
tors. Ifwe recall the rescaling ofα given in introduction,
we can see that only the predators will become extinct
in the system if the carrying capacity K is small.

Obviously, from the above theorem, we can see that
(1.2) has no limit cycle in the first quadrant, if α > αbt .
We now consider the nonexistence of limit cycles in the
system when α ≤ αbt . First of all, we note that when
γ < 1

3 , the quadratic equation

4

27

(
4

27
− γ M(γ )

)

β2 − γ

(

2

(
4

27

)2

+ (M(γ ))3

− 4

27
γ M(γ )

)

β +
(

4

27

)2

γ 2

has only one zero, say β∗, in (γ,∞).

Theorem 3.4 Assume that γ < 1
3 and β > β∗. Then

system (1.2) has no limit cycle in the positive quadrant
of the phase plane, provided that

α > α∗ := M(γ )β2

2γ

(

1 +
√

1 + 4M(γ )

γβ

)

.

Proof We know from Theorem 3.1 that the positive
solution of system (1.2) eventually enters and stays in

G :=
{

(x, y) : 0 < x ≤ 1, 0 < y ≤ β

α

M(γ )

γ

}

.

Thus, if a limit cycle exists, it is in the region G. We
employ a Dulac function F(x, y) = 1

xy . Then

∂

∂x

(

F(x, y)

(

x(1 − x) − αxy2

1 + xy

))

+ ∂

∂y

(

F(x, y)

(

−γ y + βxy2

1 + xy

))

= 1

y(1 + xy)2
(αy3 + βy − (1 + xy)2),

which is negative in G if

α

(
β

α

M(γ )

γ

)3

+ β

(
β

α

M(γ )

γ

)

− 1 < 0. (3.1)
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Bifurcation analysis in a predator–prey system 1645

It is easy to see that (3.1) holds if α > α∗; moreover,
αbt > α∗ if and only if β(> γ ) and γ satisfy β > β∗
and γ < 1/3. Hence, from the Dulac criterion, a limit
cycle does not exist. ��

We now focus on the type and stability of (x1, y1)
found in the previous section. To do this, we need to
investigate the signs of trace(J (x1, y1)) and det(J (x1,
y1)) as well as

	(x1) := (trace(J (x1, y1)))
2 − 4 det(J (x1, y1))

=
(

β + γ

β

)2

(x21 + 2A(β, γ )x1 + B(β, γ )),

where

A(β, γ ) := 6βγ (β − γ )

(β + γ )2
− γ (1 + β − γ )

β + γ

= γ
(
5(β − γ )2 + (4γ − 1)(β − γ ) − 2γ

)

(β + γ )2
,

B(β, γ ) :=
(

γ (1 + β − γ )

β + γ

)2

− 8βγ (β − γ )

(β + γ )2

= γ
(
(γ − 8)(β − γ )2 − 6γ (β − γ ) + γ

)

(β + γ )2
.

When β > γ , (A(β, γ ))2 − B(β, γ ) > 0, and so 	(x)
always has two roots, say φl(β, γ ) and φr (β, γ ) (with
φl < φr ). Moreover, φl < φr ≤ 2

3 holds when β > γ ,

since−A(β, γ ) < 2
3 and	( 23 ) = (

β+γ
β

)2(
γ (1+β−γ )

β+γ
−

2
3 )

2.
For convenience, we denote

φm(β, γ ) := γ (1 + β − γ )

β + γ
,

and

α1(β, γ ) := β(β − γ )

γ 2 φ2
l (1 − φl) ( only when φl > 0),

α2(β, γ ) := β(β − γ )

γ 2 φ2
m (1 − φm) (only when φm <

2

3
),

α3(β, γ ) := β(β − γ )

γ 2 φ2
r (1 − φr ) (only when φr > 0),

βbt (γ ) := γ + γ

3γ − 2
(only when γ >

2

3
),

β1(γ ) :=
{

γ + 1
6 if γ = 8,

γ + 3γ−√
8γ (γ+1)

γ−8 if γ �= 8,

β2(γ ) := γ + 3γ + √
8γ (γ + 1)

γ − 8
(only when γ > 8),

βa(γ ) := γ + 1

10
(−(4γ − 1) +

√

(4γ − 1)2 + 40γ ).

Moreover, the introduced notations (their graphs are in
Fig. 2) satisfy the following properties when β > γ :

(i) φm < 2
3 if and only if either γ ≤ 2

3 and γ < β

or γ > 2
3 and γ < β < βbt holds; in particular,

φm = 2
3 if and only if γ > 2

3 and β = βbt ;

(ii) 	(φm) = 4 (β−γ )γ
β

(3φm − 2) < 0 if and only if

φm < 2
3 ;

(iii) only βi (γ ) (for i = 1, 2) satisfies B(·, γ ) = 0;
(iv) if 2

3 < γ , then 0 < β1 < βbt ; if 8 < γ , then β2

exists and βbt < β2;
(v) if either γ < β < β1 or β2 < β and 8 < γ ,

then B(β, γ ) > 0; if either β1 < β and γ ≤ 8 or
β1 < β < β2 and 8 < γ , then B(β, γ ) < 0;

(vi) A(β, γ ) < 0 if and only if γ < β < βa(γ ); in
particular, if γ < β ≤ β1, then A(β, γ ) < 0, and
if 8 < γ and β2 ≤ β, then A(β, γ ) > 0.

The process of obtaining the above properties is quite
simple and tedious. The obtained stability results are
summarized in Fig. 2.

Theorem 3.5 (i) Assume that γ < β < β1. Then,
(x1, y1) is an unstable node ifα ≤ α1; an unstable
focus if α1 < α < α2; a weak focus or center if
α = α2; a stable focus if α2 < α < α3; and a
stable node if α3 ≤ α < αbt .

(ii) Assume that either γ ≤ 2
3 and β1 ≤ β or 2

3 < γ

and β1 ≤ β < βbt . Then, (x1, y1) is an unstable
focus if α < α2; a weak focus or center if α = α2;
a stable focus if α2 < α < α3; and a stable node
if α3 ≤ α < αbt .

(iii) Assume that 2
3 < γ and β = βbt . Then, (x1, y1)

is an unstable focus if α < αbt .
(iv) Assume that either 2

3 < γ ≤ 8 and βbt < β or
8 < γ and βbt < β < β2. Then, (x1, y1) is an
unstable focus if α < α3; and an unstable node if
α3 ≤ α < αbt .

(v) Assume that 8 < γ and β2 ≤ β. Then, (x1, y1) is
an unstable node if α < αbt .

Proof For each case, the existence of the interior equi-
librium (x1, y1) follows from Lemma 2.1. Moreover,
det(J (x1, y1)) > 0 holds. From now on, we determine
the signs of trace(J (x1, y1)) and 	(x1).

(i) If γ < β < β1, then it follows from the pre-
vious arguments ((i)–(vi)) that φm < 2

3 (and so
	(φm) < 0 and 	( 23 ) > 0), A(β, γ ) < 0 and
B(β, γ ) > 0. These leads to 0 < φl < φm <
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Fig. 2 Summary of Theorem 3.5, a β-γ regions in Theorem 3.5 (i)–(v), b stability of (x1, y1) when γ ≤ 2
3 , c stability of (x1, y1) when

2
3 < γ ≤ 8, d stability of (x1, y1) when 8 < γ

φr < 2
3 , so that α1 < α2 < α3 < αbt holds since

d
dx (x2(1 − x)) > 0 for 0 < x < 2

3 .
According to the fact that x1 satisfies the first
equation in (2.1), if α ≤ α1, then x1 ≤ φl , which
gives trace(J (x1, y1)) > 0 and 	(x1) ≥ 0; if
α1 < α < α2, then φl < x1 < φm , which gives

trace(J (x1, y1)) > 0 and 	(x1) < 0; if α = α2,
then x1 = φm , which gives trace(J (x1, y1)) = 0
and 	(x1) < 0; if α2 < α < α3, then φm <

x1 < φr , which gives trace(J (x1, y1)) < 0 and
	(x1) < 0; if α3 ≤ α < αbt , then φr ≤ x1 < 2

3 ,

123



Bifurcation analysis in a predator–prey system 1647

which gives trace(J (x1, y1)) < 0 and	(x1) ≥ 0.
Hence, the desired results hold.

(ii) The given assumptions yield φm < 2
3 (and further

	(φm) < 0 and 	( 23 ) > 0) and B(β, γ ) ≤ 0.
In particular, when B(β, γ ) = 0 (i.e., β = β1),
A(β, γ ) < 0. Thus φl ≤ 0 < φm < φr < 2

3 .
In this case, α1(β, γ ) is not defined. If α < α2,
then x1 < φm , so that trace(J (x1, y1)) > 0 and
	(x1) < 0. The remaining parts are the same as
in (i) above.

(iii) In this case, φm = 2
3 (and so 	( 23 ) = 0) and

B(β, γ ) < 0. Thus φl < 0, φr = φm = 2
3

and further α2 = α3 = αbt . If α < αbt , then
trace(J (x1, y1)) = 0 and 	(x1) < 0; therefore,
the assertion holds.

(iv) It is easy to see that φm > 2
3 (and so 	( 23 ) > 0)

and B(β, γ ) < 0, which gives φl < 0 <

φr < 2
3 < φm . The defined α3 and αbt sat-

isfy α3 < αbt . If α < α3, then x1 < φr , and
so trace(J (x1, y1)) > 0 and 	(x1) < 0. If
α3 ≤ α < αbt , then φr ≤ x1 < 2

3 , and thus
trace(J (x1, y1)) > 0 and 	(x1) ≥ 0. Hence the
result holds.

(v) From the given assumptions, it follows that φm >
2
3 (and so 	( 23 ) > 0), A(β, γ ) > 0 and
B(β, γ ) ≥ 0, which gives φl < φr ≤ 0 <
2
3 < φm . Thus if α < αbt , then x1 < 2

3 , and
so trace(J (x1, y1)) > 0 and 	(x1) > 0. Hence
(x1, y1) is an unstable node.

��
Remark 3.6 According to Theorem 3.5(i), (ii) and the
argument after Theorem 3.1, (1, 0) and (x1, y1) are
simultaneously stable if α2 < α < αbt and either
γ ≤ 2

3 and γ < β or 2
3 < γ and γ < β < βbt .

That is to say, system (1.2) admits the bistability of a
boundary equilibrium point of predator extinction and
one of positive equilibrium points. Figure 6c shows
the bistability of the system for the parameter values
α = 0.00362, β = 4.71733 and γ = 4.6.

As in [7,17,27,31], using classical qualitative meth-
ods, we study the dynamical types of the equilib-
rium (x0, y0). Hereinafter, for brevity, we denote by
Ok(X,Y ) various smooth functions with degree k or
greater in (X,Y ).

Theorem 3.7 Assume that γ < β and α = αbt . Then
(x0, y0) is degenerate. Moreover,

(i) if either γ ≤ 2
3 or

2
3 < γ andβ �= βbt , then (x0, y0)

is a saddle-node;
(ii) if 2

3 < γ and β = βbt , then (x0, y0) is a cusp.

Proof Obviously,

J (x0, y0) =
⎛

⎜
⎝

−2β − γ

3β
−αγ (2β − γ )

β2

β − γ

3α

γ (β − γ )

β

⎞

⎟
⎠,

therefore det(J (x0, y0)) = 0. Thus, (x0, y0) is degen-
erate (i.e., nonhyperbolic).

(i) We first notice that trace(J (x0, y0)) =
(3γ−2)β−γ (3γ−1)

3β �= 0 under the given assumptions.
Using the simple translation from (x0, y0) to (0, 0)
and a series expansion around (0, 0), and denoting
X = x − x0 and Y = y− y0, system (1.2) becomes

Xt = −2β − γ

3β
X − αγ (2β − γ )

β2 Y

+
(

−1 + γ (β − γ )

2β2

)

X2 − 3αγ (β − γ )2

β3 XY

−2α(β − γ )3

3β3 Y 2 + O3(X, Y ),

Yt = β − γ

3α
X + γ (β − γ )

β
Y − γ (β − γ )

2αβ
X2

+3γ (β − γ )2

β2 XY + 2(β − γ )3

3β2 Y 2

+O3(X, Y ). (3.2)

We next use the substitutions in system (3.2):

X1 = β(β − γ )

α(γ (3γ − 1) − (3γ − 2)β)
(

X + α(2β − γ )

β(β − γ )
Y

)

,

Y1 = β(β − γ )

α((3γ − 2)β − γ (3γ − 1))

(

X + 3αγ

β
Y

)

and

t = 3β

(3γ − 2)β − γ (3γ − 1)
τ.

Then, we obtain

X1τ = 6β(β − γ )2

((3γ − 2)β − γ (3γ − 1))2
X2
1 + P(X1,Y1),

Y1τ = Y1 + O2(X1,Y1),

where P(X1,Y1) is a smooth function of degree 2 or
greater in (X1,Y1); in particular, P(X1, 0) is a smooth
function of degree 3 or greater in X1.
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By the implicit function theorem, there is a small
neighborhood at the origin such thatY1+O2(X1,Y1) =
0 has the solution Y1 = ψ(X1), which is analytic in the
neighborhood and ψ(0) = ψ ′(0) = 0. Moreover, the
chain rule implies that P(X1, ψ(X1)) is equal to the
sum of the terms with orders (with respect to X1) not
less than 3. Therefore, by Theorem 7.1 in [31] (or Chap
2 of [20]), the desired assertion holds.

(ii) By the given assumptions, we have amore specific
Jacobian matrix

J (x0, y0) =
⎛

⎜
⎝

− γ

3γ − 1
− 4γ

9(3γ − 1)(3γ − 2)
9γ (3γ − 2)

4(3γ − 1)

γ

3γ − 1

⎞

⎟
⎠,

which satisfies det(J (x0, y0)) = 0 and trace
(J (x0, y0)) = 0.

Let

X1 = −9(3γ − 1)(3γ − 2)

4γ
X and

Y1 = 9(3γ − 2)

4
X + Y.

Then system (3.2) with α = αbt (βbt (γ ), γ ) and β =
βbt (γ ) is transformed into

X1t = Y1 + 2γ (2γ − 1)

3(3γ − 1)2(3γ − 2)
X2
1

+ 2

9γ (3γ − 1)(3γ − 2)
Y 2
1 + O3(X1,Y1),

Y1t = − 2γ 2

3(3γ − 1)2(3γ − 2)
X2
1

+ 2

9(3γ − 1)(3γ − 2)
Y 2
1 + O3(X1,Y1).

Next, by following the normal formulas in [20], we
can consider and introduce the substitutions in a small
neighborhood of the origin:

X2 = X1 − 2

9γ (3γ − 1)(3γ − 2)
X1Y1 and

Y2 = Y1 + 2γ (2γ − 1)

3(3γ − 1)2(3γ − 2)
Y 2
1 .

Then we obtain

X2t = Y2 + O3(X2, Y2),

Y2t = − 2γ 2

3(3γ − 1)2(3γ − 2)
X2
2

+ 4γ (2γ − 1)

3(3γ − 1)2(3γ − 2)
X2Y2 + O3(X2,Y2).

We finally take X3 = X2 and Y3 = Y2+ P4(X2,Y2)
so that we have

X3t = Y3,

Y3t = − 2γ 2

3(3γ − 1)2(3γ − 2)
X2
3

+ 4γ (2γ − 1)

3(3γ − 1)2(3γ − 2)
X3Y3 + O3(X3,Y3).

Since γ > 2
3 ,

− 2γ 2

3(3γ − 1)2(3γ − 2)
�= 0 and

4γ (2γ − 1)

3(3γ − 1)2(3γ − 2)
�= 0.

Hence from [20,31], the assertion holds true. ��
According to the theoremabove,whenα = 0.889 (=

αbt ), β = 0.3 and γ = 0.1, the unique positive equi-
librium (x0, y0) of system (1.2) is a saddle-node, and
when α = 0.01362 (= αbt ), β = 4.98983 (= βbt ) and
γ = 4.6, it is a cusp. The phase portraits for the saddle-
node and cusp are given in Figs. 3a and 6a, respectively.

4 Bifurcations

In this section, we discuss the bifurcations (e.g., saddle-
node, Hopf and Bogdanov–Takens) that can occur in
system (1.2).

We first see from the previously obtained results that
system (1.2) may undergo a saddle-node bifurcation.

Theorem 4.1 Assume that either γ ≤ 2
3 and γ < β or

2
3 < γ and γ < β �= βbt . Then, system (1.2) experi-
ences a saddle-node bifurcation at (x0, y0) as α passes
through αbt .

Proof We know from Lemma 2.1 that if α > αbt , then
system (1.2) has no positive equilibria. Moreover, as
α decreasingly crosses αbt , the system possesses two
positive equilibria (the saddle and anti-saddle). Thus,
according toSotomayor’s theorem [20], Theorem3.7(i)
yields the desired assertion. ��
For example, in system (1.2)withβ = 0.3 andγ = 0.1,
the saddle-node bifurcation at (x0, y0) occurs when
α = 0.889 (= αbt ). Correspondingly, the phase por-
trait and bifurcation diagram are given in Figs. 3a and
4.
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Fig. 3 Phase portraits of system (1.2) with β = 0.3 and γ = 0.1. a Saddle-node of (x0, y0) when α = 0.889 (= αbt ), b a stable limit
cycle when α = 0.378 (= α2)

In the generic case, a Hopf bifurcation occurs (i.e., a
periodic orbit is created) as the stability of an equilib-
rium point changes. Thus, according to Theorem 3.5,
we may expect the occurrence of the positive equilib-
rium (x1, y1).

Theorem 4.2 Assume that α < α2, |α − α2| 
 1 and

(β, γ ) ∈ HB :=
{

(β, γ ) | either γ ≤ 2

3
and γ

< β, or
2

3
< γ and γ < β < βbt

}

.

Then, there is at least one stable limit cycle in system
(1.2).

Proof Note that Theorem 3.5(i) and (ii) indicates that
(x1, y1) is a weak focus or a center, if α = α2 and
(β, γ ) ∈ HB. Thus, we know that a Hopf bifurcation
occurs at (x1, y1).

To figure out the kind of Hopf bifurcation, we com-
pute the well-known first Lyapunov coefficient of the
normal form of the system. Using X = x − x1 and
Y = y − y1, system (1.2) with α = α2 becomes

Xt = a10X + a01Y + a20X
2 + a11XY + a02Y

2 + a30X
3

+ a21X
2Y + a12XY

2 + a03Y
3 + O4(X, Y ),

Yt = b10X + b01Y + b20X
2 + b11XY + b02Y

2 + b30X
3

+ b21X
2Y + b12XY

2 + b03Y
3 + O4(X, Y ), (4.1)

where ai j and bi j are coefficients involved in the series

expansions of the given growth rates x(1 − x) − αxy2

1+xy

and −γ y + βxy2

1+xy at (x1, y1), respectively. Obviously,
when (β, γ ) ∈ HB,


 := a10b01 − a01b10

= γ (β − γ )(γ (3γ − 1) − (3γ − 2)β)

β(β + γ )
> 0

and a10 + b01 = − γ (β−γ )
β

+ γ (β−γ )
β

= 0. Then, from
the formula of the first Lyapunov number σ [20] of
system (4.1) at the origin, we obtain

σ = − 3π

2α2γ

β2 (2β − γ )
3/2

(β − γ )2γ 2

(β + γ )6β6 Q(β, γ ),

where Q(β, γ ) is a degree 16 polynomial in β and
γ . We have to determine the sign of Q(β, γ ) when
(β, γ ) ∈ HB. For convenience, we investigate the sign
of Q(s + γ, γ ) := Q̃(s, γ ) when either γ ≤ 2

3 and
0 < s or 2

3 < γ and 0 < s <
γ

3γ−2 . With the help of
mathematical packages (such as Maple), we obtain

Q̃(s, γ ) = 4γ (γ − 1)2s13 + 2γ (γ − 1)(γ 2 + 3γ − 8)s12

+ (4γ 4 − 16γ 3 − 8γ 2 + 21γ + 3)s11

− (2γ 4 + 24γ 3 − 8γ 2 − 25γ − 15)s10

− 2(4γ 4 + 17γ 3 + 21γ 2 − 78γ − 4)s9
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Fig. 4 Hopf and saddle-node bifurcation diagrams with respect
to α, for β = 0.3 and γ = 0.1. The solid green circle denotes
stable periodic orbits, and the open blue circles are unstable; the
red line is stable, and the black line unstable. These show that

the supercritical Hopf bifurcation occurs at α = 0.378 (= α2),
and the saddle-node one occurs at α = 0.889(= αbt ). a Prey, b
predator

+ γ (20γ 3 − 480γ 2 + 661γ + 90)s8

+ γ 2(167γ 3 − 1271γ 2 + 1543γ + 441)s7

+ γ 3(218γ 3 − 1733γ 2 + 2178γ + 1237)s6

+ γ 4(116γ 3 − 1370γ 2 + 1901γ + 2193)s5

+ γ 5(24γ 3 − 660γ 2 + 1006γ + 2553)s4

− 2γ 6(100γ 2 − 150γ − 977)s3

− 4γ 7(8γ 2 − 10γ − 237)s2 + 264γ 8s

+ 32γ 9.

Moreover, Q̃ satisfies the following properties:

(i) Q̃(0, γ ) = 32γ 9 > 0 and ∂ Q̃
∂s > 0 for γ ≤ 1 and

s > 0;
(ii) Q̃(s, 1) is a degree 11 polynomial in s with positive

coefficients for 0 < s < 1
3·1−2 , and

∂ Q̃
∂γ

> 0 for

0 < s <
γ

3γ−2 and γ ≥ 1.

Thus Q̃(s, γ ) > 0 when either γ ≤ 2
3 and 0 < s or

2
3 < γ and 0 < s <

γ
3γ−2 ; therefore σ < 0 when

(β, γ ) ∈ HB. This means that the equilibrium
point (x1, y1) of system (1.2) is a weak focus (with
the multiplicity one); also, it is stable.

Together with Theorem 3.5, the result above implies
that (x1, y1) is an unstable focus if α < α2 and
(β, γ ) ∈ HB; (x1, y1) is a stable focus if α ≥ α2

and (β, γ ) ∈ HB. Hence from the theory of Hopf

bifurcation [20,31], a stable limit cycle is bifurcated
from the positive equilibrium (x1, y1) when α passes
through α2 decreasingly so that system (1.2) undergoes
a supercritical Hopf bifurcation. ��

We choose α as the main bifurcation parameter.
Then, consider system (1.2) with α = α2 − λ, β = 0.3
and γ = 0.1, where λ > 0 is a small constant. Here
α2 = 0.378. Then from the above theorem, we can see
that asλ increases from zero, a supercritical Hopf bifur-
cation occurs in the system so that a stable limit cycle
is created. The phase portrait and bifurcation diagram
are given in Figs. 3b and 4. In Fig. 4b, the black curve y
goes to ∞ as α → 0+; therefore, this part is inevitably
excluded.

We finally study the Bogdanov–Takens bifurcation
in system (1.2). From Theorem 3.7(ii), we already
know that (x0, y0) is a codimension-2 cusp, if α = αbt ,
β = βbt and γ > 2

3 . In showing the following theorem,
α and β are used as the bifurcation parameters.

Theorem 4.3 Assume that 0 < |α − αbt | 
 1, 0 <

|β−βbt | 
 1 and γ > 2
3 . Then system (1.2) undergoes

the Bogdanov–Takens bifurcation.

Proof For convenience, we start by introducing new
parameters λ1 and λ2, which are as small as necessary.
Then, using α = αbt − λ1 and β = βbt − λ2 in system
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(1.2), we have

xt = x(1 − x) − (αbt − λ1)
xy2

1 + xy
,

yt = (βbt − λ2)
xy2

1 + xy
− γ y.

(4.2)

As mentioned earlier, when λ1 = λ2 = 0, (4.2)
has a unique positive equilibrium (x0, y0) that is a
codimension-2 cusp.

To attain the versal unfolding for system (4.2), we
will consecutively perform C∞ transforms of the vari-
ables. Hereafter, we denote by Ok(X,Y, λ1, λ2) the
various smooth functions (having coefficients depend-
ing on λ1 and λ2) of the degree k or greater in (X,Y ).
First, using the substitution X = x−x0 andY = y−y0,
(4.2) becomes

Xt = a00 + a10X + a01Y + a20X
2

+ a11XY + a02Y
2 + O3(X,Y, λ1),

Yt = b00 + b10X + b01Y + b20X
2

+ b11XY + b02Y
2 + O3(X,Y, λ2), (4.3)

where

a00 = 3(3γ − 2)2

2(3γ − 1)
λ1,

a10 = − γ

3γ − 1
+ 9(3γ − 2)2

4(3γ − 1)2
λ1,

a01 = − 4γ

9(3γ − 1)(3γ − 2)
+ 3γ (3γ − 2)

(3γ − 1)2
λ1,

a20 = −1 + 3γ − 2

2(3γ − 1)2
− 27(3γ − 2)3

8(3γ − 1)3
λ1,

a11 = − 4

9(3γ − 1)2(3γ − 2)
+ 3(3γ − 2)

(3γ − 1)3
λ1,

a02 = − 8

81(3γ − 1)2(3γ − 2)2
+ 2

(3γ − 1)3
λ1,

b00 = −3(3γ − 2)2

2(3γ − 1)
λ2,

b10 = 9γ (3γ − 2)

4(3γ − 1)
− 9(3γ − 2)2

4(3γ − 1)2
λ2,

b01 = γ

3γ − 1
− 3γ (3γ − 2)

(3γ − 1)2
λ2,

b20 = −27γ (3γ − 2)2

8(3γ − 1)2
+ 27(3γ − 2)3

8(3γ − 1)3
λ2,

b11 = 3γ

(3γ − 1)2
− 3(3γ − 2)

(3γ − 1)3
λ2,

b02 = 2γ

3(3γ − 1)2(3γ − 2)
− 2

3(3γ − 1)3
λ2.

We next carry out the following variable changes in
sequence:

(i) X1 = X, Y1 = a10X + a01Y ;
(ii) X2 = X1 − (a11 + b02)a01 − a02a10

2a201
X2
1

− a02
a201

X1Y1,

Y2 = Y1 +
(

a20 − a11a10
a01

+ a02a210
a201

)

X2
1

−
(
a02a10
a201

+ b02
a01

)

X1Y1;

(iii) X3 = X2 −
[
a02
a201

{

a00

(
a11
a01

− 3a02a10
a201

)

−a02a01b00
a201

− a10 − b01

}]
X2
2

2
,

Y3 = Y2 +
⎡

⎣−a00

(
a11 + b02

a01
− a02a10

a201

)2

−a02
a201

{

2a00

(
a11a10
a01

− a20a201 + a02a210
a201

)

+ (a10a00 + a01b00)

(
a11 + b02

a01
− a02a10

a201

)

+ 2(a01b10 − b01a10)

}⎤

⎦
X2
2

2
.

Then (4.3) becomes

X3t = a0 + a1X3 + a2Y3 + O3(X3,Y3, λ1, λ2),

Y3t = b0 + b1X3 + b2Y3 + b3X
2
3 + b4X3Y3

+O3(X3,Y3, λ1, λ2), (4.4)

where

a0 = 3(3γ − 2)2

2(3γ − 1)
λ1,

a1 = 3(3γ − 2)3

4γ (3γ − 1)2
λ1 + 3γ − 2

3γ (3γ − 1)2
λ2
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+ O2(λ1, λ2),

a2 = 1 + 3(3γ − 2)3

4γ 2(3γ − 1)
λ1 + O2(λ1, λ2),

b0 = −3γ (3γ − 2)2

2(3γ − 1)2
λ1 + 2γ (3γ − 2)

3(3γ − 1)2
λ2

+ O2(λ1, λ2),

b1 = −3(21γ − 11)(3γ − 2)2

4(3γ − 1)2
λ1 − 3γ − 2

3(3γ − 1)
λ2

+ O2(λ1, sλ2),

b2 = 3(6γ − 1)(3γ − 2)2

4γ (3γ − 1)2
λ1 − 3γ (3γ − 2)

(3γ − 1)2
λ2

+ O2(λ1, λ2),

b3 = 3γ

2(3γ − 1)

− 3(54γ 3 − 27γ 2 − 24γ + 13)(3γ − 2)2

16γ (3γ − 1)3
λ1

− (108γ 3 − 27γ 2 + 24γ − 13)(3γ − 2)

12γ (3γ − 1)3
λ2

+ O2(λ1, λ2),

b4 = −6(2γ − 1)

3γ − 1
− 3(27γ 2 − 1)(3γ − 2)2

4γ 2(3γ − 1)2
λ1

+ 3γ − 2

6γ 2(3γ − 1)
λ2 + O2(λ1, λ2).

Let u = X3 and v = a0 + a1X3 + a2Y3 +
O3(X3,Y3, λ1, λ2). Then system (4.4) becomes

ut = v,

vt = c0 + c1u + c2v + c3u
2 + c4uv

+O3(u, v, λ1, λ2),

where

c0 = a2b0 − a0b2 = −3γ (3γ − 2)2

2(3γ − 1)2
λ1 + 2γ (3γ − 2)

3(3γ − 1)2
λ2

+ O2(λ1, λ2),

c1 = a2b1 − a1b2 − a0b4 = 3γ (3γ − 2)2

4(3γ − 1)
λ1

+ 3γ − 2

3(3γ − 1)2
λ2 + O2(λ1, λ2),

c2 = a1 + b2 = 9(3γ − 2)2

4γ (3γ − 1)
λ1 − (3γ + 1)(3γ − 2)

3γ (3γ − 1)
λ2

+ O2(λ1, λ2),

c3 = a2b3 − a1b4 = 3γ

2(3γ − 1)
+ O1(λ1, λ2),

c4 = b4 = −6(2γ − 1)

3γ − 1
+ O1(λ1, λ2).

Note that c3 > 0 for small λ1 and λ2; therefore, we
can introduce new variables:

w = u, z = v√
c3

, τ = √
c3t.

Then, we obtain

wτ = z,

zτ = c0
c3

+ c1
c3

w + c2√
c3

z + w2 + c4√
c3

wz

+O3(w, z, λ1, λ2). (4.5)

To complete our assertion, we follow the steps simi-
lar to those in [7,17,18]. Substituting x = w + c1

2c3
and

y = z into system (4.5), and renaming τ as t , we have

xt = y,

yt =
(
c0
c3

− c21
4c23

)

+
(

c2√
c3

− c1c4
2c3

√
c3

)

y + x2

+ c4√
c3

xy + O3(x, y, λ1, λ2).

Note that c4 < 0 when λ1 and λ2 are small. We denote

η1 = c24
c3

x, η2 = − c34
c3

√
c3

y, τ = −
√
c3
c4

t,

and rename τ by t again (for simplicity). This allow us
to have the final versal unfolding of system (4.2):

η1t = η2,

η2t = μ1(λ1, λ2) + μ2(λ1, λ2)η2 + η21 − η1η2

+O3(η1, η2, λ1, λ2),

where (expanding μi in a power series of (λ1, λ2) up
to the second order)
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μ1(λ1, λ2) :=
(
c0
c3

− c21
4c23

)
c44
c23

= −576(2γ − 1)4(3γ − 2)2

(3γ − 1)3γ 2 λ1 + 256(2γ − 1)4(3γ − 2)

(3γ − 1)3γ 2 λ2

− 36(3γ − 2)4(2γ − 1)3(702γ 4 − 1593γ 3 + 2187γ 2 − 1103γ + 183)

(3γ − 1)5γ 4
λ21

− 32(3γ − 2)3(2γ − 1)3(270γ 4 + 459γ 3 − 1323γ 2 + 755γ − 133)

(3γ − 1)5γ 4
λ1λ2

+ 64(3γ − 2)2(2γ − 1)3(1242γ 4 − 891γ 3 − 207γ 2 + 311γ − 71)

9(3γ − 1)5γ 4
λ22 + O3(λ1, λ2),

μ2(λ1, λ2) :=
(
c1c4
2c3

− c2

)
c4
c3

= 3(3γ − 2)2(4γ + 1)(2γ − 1)

(3γ − 1)γ 2 λ1 − 4(3γ − 2)(7γ − 1)(2γ − 1)

3(3γ − 1)γ 2 λ2

+ 3(3γ − 2)4(864γ 5 − 1548γ 4 + 1467γ 3 + 22γ 2 − 461γ + 120)

8(3γ − 1)3γ 4 λ21

+ (3γ − 2)3(1080γ 5 + 5418γ 4 − 12342γ 3 + 8321γ 2 − 2280γ + 215)

12(3γ − 1)3γ 4 λ1λ2

− (11γ − 3)(3γ − 2)2(432γ 4 − 324γ 3 − 51γ 2 + 98γ − 23)

27(3γ − 1)3γ 4 λ22 + O3(λ1, λ2).

After some computations, we obtain

∣
∣
∣
∣
∂(μ1, μ2)

∂(λ1, λ2)

∣
∣
∣
∣
(λ1,λ2)=(0,0)

= 768(3γ − 2)4(2γ − 1)5

γ 4(3γ − 1)4
> 0,

because γ > 2
3 . Thus, the above transformation from

(λ1, λ2) to (μ1, μ2) is nonsingular for small λ1 and
λ2. Therefore, from theorems of Bogdanov and Takens
[18,20], the proof is complete. ��

From the above proof, we see that in system (1.2), a
stable limit cycle is generated for some parameter val-
ues (α, β, γ ) and a stable homoclinic loop is generated
for other values as well.

Remark 4.4 When |λ1| and |λ2| are small, we define
the curves in the (λ1, λ2)-plane as

SN = {(λ1, λ2) : μ1(λ1, λ2) = 0, μ2(λ1, λ2) �= 0} ,

H = {(λ1, λ2) : μ2(λ1, λ2)

= −√−μ1(λ1, λ2), μ1(λ1, λ2) < 0
}

,

HL = {(λ1, λ2) : μ2(λ1, λ2)

= −5

7

√−μ1(λ1, λ2), μ1(λ1, λ2) < 0

}

.

When γ > 2
3 , the above curves in the (λ1, λ2)-plane

can be rewritten as the curves in the (α, β)-plane by
α = αbt − λ1 and β = βbt − λ2. For convenience,
we still use the same notations for the rewritten curves.
Then, according to [18,20],we see from theBogdanov–
Takens bifurcation above that there is a neighborhood
of (αbt , βbt ) such that system (1.2) undergoes a saddle-
node bifurcation near (x0, y0) as (α, β) crossing SN ;
the system undergoes a Hopf bifurcation near (x0, y0)
as (α, β) crossing H and a homoclinic bifurcation near
(x0, y0) as (α, β) crossing HL . Moreover, the occur-
rence of the stable homoclinic loop in system (1.2) can
be understood as follows. There is a bounded (x, y)-
regionwhere the densities of both the predator and prey
species are controlled (for the coexistence).

For example, we consider system (4.2) with αbt =
0.01362, βbt = 4.98983 and γ = 4.6. From the theo-
remand remark above,we see that in the (λ1, λ2)-plane,
the small neighborhood of (0, 0) is divided into several
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Fig. 5 The Bogdanov–Takens bifurcation diagram

regions by the three bifurcation curves. The bifurcation
diagram is given in Fig. 5.

The corresponding phase portraits are given in
Fig. 6.

(a) At (λ1, λ2) = (0, 0), the unique positive equilib-
rium (x0, y0) of (4.2) is a cusp of codimension
2. This phase portrait is not similar to the one in
Fig. 3a, in that there is no separatrix to the left of
the point (x0, y0).

(b) System (4.2) with (λ1, λ2) ∈ I does not have any
positive equilibria. All solutions go to the axial
equilibrium (1, 0).

(c) When (λ1, λ2) moves from the region I into I I ,
there exists a stable focus positive equilibrium and
a saddle positive equilibrium. The bistability is
observed because (1, 0) is always stable.

(d) When (λ1, λ2)moves from the region I I into I I I ,
(4.2) undergoes supercritical Hopf bifurcation and
a stable limit cycle is created. At this time, (x1, y1)
is an unstable focus.

(e) When (λ1, λ2) on HL , the homoclinic bifurcation
creates a stable homoclinic cycle.

(f) When (λ1, λ2) crosses HL into the region I V ,
there exist two positive equilibria, which are an
unstable focus and a saddle.

5 Discussion

In this paper, we presented a qualitative study on a
predator–prey model with the newly proposed func-
tional response in [9]. In deriving this type of func-
tional response, the influence of the spatial grouping
of predators on the encounter rate between the preda-
tors and the prey was considered to explain a situation
of hunting cooperation in which a group of predators
searches (in line formation), contacts and then hunts
a school or herd of prey. We studied the existence
of all positive equilibria, local stability at the equi-
libria and the occurrence of bifurcations, in system
(1.2). To this end, we chose the consumption rate α

by predators as the main parameter. The details are as
follows.

We showed that the predators’ population go extinct
(i.e., the global stability of the axial equilibrium (1, 0))
if the consumption rate by a predator is greater than the
critical value. Ecologically, wemay understand this sit-
uation as follows. The large consumption rate by the
predators reduces the density of the prey so much that
the predators are unable to search any prey and eventu-
ally become extinct. By a thorough stability analysis of
all the equilibria of system (1.2), we observed the bista-
bility of the system around its two equilibrium points
(1, 0) and (x1, y1) depending on the initial conditions
of the system. The local stability of (1, 0) comes from
the strong Allee effect in predators because predators
can go to extinction for low initial predator densities.
Moreover, in system (1.2), we observed various kinds
of bifurcation phenomena. The stability analysis of the
equilibria of the system presents a complete analysis of
the local bifurcation behavior, such as the saddle-node,
Hopf and Bogdanov–Takens. Moreover, to determine
the type of Hopf bifurcation undergone by the sys-
tem, we computed the first Lyapunov coefficient. As
a result, we found that only a stable limit cycle was
created. This gives that the predator and prey coex-
ist with an oscillatory behavior. The limit cycle disap-
peared due to the homoclinic bifurcation. The occur-
rence of a homoclinic loop indicates that there is a
(x, y)-region that the predator and prey densities can
be controlled.
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Fig. 6 Phase portraits of system (4.2) with αbt = 0.01362,
βbt = 4.98983 and γ = 4.6. a (λ1, λ2) = (0, 0). b (λ1, λ2) =
(0.01, 0.281) in region I . c (λ1, λ2) = (0.01, 0.2725) in region

I I . d (λ1, λ2) = (0.01, 0.27) in region I I I . e (λ1, λ2) =
(0.01, 0.26541) on curve HL . f (λ1, λ2) = (0.01, 0.265) in
region I V

The functional response in [9] derived by consider-
ing the grouping (i.e., the cooperation) effect has the
monotonically increasing property in both the preda-
tor and prey populations; this response gives a strong
Allee effect in predators, which allows system (1.2)
to have interesting and rich dynamics as predator–prey
systemswith a harvesting rate or a nonmonotonic func-
tional response.
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