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Abstract Chaotic systems which are realized on the
finite precision devices suffer from dynamical degra-
dation. In the literature, there does not seem to be
good basis for designing schemes to reduce its neg-
ative influence on digital chaotic systems. Meanwhile,
symbolic dynamics is often used to study the behaviors
of complicated dynamical systems. In this paper, a new
mechanism based on symbolic dynamics is proposed
for designing effective schemes, in order to counter-
act the dynamical degradation of digital chaotic sys-
tems. A concrete scheme with hybrid structure is dis-
cussed to show significance of the mechanism. Sym-
bolic dynamics are used to rigorously prove that a
class of chaos-based digital systems can be perturbed
to be chaotic again by a continuous chaotic system.
Numerical experiments demonstrate that this scheme
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can recover the dynamical properties of original sys-
tem, which is different from the existing remedies.

Keywords Chaotic system · Finite precision ·
Dynamical degradation · Symbolic dynamics

1 Introduction

As a scientific paradigm, chaos can provide the con-
cepts and methods for analyzing the bizarre phenom-
ena in various fields. Chaotic system has ergodic-
ity, initial value sensitivity, pseudo-randomness, and
long unpredictability. Thanks to these great proper-
ties, chaos theory has applications in many disciplines,
including mathematics [1], physics [2], biology [3],
ecology [4], engineering [5], and computer science [6].
When chaos is realized on finite precision device, how-
ever, these properties will become non-meaningful and
equivocal, which are replaced by non-ergodicity, cycle
length, degraded distribution, low linear-complexity,
and strong correlation [7,8], that is, continuous chaos
will collapse in finite fields eventually.

In order to improve the dynamical degradation of
digital chaotic systems, assorted methods have been
put forward as remedies and enhancements: (1) Using
higher precisions [9,10], which can only increase the
average cycle length but cannot even obtain a non-
periodic orbit. In addition, this method has an increas-
ing impact on implementation costs. (2) Cascading
multiple chaotic systems [11,12], which can extend

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-018-4440-6&domain=pdf
http://orcid.org/0000-0002-1282-1848


1536 J. Zheng et al.

the period of orbits because of complicated functional
form. This method has such flaws as ignoring some
other properties and doing no good to dynamical degra-
dation. (3) Perturbing the chaotic systems. The “per-
turbation” means perturbing system variables, perturb-
ing control parameters, or perturbing both [13]. With-
out regard to implementation details, the perturbation-
based schemes may include methods such as switching
multiple chaotic systems [14,15] and error compensa-
tion method [16]. Other aspect that should be consid-
ered is the perturbation sources: one class of pertur-
bation source is generated under the same computing
precision of digital chaotic system [13,17,18], the other
perturbs the degenerate system under the same comput-
ing precision, which in addition has its own dynamic
behavior [16,19]. Most of the perturbation schemes
belong to the first case, which may greatly reduce the
dynamical degradation of digital chaotic systems and
easily meet the requirement standards of applications,
whereas it is far from enough to solve the problem since
the system is still not chaotic. In the second case, the
majority do reduce the dynamical degradation of a dig-
ital chaotic map by means of generating new random
sequences, which is completely different from the orig-
inal chaotic map.

Symbolic dynamical system is a kind of high gen-
eralization and abstraction of the actual dynamical
system, which is based on the topological conjugacy
between continuous evolution of the dynamical system
and a shift map on the space of sequences of integer
numbers reflecting the state of the evolution [20–22].
When the actual dynamical system is difficult to be
analyzed, symbolic dynamics can provide a promising
direction.

Because of the lack of a systematic theory on dig-
ital chaotic systems, all the remedies above which
attempt to purify digital chaotic systems by extending
the period of orbits are mainly based on the engineer-
ing point of views. Although these approaches cannot
fundamentally solve the problem, the second case in
perturbation schemes extend the state space to infin-
ity inadvertently, which might provide a great starting
point. In this paper, a new mechanism based on sym-
bolic dynamics is proposed to counteract the dynamical
degradation of digital chaotic system. The steps of this
mechanism are as follows: a new space with the car-
dinality of the continuum is introduced to extend the
discrete space after which a suitable continuous func-
tion is defined and finally a topological conjugacy from

the extended space to a chaotic shift map in symbolic
dynamics is established. After steps above, the digi-
tal chaotic systems become chaotic again. At the same
time, a concrete schemewith hybrid structure, in which
a continuous chaotic system is chosen as perturbation
source to extend the discrete state space and counteract
the dynamical degradation is proposed based on this
mechanism. The chaotic dynamics of perturbed digital
system is discussed theoretically, and the experiment
results conclude that dynamical properties of systems
are preserved. Moreover, the perturbation do not com-
pletely disrupt the phase space of the original chaotic
map indicating that the proposed mechanism can pro-
vide guidance for effective schemes for dealingwith the
dynamical degradation of digital chaotic systems.More
suitable schemes for different applications based on the
mechanism will be discussed in further researches.

The rest of this paper is organized as follows.
The problem statement and preliminaries are given in
Sect. 2. Section 3 introduces a new mechanism and a
concrete scheme with a hybrid structure based on the
mechanism, followed by rigorous proofs of the exis-
tence of chaotic motion in a class of perturbed digital
systems. Section 4 illustrates an example to show the
effectiveness of the scheme. Finally, Sect. 5 concludes
the whole paper.

2 Preliminaries and basic results

In this section, there is a short description of the dynam-
ical degradation of digital chaotic systems. A review of
Devaney’s chaos and some preliminary results of sym-
bolic dynamics are also given.

2.1 Problem statement and notation

Consider a digital chaotic system:

xi = FN

(
xi−1

)
= BN

(
F

(
xi−1

))

where xi = xiP−1x
i
P−2 . . . xi0x

i−1 . . . xi−Q ∈ XN , N =
P + Q is a digital state vector and XN is the limited
version of real subset X ∈ Rm . F : X → X is a
continuous chaotic map which is also suitable for XN .
BN : X → XN is a quantization function which makes
the state space confined.

Actually, dynamical degradation of digital chaotic
systems can be explained from all sides. From the point
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of chaos dynamics, chaos is defined on a compact met-
ric space, while in computer simulations a discrete lat-
tice of points appear instead of a continuous compact
phase space. From the point of orbits, the state space of
digital chaotic map is finite. Any orbit might fall into a
cycle, whose maximum period is equal to the cardinal-
ity of the state space. From the point of topology, the
space has finite possible states; hence, the constructed
topology is discrete. The ambiguous topology makes
our understanding completely different from that in
differentiable manifolds where the usual topology of
the real numbers is defined. The incapability of reme-
dies mentioned above will be shown later again (see
Sect. 3.2).

2.2 Devaney’s chaos

Consider a metric space (X, d) with metric d and a
continuous function f : X → X . Assuming that there
exists a non-empty closedbounded subset A of X which
is invariant under f , that is, f n (A) ∈ A for all n ≥ 0.
The most popular definition of chaos is due to Devaney
[23], and let us recall it.

Definition 1 f is said to be chaotic on the invariant set
A in the sense of Devaney if the following conditions
are satisfied:

(1) f is topologically transitive, that is, for any two
non-empty open subsetsU, V ⊂ A in the topology
of (X, d), there exists k ≥ 0 such that f k (U ) ∩
V �= ∅;

(2) The periodic points are dense in A;
(3) The property of sensitive dependence on initial

conditions: there exists δ > 0 such that, for any
x ∈ A and any neighborhood V of x , there exists
y ∈ V and k ≥ 0 such that

∣∣ f k (x) − f k (y)
∣∣ > δ.

This definition was discussed at length in the articles
[23–26], published shortly after [23]. In [24], Banks et
al. prove that the first two conditions can introduce the
third condition in a metric space. However, the other
conditions cannot derive transitivity nor the density of
the periodic points as shown in [25]. Moreover, when
attention is limited to maps on an interval, a stronger
result is acquired in [26]: let f be a continuousmap on a
interval which is not necessarily finite, then transitivity
is equivalent to Devaney’s chaos.

2.3 Symbolic dynamics

Let (S, d) be a separable metric space, and card (S) ≥
2, where card (·) denotes cardinality of set. And it is
natural to define the distance between two elements as
follows: d (a, b) ≡ |a − b| ,∀a, b ∈ S. Let

∑
(S) =

+∞∏
i=0

Si , Si = S, i = 0, 1, . . . ,

and define the metric on
∑

(S) from many possible
choices as follows:

ρ (s, s̄) =
+∞∑
i=0

1

2i
d (si , s̄i )

1 + d (si , s̄i )
,

s = (s0, s1, . . .) , s̄ = (s̄0, s̄1, . . .) ∈
∑

(S)

Apparently, the metric implies that if two symbolic
sequences agree on a beginning long block, then they
are sufficiently “close”.

Proposition 1 The space
∑

(S) with the metric has
the following structure [22]: (1) compactness, (2) total
disconnectivity, (3) completeness.

Now that the structure of
∑

(S) is established, next
denote by σ the shift map of

∑
(S) into itself:

σ ((s0, s1, . . .)) = (s1, s2, . . .) ∈
∑

(S)

then
(∑

(S), σ
)
is a one-side symbolic dynamics.

The shift map σ is chaotic in the sense of Devaney
and Li-Yorke, if S is a metric space with card (S) ≥ 2
and S is separable [27].

Proposition 2 The shift map σ defined above has sets
of motions as follows:

(1) a countable infinity of periodic orbits consisting of
orbits of all cycles;

(2) uncountable non-periodic orbits;
(3) a dense orbit.

When analyzing the dynamics of a (X, f ) is a daunting
task, it is viable to find a simpler or familiar space
which is topologically conjugate to (X, f ).

Definition 2 f and h are topological conjugate (denot-
ed (X, f ) � (Y, h)) if and only if C : X → Y is a
homeomorphism such that the following diagram com-
mutes.

Which means that the relation C ◦ f = h ◦ C holds.
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Since topological conjugacymaintains the dynamics
of a system, it is convenient to study a systemwith sim-
pler dynamics by establishing a conjugacy from (X, f )
to

(∑
(S), σ

)
.

Definition 3 For x ∈ X , let C (x) = s ∈ ∑
(S),

where s = (s0s1 . . .), such that f i (x) ∈ Xsi ,∀i ∈
N∗, where XS is a partition. Meanwhile Xs0s1s2... ={
x

∣∣x ∈ Xs0

}∩{
x

∣∣ f (x) ∈ Xs1

}∩{
x

∣∣ f 2 (x) ∈ Xs2

}∩
· · · ∩ · · · .
Lemma 1 Assume f is continuous, for x, x ′ ∈ X, x �=
x ′, and there exists a sufficiently small value δ > 0 for
any n ∈ N∗, if

∣∣x − x ′∣∣ < δ, then C (x) ,C
(
x ′) ∈

(s0s1 . . . sn).

Proof Since f : X → X is continuous, it is easy
to know that f n (e.g., f 2 means f ◦ f ) is also con-
tinuous on X , then for any n ∈ N∗ and ε > 0,
we can choose a δ > 0, if

∣∣x − x ′∣∣ < δ, such that∣∣ f n (x) − f n
(
x ′)∣∣ < ε. That is to say, when ε is suf-

ficiently small, f n (x) , f n
(
x ′) are in the same set of

the partition, therefore C (x) ,C
(
x ′) ∈ (s0s1 . . . sn). ��

Theorem 1 Assume that the function C : X → ∑
(S)

is defined as in Definition 3. If C is injective and surjec-
tive, besides f is continuous, then C is bicontinuous.

Proof (a) Since C is injective, for any x, x ′ ∈ X, x �=
x ′, C (x) �= C

(
x ′) holds. Next, for any ε > 0,

we can choose n ∈ N∗ such that ε > 1
2n , then

according to Lemma 1 For x ∈ X , where C (x) =
(s0s1s2 . . . sn . . .), choose δ (ε) > 0 such that if
d (x, y) < δ (ε), C (y) = (s0s1s2 . . . sn). Then

ρ (C (x) ,C (y)) =
+∞∑

i=n+1

1
2i

d(si ,s̄i )
1+d(si ,s̄i )

< 1
2n < ε.

So C is continuous;
(b) Since C is surjective, for any (s0s1s2 . . . sn . . .) ∈∑

(S), there is at least one element x ∈ X such
that C (x) = (s0s1s2 . . . sn . . .). Next, for any
ε > 0, we can choose n ∈ N∗ which satisfies
C ((x, ε)) = (s0s1s2 . . . sn . . .) ∈ Xs0s1s2...sn such
that if ρ (C (x) ,C (y)) < δ (ε) < 1

2n , that means
C (y) = (s0s1s2 . . . sn), obviously, y ∈ (x, ε), then
C−1 is continuous as well; ��

From the above, C is bicontinuous.

Let us recall the topological conjugacy, by appropri-
ately chosen

(∑
(S), σ

)
, C is well defined and com-

mutes f to σ . It is enough to show that C is a topo-
logical conjugacy when C is injective and surjective.
Furthermore, f is continuous, which is easily obtained.

3 The mechanism based on symbolic dynamics

In spite of many papers centering on analyses of digital
chaotic systems from both academic and practical per-
spective, a mature digitization-analysis theory has not
been constructed until now. Moreover, many research
results just play a role of improving the dynamical
degradation of digital chaotic systems. In the section,
we give a brief presentation of diverse remedies and
attempt to make clear from a new perspective that
how dynamical degradation of digital chaotic systems
occurs and how to purify digital chaos.

3.1 A new feasible mechanism for chaos degradation

When a chaotic map is realized on a finite precision
device, the state space become finite, denoted by XN ,
where N is the computing precision, and card (XN ) =
10N , then the function C : XN → ∑

(S) is only
injective without surjective property, which cannot be
a topological conjugacy, the dynamical degradation is
seen. Intuitively, on the finite state space, the degener-
ate system possess only finite periodic orbits (includ-
ing fixed points), without non-periodic orbits and dense
orbits.

A new feasiblemechanism is proposed in this paper:
First, we introduce a new system to extend the finite
state space. The state space of new system has cardi-
nality of the continuum. The extended state space is
denoted by X̄ N . If the discrete space can be extended
to infinite, or rather, card

(
X̄ N

) = card
(∑

S
) = ℵ,

the prerequisite is satisfied. Then by defining a suit-
able continuous function C , and establishing a topo-
logical conjugacy from

(
X̄ N , fF

)
to

(∑
(S), σ

)
, such

that
(
X̄ N , fF

)
is a chaotic system, and the problem of

dynamical degradation of digital chaos is fundamen-
tally solved

Remarkably, there are three sufficient conditions to
judge if a scheme fit our mechanism and can truly
counteract the dynamical degradation. The prerequi-
site is that the extended space must have cardinality of
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Fig. 1 Basic framework of
our mechanism

the continuum, without which next steps are meaning-
less. If the cardinality of extended space is countable,
the introduced system might be chosen wrongly. To
meet the second condition, that the function defined
must be continuous, scholars need some engineering
experience. Because the inappropriate control action
cannot satisfy the continuity condition. The last one is
exactly what we need. If a topological conjugacy can-
not be established, the continuous function defined is
not chaotic. The basic framework of our mechanism is
shown in Fig. 1.

3.2 Differences the remedies

In Sect. 1, three possible methods for dynamical degra-
dation of digital chaotic systems have been introduced:
using higher precisions; cascading multiple chaotic
systems; perturbing the chaotic systems. Actually, all
these methods aim at extending the state space, which
coincidewith ourmechanism. The differences between
them are to be uncovered.

Theorem 2 For any non-empty set A and B, the car-
dinality of the Cartesian product A × B is equal to
the product of the cardinalities of both A and B.
That is, card (A × B) = card (A) ·card (B), naturally,

card (A × B × C) = card (A)·card (B)·card (C) and
so on.

Proof Obviously, every element of A is paired with
every element of B. Then every pair makes up one ele-
ment of theCartesian product. Therefore, card (A × B)

= card (A) · card (B), similarly, card (A × B × C) =
card (A) · card (B) · card (C) is gained. ��
Remark Assume that one of the input sets is infinite
(countably and uncountably) and other sets are not
empty sets, card (A × B) = max {card (A) ,card (B)}
holds.

Corollary 1 If either A or B is uncountably infinite
and the other is not the empty set. the set A × B is
uncountably infinite.

For the convenience of illustration, we introduce a
new space Y to extend the state space of digital chaotic
systems, which can mirror the effects of various meth-
ods on digital chaotic systems, then all the ordered
pairs (xi , y) where xi ∈ XN and y ∈ Y consist in
the Cartesian product X̄N = XN × Y .

Using higher precision means the introduced space
Y = XM−N , where M is the higher computing preci-
sion, according to Theorem 2, card (XN × XM−N ) =
10M . Cascading multiple chaotic systems can extend
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the period of chaotic orbits. Notably, when cascading
the seed chaotic maps, wemust do normalization trans-
forms. By this means, the range of one map matches
the domain of its succeeder. The normalization stage
keeps the same discrete space. Therefore, what actually
effects is that the function fF : X̄ N → X̄ N becomes
more complicated by cascading multiple chaotic sys-
tems. It is also the reason that this method cannot guar-
antee some other property. As for the perturbation-
based solution, we first divide the perturbation sources
into two classes. One class of perturbation source is
generated under the computing precision of the degen-
erate system. Most perturbation-based methods belong
to this class. According to Theorem 2, the introduced
space Y = XN , then card (XN × XN ) = 102N . It may
explain that the perturbation-based solution is indeed
better than the other two.However, dynamical degrada-
tion is still only reduced greatly. It is far not enough to
solve the problem of dynamical degradation of digital
chaos. The other class of perturbation source perturbs
the degenerate system under the same computing pre-
cision. Nevertheless, it has its own dynamic behavior
such as random number [19], which may be a feasible
idea. According to Corollary 1, the introduced space is
uncountably infinite, so card (XN × Y ) = ℵ.

For the first three methods, although the introduced
spaces are different, the extended state space is finite.
Because the cardinality of extended state space is
smaller than the cardinality of symbolic space, namely
card

(
X̄ N

)
< card

(∑
S
) = ℵ. This common point

causes failing to establish the suitable function C with
injective and surjective property. Fortunately, the last
route that satisfied card (XN × Y ) = card

(∑
S
) = ℵ

seems promising. The rest is to define a suitable func-
tion C and establish a topological conjugacy from(
X̄ N , fF

)
to

(∑
(S), σ

)
, such that

(
X̄ N , fF

)
is a

chaotic system.

3.3 Concrete scheme

In this section, a scheme is put forward for solving the
dynamical degradation of digital chaotic systems. The
digital chaotic system has been defined in Sect. 2.1. In
our method, we choose a continuous chaotic system as
perturbation source to extend the discrete state space.
The continuous chaotic system has the form as follows:

y′ = G (y)

Whose state space is Y . Then the extended state space
is X̄ N = XN × Y . Defining the function:

F : X̄ N → XN(
xi , yi

) �→
(
xi + 1

10Q
h

(
xi , yi

))

here h
(
xi , yi

)
is the perturbation function:

h
(
xi , yi

)
=

{
1,

(
yi − xi

) × 10Q mod1 ≥ 0.5
0,

(
yi − xi

) × 10Q mod1 < 0.5

where xi is the state of perturbed system, yi denotes
the sampled output of continuous chaotic system, and
Q denotes the decimal width of computing precision.
Then defining the map on X̄ N = XN × Y :

f : X̄ N → XN(
xi , yi

) �→ (
FG

(
xi , yi

)
, yi+1

)

It is noteworthy that the evolution of a continu-
ous chaotic system appears as a component of our
scheme. Before establishing a topological conjugacy
from

(
X̄ N , f

)
to

(∑
(S), σ

)
, fF must be continuous in

the extended space X̄ N = XN×Y .Wefirst define a new

distance between two points P = (x, y) ,
�

P =
(

�
x,

�
y
)

∈ X̄ N , by

d
(
P,

�

P
)

= dx
(
x,

�
x
)

+ dy
(
y,

�
y
)

=
N∑

k=1

δ
(
xk,

�
xk

)
+

∣∣∣y − �
y
∣∣∣

Theorem 3 fF is a continuous function.

Proof Weuse the definition of continuity in topological
space. Let 2XN = {S |S ⊆ XN } be the power set of XN ,
U = {(x, y) |x ∈ S, y ∈ (a, b) ⊆ Y } be an arbitrary
subset. For a point P ′ = (

x ′, y′) ∈ U , an a sufficiently
small value ε1 > 0, the spherical neighborhood of P ′
denotes by B

(
P ′, ε1

) = {
P ∈ X̄ N

∣∣d (
P, P ′) < ε1

}
.

In fact, dx
(
x,

�
x
)

is an integer, so in the spher-

ical neighborhood, dx
(
x,

�
x
)

= 0 holds. Let ε =
min {y − a, b − y, ε1}, such that B

(
P ′, ε

) ⊂ U , there-
fore,U is an open set, all the open sets construct a topol-
ogy. We will prove that f −1

F (U ) is an open set in U .
Let us recall the perturbation function h

(
xi , yi

)
, then

f −1
F (U ) =

{
(x, y)

∣∣∣x− 1
10Q

∈ S, y∈G−1 (a, b) ⊆ Y
}

or f −1
F (U ) = {

(x, y)
∣∣x ∈ S, y ∈ G−1 (a, b) ⊆ Y

}
.

Considering that G is continuous, then f −1
F (U ) in

either case is still an open set. To sum up, fF is conse-
quently continuous. ��
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Since we have extended the state space, the function
C defined in Definition 3 must be redefined as follows.

Definition 4 For P ∈ X̄ N , let C̄ (P) = s ∈ ∑
(S),

where s = (s0s1 . . .), such that FG
(
f iF (P)

) ∈
Xsi ,∀i ∈ N∗, where XS is a partition on XN ,
meanwhile X̄ S is a partition on X̄ N , X̄s0s1s2... ={
P

∣∣FG (P) ∈ Xs0

} ∩ {
P

∣∣FG ( fF (P)) ∈ Xs1

} ∩{
P

∣∣FG
(
f 2F (P)

) ∈ Xs2

} ∩ · · · ∩ · · · .

Theorem 4 For P, P ′ ∈ X̄ N , P �= P ′, and there
exists a sufficiently small value δ > 0 for any n ∈ N∗,
if

∣∣P − P ′∣∣ < δ, then C̄ (P) , C̄
(
P ′) ∈ (s0s1 . . . sn)

Proof According to Lemma 1 and Theorem 3, this the-
orem is clearly true. ��

Theorem 5
(
X̄ N , fF

) � (∑
(S) , σ

)
.

Proof Let C̄ (P) be defined as in Definition 4. Then
C̄ (P) is well defined. First we will prove that C̄ (P) is
bicontinuous.

Injective For P, P ′ ∈ X̄ N , P �= P ′, such that
f nF (P) , f nF

(
P ′) are defined for all n ∈ N∗. Differ-

ent situations are discussed: (1) x = x ′, y �= y′,
since G is a chaotic map, G has sensitive depen-
dence on initial conditions. Then, for y, y′,

(
y − y′) ×

10Q mod1 < 0.5, there exists n ∈ N∗, such that(
yn − yn

′) × 10Q mod1 > 0.5, then it is easy to ver-

ify that FG
(
f nF (P)

) �= FG
(
f nF

(
P ′)), so they must

lie in different orbits, that is, C̄ (P) �= C̄
(
P ′). (2)

x �= x ′, y = y′, openly, FG
(
f nF (P)

) �= FG
(
f nF

(
P ′)).

(3) x �= x ′, y �= y′, in this case, after a couple of itera-
tions, this case is reduced to case (1). Therefore C̄ (P)

is one-to-one.

Surjective Let s = (s0, s1, . . .). Consider the period
X̄s0 = {

P
∣∣FG (P) ∈ Xs0

}
. According to the defini-

tion of h
(
xi , yi

)
, there exists an open set (a, b) ∈ Y ,

and x ∈ Xs0 , such that Xs0 ×(a, b) ⊆ X̄s0 . Since (a, b)

is isomorphic to R (x ∈ (a, b) �→ tan
(

π
2

(
2x−b−a
b−a

))

is an isomorphism), for X̄s0s1s2..., there is at least one
element P in X̄ N such that C̄ (P) ∈ (s0s1 . . . sn), so
C̄ (P) is onto. ��

By Theorem 1 C̄ (P) is bicontinuous. Last but not
least, by Definition 2 the following diagram commutes:

Therefore, we conclude that fF is chaotic in the sense
of Devaney and Li-Yorke on X̄ N = XN × Y .

4 Example and simulations

Logistic map is one of the most widely used 1-D dis-
crete chaotic maps in many applications. In this sec-
tion, Logistic chaotic map is studied as an example to
show the role of the proposed hybrid method. Mathe-
matically, consider the following logistic chaotic map
realized on the finite precision device:

xi = BN

(
axi−1

(
1 − xi−1

))
, (1)

where a is the control parameterwith range of [3.57, 4],
and it has more complex chaotic behaviors when a
approaches to 4. Since the Logistic map has unpre-
dictable trajectories and good ergodicity in the interval
[0, 1], BN keeps N significant and confines all the states
in the finite set as follows:

XN =
{
x

∣∣∣∣x = k × 1

10N
, k = 0, 1, 2, . . . , 10N − 1

}

On the other side, as a perturbation source, Lorenz sys-
tem is applied to extend the discrete state space:⎧⎨
⎩

˙̄x = σ (ȳ − x̄)
˙̄y = ρ x̄ − ȳ − x̄ z̄
˙̄z = x̄ ȳ − β z̄

which is chaotic when parameters σ = 10, ρ = 30 and
β = 8

3 . Then the perturbed digital logistic map can be
represented as:

xi = BN

(
axi−1

(
1 − xi−1

))

+ 1

10N
h

(
xi , yi

)
mod1, (2)

Next, several indicators are analyzed to appraise the
behavior of the perturbed digital logistic map. The
quantization function is chosen as BN (·) = round (·).

4.1 Trajectories and phase diagrams

The precision is set at 10−3 and 10−6 (denoted by
N = 3 and N = 6), respectively. Let a = 4, the
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Fig. 2 Trajectories of three
comparative systems. a The
chaotic trajectory of original
logistic map with initial
value x0 = 0.1. b, c The
trajectories of digital
Logistic map and perturbed
map with precision N = 3
and the same initial value
x0 = 0.1

initial value x0 = 0.1 for both Eqs. (1) and (2). The
trajectories of two maps with different precisions are
shown in Figs. 2 and 3. Figure 2 shows that the trajec-
tory of Eq. (1) quickly falls into a cycle; conversely,
the trajectory of Eq. (2) behaves chaotically again after
being perturbed. As the precision increases, the trajec-
tory of Eq. (1) falls into a cycle more slowly. The red
box in Fig. 3b clearly shows that cycle appears. How-
ever, Eq. (2) still behaves chaotically, as Fig. 3c shows.
As we all know, Logistic chaotic map has a parabolic
attractor. All the subplots in Fig. 4 show relatively com-
plete retention of parabolic attractor, indicating that the
perturbed Logistic map in Eq. (2) revert to the original
version of the phase diagram to a great extent.

4.2 Autocorrelation analysis

The analysis of autocorrelation is a mathematical tool
when testing randomness. For ideal random sequences,
the autocorrelation should be delta function. The auto-
correlation of ideal Logistic chaotic map is similar to
delta function. The precision is set at N = 6. When the
sequences are confined to finite state space, the cor-
relation of a trajectory with a delayed copy becomes
strong, which causes the system vulnerable to correla-

tion attack, as shown in Fig. 5a. Figure 5b shows, after
being perturbed, the correlation of outputs is driven to
be delta-like again. This result shows that the hybrid
method can restore ideal chaotic feature.

4.3 Frequency distributions

Logistic chaotic map has a U type invariant density
function, as shown in Fig. 6a. In order to compare the
distributions of digital Logistic maps before (Fig. 6b)
and after (Fig. 6c) perturbed, we divide the whole
interval [0,1] into 256 equal subintervals. Figure 6b
shows that the density function is destroyed with obvi-
ous jagged edges appearing. The distribution becomes
worse due to finite precision, which is set at N = 6.
After being perturbed, the degraded distribution can
be restored to become U type function, which is even
smoother. Therefore, frequency attacks can be effec-
tively resisted in the proposed hybrid method.

4.4 Approximate entropy

Further, we investigate the complexity of three com-
parative systems via approximate entropy, which was
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Fig. 3 Trajectories of three comparative systems. a The chaotic trajectory of original logistic map with initial value x0 = 0.1. b, c the
trajectories of digital Logistic map and perturbed map with precision N = 6 and the same initial value x0 = 0.1

Fig. 4 Phase diagrams of digital Logistic map before (left column) and after (right column) being perturbed with the same initial value
x0 = 0.1 and different computing precisions

proposed by Pincus [28], is a technique used to quantify
the amount of regularity and unpredictability of fluc-
tuations over time series data. Figure 7 shows that the
approximate entropy of digital Logistic map remains

in a small range at first; then, it increases significantly
and converges to that of the original Logistic chaotic
map as the precision increases. However, the approx-
imate entropy in our scheme fluctuates around that of
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Fig. 5 Autocorrelation functions of outputs of a Eq. (1) and b Eq. (2) with the same initial value x0 = 0.1 and computing precision
N = 6

Fig. 6 Frequency distributions of three comparative systems. a The original logistic map with initial value x0 = 0.1. b, c the frequency
distributions of digital Logistic map and perturbed map with computing precision N = 6 and the same initial value x0 = 0.1

the Logistic chaotic map even in low precisions. After
carefully observing the sequences in lowprecisions, we
find that 0’s appears a lot. This inevitable phenomena
caused by low precisions can explain the fluctuation
mentioned above. Actually, the approximate entropy

of the perturbed digital Logistic map is a little larger
than that of the Logistic chaotic map as the precision
increases, which implies the validity of our scheme to
solve the dynamical degradation of digital chaotic sys-
tems.
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Fig. 7 Approximate entropy values of three comparative systems under different number of significant digits with the same initial value
x0 = 0.1

5 Conclusions

In this paper, a new mechanism, which can provide
guidance for effective schemes for dealing with the
dynamical degradation of digital chaotic systems is
proposed.Themechanismmainly includes twoaspects.
One is extending discrete state space by introducing a
space with cardinality of the continuum, the other is
defining a suitable continuous function and establish-
ing a topological conjugacy from the extended space
to a chaotic shift map in symbolic dynamics. Based
on the mechanism, it is rigorously proven that a class
of chaos-based digital systems can be perturbed to be
chaotic again by a continuous chaotic system. Simu-
lation results show that the perturbation well preserve
the complexity, the ergodicity of orbits, distribution and
other statistical properties of the original chaotic sys-
tems. Last but not least, the mechanism proposed in
this paper can direct to design more suitable schemes
to counteract dynamical degradation for different appli-
cation scenarios.
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