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Abstract This paper focuses on designing state esti-
mators for fractional-ordermemristive neural networks
(FMNNs) with time delays. It is meaningful to propose
a suitable state estimator for FMNNsbecause of the fol-
lowing two reasons: (1) different initial conditions of
memristive neural networks (MNNs)maycauseparam-
eter mismatch; (2) state estimation approaches and
theories for integer-order neural networks cannot be
directly extended and used to deal with fractional-order
neural networks. The present paper first investigates
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state estimation problem for FMNNs. By means of
Lyapunov functionals and fractional-order Lyapunov
methods, sufficient conditions are built to ensure that
the estimation error system is asymptotically stable,
which are readily solved by MATLAB LMI Toolbox.
Ultimately, two examples are presented to show the
effectiveness of the proposed theorems.
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1 Introduction

It is well known that fractional derivatives are a gen-
eralization of integer-order derivatives [1,2]. Because
fractional derivatives have the special feature of infinite
memory in comparison with integer-order derivatives,
fractional-order differential equations are more effec-
tive and precise tools in describing the memory and
hereditary properties than classical integer-order ones
[3,4]. Research evidence shows fractional-order elec-
tric conductance exists in the cell membrane [5]. Both
biological neurons and fractional-order derivatives
have memory. Therefore, fractional-order neural net-
works (FNNs) can more accurately describe and simu-
late neurons in the human brain than classical integer-
order neural networks. Researchers become interested
in the dynamics of FNNs and dynamical behaviors of
FNNs have been addressed in the last years [6–16].
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Memristor comes from the words: memory and
resistor, which was first presumed as the fourth fun-
damental circuit element by Chua [17]. The first mem-
ristor device was realized in Hewlett-Packard labora-
tory [18,19]. Due to the long-term memory property
of memristors, memristors were utilized to simulate
synapses. With the replacement of resistors by mem-
ristors in classical neural networks, a special neural
network named memristive neural network has been
constructed. The firstmemristor-based neural networks
was proposed by Pavlov [20]. The neural networks con-
tains only three neurons connected by two synapses
simulated by memristors, but it can realize the basic
function of brain associative memory. Associate mem-
ory function was realized in [21], in which the neu-
ral network contains three electronic neurons and the
synapses were also simulated by memristors. Guo et
al. [22] pointed out that the number of equilibria in
an n-neuron memristor-based cellular neural network
significantly increases up to 22n2+n compared with 2n

in a classical cellular neural network. The applica-
tion of memristor-based cellular neural networks for
associative memories will evidently enhance the stor-
age ability. At the same time, some literature showed
that memristor-based neural networks also have a great
potential application in the nonlinear circuits [23–25]
and the new generation of powerful brain-like neu-
ral computers [26–28]. The memristors have varying
history-dependent resistance, which makes memristor-
based neural networks having more complex and fruit-
ful dynamics compared with classical neural networks.
Recently, important papers have been published on the
dynamics of MNNs, such as stability [29], synchro-
nization [30–34], attractivity [22], passivity [35].

It should be pointed out that fractional-order sys-
tems have the advantage in describing the hereditary
pinched hysteresis property of memristors. Therefore,
fractional derivatives are naturally introduced to be
combinedwithmemristors to build a newkind of neural
networks called FMNNS. The Mittag-Leffler stability
and synchronization criteria of FMNNswere derived in
[36]. By means of a new fractional derivative inequal-
ity, the global Mittag-Leffler stabilization for a class
of FMNNs was investigated [37]. Time delay is well
accepted in neural networks and it is considered as the
source of poor system behaviors, such as instability,
bifurcation, chaotic attractors [38–40]. In this case, it
is important to investigate FMNNs with time delays
[41–45]. Using fractional-order comparison theorem

and linear feedback control, Chen et al. studied the sta-
bility and synchronization conditions for FMNNs with
time delay [41]. The adaptive synchronization criteria
are given for FMNNs with time delay in [42].

Among the application of MNNs, the neuron state
information is often needed to cope with some control
schemes, such as pinning control or state feedback con-
trol [46–49]. But for MNNs, we often have difficulty in
obtaining all the neurons state information because of
the existence of network congestion, packet dropouts
or missing measurements. Thus, it is a significant way
to evaluate the neuron state by means of the obtainable
network outputs. Till now, there are some results about
the state estimation for integer-order MNNs [50–52].
For all we know, there are few results about the state
estimation of FMNNswith andwithout time delay. Our
goal is to estimate the system states to better under-
stand the true system information, which will benefit
its important applications in control fields.

Motivated by the reasons above, we focus on design-
ing a proper state estimator for a class of FMNNs with
time delay. The novelty of this paper includes three
aspects. (1) For the first time, state estimators for a class
of FMNNs with and without time delays are designed;
(2) By means of Lyapunov approaches for fractional-
order systems, state estimation theorems are expressed
in terms of LMIs. Furthermore, some numerical simu-
lation examples are given to illustrate the validity and
applicability of the obtained theorems. (3) The meth-
ods used in this paper are also valid for the state estima-
tion problem for FMNNswith discontinuous activation
functions.

The content of this paper is as follows. In Sect. 2, we
formulate themodels under investigation and look back
some fundamental definitions and lemmas. In Sect. 3,
state estimation criteria are established. In Sect. 4, two
examples are used to demonstrate the effectiveness of
the proposed theorems. Finally, concluding remarks are
given in Sect. 5.

2 Preliminaries

We introduce mathematical models of FMNNs with
time delay, and recall Caputo fractional derivative and
some lemmas.
Notation Throughout this paper, let R, Rm×n and Rn

represent the set of real numbers, m × n real matrices
and n-dimensional vectors, respectively. vT (respec-
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tively, AT ) denotes the transposition of a vector v

(respectively, matrix A). In is the n ×n identify matrix.
| · | is the Euclidean norm in R

n . The notation P > 0
refers to a positive definite and symmetric matrix.
λmax(A) (λmin(A)) is the maximum (minimum) eigen-
value of the matrix A. The ∗ is adopted to refer to the
symmetric term in a matrix.

Definition 1 [1,2] Define q order fractional integral
for a function ξ as follows:

I qξ(t) = 1

Γ (q)

∫ t

t0
(t − s)q−1ξ(s)ds,

where t ≥ t0 and q > 0.

Definition 2 [1,2] Suppose ξ ∈ Cm([t0,+∞),R), its
q order Caputo’s derivative is defined as follows:

Dqξ(t) = 1

Γ (m − q)

∫ t

t0
(t − s)m−q−1ξ (m)(s)ds,

where t ≥ t0 and m is a positive integer satisfying
m − 1 < q < m. Specially, when 0 < q < 1,
Dqξ(t) = 1

Γ (1−q)

∫ t
t0
(t − s)−qξ ′(s)ds.

Consider the following FMNNs with a time delay:

Dαv(t) = −Cv(t) + A(v(t)) f̃ (v(t))

+ B(v(t)) f̃ (v(t − σ)) + J, (1)

where 0 < α < 1, v(t) = (v1(t), v2(t), . . . , vn(t))T ∈
R

n is the neuron’ state variable; C = diag{c1,
c2, . . . , cn} > 0, f̃ (v(t − σ)) = ( f̃1(v1(t − σ)),

f̃2(v2(t − σ)), . . . , f̃n(vn(t − σ)))T and f̃ (v(t)) =
( f̃1(v1(t)), f̃2(v2(t)), . . . , f̃n(vn(t)))T are the neu-
ron activation functions with and without time delay;
σ denotes the timedelay, J = (J1(t), J2(t), . . . , Jn(t)) ∈
R

n denotes an external input vector. A(v(t))
= [ai j (vi (t))]n×n , B(v(t)) = [bi j (vi (t))]n×n are the
connection memristive weight matrix at time t and
t − σ :

ai j (vi (t)) =
{

a∗
i j , |vi (t)| ≤ Ti ,

a∗∗
i j , |vi (t)| > Ti ,

bi j (vi (t)) =
{

b∗
i j , |vi (t)| ≤ Ti ,

b∗∗
i j , |vi (t)| > Ti .

Ti > 0 are switching jumps; weights a∗
i j , a∗∗

i j , b∗
i j and

b∗∗
i j are all constants for 1 ≤ i, j ≤ n.
In this paper, we consider Filippov solution for all

systems because of the discontinuity of ai j (vi (t)) and
bi j (vi (t)).

(H1) ∀i ∈ {1, . . . , n}, f̃i (0) = 0, and f̃i satisfies Lips-
chitz conditions:

| f̃i (u) − f̃i (v)| ≤ li |u − v|, ∀u, v ∈ R,

where li > 0, L = diag{l1, l2, . . . , ln}.
Denote âi j = max{a∗

i j , a∗∗
i j }, ǎi j = min{a∗

i j , a∗∗
i j },

b̂i j = max{b∗
i j , b∗∗

i j }, b̌i j = min{b∗
i j , b∗∗

i j }, ai j =
1
2 (âi j + ǎi j ), ãi j = 1

2 (âi j − ǎi j ), bi j = 1
2 (b̂i j + b̌i j ),

b̃i j = 1
2 (b̂i j − b̌i j ).

Based on the fractional differential inclusion [53]
and some transformation [54,55], the FMNNs (1) is
equivalent to the following system:

Dαv(t) = −Cv(t) + (A + E1Σ1(t)F1) f̃ (v(t))

+ (B + E2Σ2(t)F2) f̃ (v(t − σ)) + J, (2)

where Ã = (ãi j )n×n, B̃ = (b̃i j )n×n, A = (ai j )n×n

and B = (bi j )n×n;
E1 = (

√
ã11ε1, . . . ,

√
ã1nε1, . . . ,

√
ãn1εn, . . . ,√

ãnnεn)n×n2 , F1 = (
√

ã11ε1, . . . ,
√

ã1nεn, . . . ,√
ãn1ε1, . . . ,

√
ãnnεn)T

n2×n
, E2 = (

√
b̃11ε1, . . . ,√

b̃1nε1, . . . ,

√
b̃n1εn, . . . ,

√
b̃nnεn)n×n2 , F2 =

(
√

b̃11ε1, . . . ,
√

b̃1nεn, . . . ,

√
b̃n1ε1,. . . ,

√
b̃nnεn)

T
n2×n

,

[Σk(t)]n2×n2 = {diag{θk
11(t), . . . ,

θk
1n(t), . . . , θk

n1(t), . . . , θ
k
nn(t)} : |θk

i j | ≤ 1, 1 ≤ i, j ≤
n, k = 1, 2.} εi ∈ R

n, the ith element of εi is 1 and
others are 0;

We can prove ΣT
k (t)Σk(t) ≤ I, k = 1, 2.

In relatively large-scalememristor-based neural net-
works which are state-dependent systems, it is not an
easy thing to get all the neurons’ state information. The
neuron states can be observed from the available net-
work output.

The network measurements u(t) ∈ R
m is supposed

as follows:

u(t) = Dv(t) + h(t, v(t)), (3)

where D ∈ R
m×n is a known constant matrix, and

h : R
+ × R

n → R
m denotes the neuron-dependent

nonlinear disturbance satisfying Lipschitz condition:

|h(t, u) − h(t, v)| ≤ |H(u − v)|, (4)

with H ∈ R
m×n and h(t, 0) = 0.

The estimator v̂(t) ∈ R
n is as follows.

Dαv̂(t) = −C v̂(t) + A f̃ (v̂(t)) + B f̃ (v̂(t − σ))
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+ K (u(t) − Dv̂(t) − h(t, v̂(t))) + J, (5)

the estimator gain K ∈ R
n×m will be determined later.

Remark 1 Different initial conditions might cause a
mismatch parameter problem between the system state
and the estimator state if the estimator system has also
memristiveweights. To dealwith this problem, a proper
estimator (5) is designed by transforming system (1)
into the equivalent model (2).

For the reason of simplification, letΔA = E1Σ1(t)F1,

ΔB = E2Σ2(t)F2, and denote the elimination error
by ṽ(t) = v(t) − v̂(t). The error dynamical system is
derived from (2) and (5):

Dαṽ(t) = −(C + K D)ṽ(t) + A f (ṽ(t))

+ B f (ṽ(t − σ)) + K h̃(t, ṽ(t)))

+ΔA f̃ (v(t)) + ΔB f̃ (v(t − σ)), (6)

where f (ṽ(t)) = f̃ (v(t)) − f̃ (v̂(t)), h̃(t, ṽ(t)) =
h(t, v(t)) − h(t, v̂(t)).

The initial condition of (6) is ṽ(s) = ψ(s), s ∈
[t0 − σ, t0], where ψ(s) ∈ C([t0 − σ, t0],Rn).

Let v̄(t) = [vT (t), ṽT (t)]T be the augmented vec-
tor, and the augmented system can be obtained from
(2) and (6):

Dαv̄(t) = −C̄ v̄(t) + Āξ1(t) + B̄ξ2(t) + K̄ ξ3(t), (7)

where

C̄ =
[

C 0
0 C + K D

]
, Ā =

[
A + ΔA 0

ΔA A

]
,

B̄ =
[

B + ΔB 0
ΔB B

]
, K̄ =

[
0 0
0 K

]
,

ξ1(t) = [ f̃ T (v(t)), f T (ṽ(t))]T , ξ2(t) = [ f̃ T (v(t −
σ)), f T (ṽ(t − σ))]T , ξ3(t) = [hT (v(t)), h̃T (ṽ(t))]T .

Definition 3 For everyψ ∈ C([t0−σ, t0],Rn), system
(5) becomes an asymptotical state estimator of system
(1), if limt→∞ ṽ(t) = 0.

Lemmas 1–5 play an important role in proving the
main theorems.

Lemma 1 [56] Suppose u(t) ∈ R
n is continuous and

differential, Q ∈ R
n×n and Q > 0. Then, we have

1

2
DαuT (t)Qu(t) ≤ uT (t)Q Dαu(t), ∀α ∈ (0, 1).

Lemma 2 [57] Let X, Y ∈ R
n, ε > 0, then we have:

X T Y + Y T X ≤ εX T X + ε−1Y T Y.

Lemma 3 (Schur Complement) [58] The matrix

Q =
[

Q11 Q12

QT
12 Q22

]
< 0

if and only if conditions ① or ② holds:
① Q22 < 0, Q11 − Q12Q−1

22 QT
12 < 0;

② Q11 < 0, Q22 − QT
12Q−1

11 Q12 < 0.

Lemma 4 [59] The Caputo fractional-order func-
tional differential equation{

Dαu(t) = g(t, ut ),

ut0 = ψ ∈ C([t0 − σ, t0],Rn),

where ut = u(t + θ) ∈ C([t0 − σ, t0],Rn),−σ ≤
θ ≤ 0, is globally uniformly asymptotically stable, if
conditions (i)–(iii) are satisfied:

(i) g : [t0,∞)×C([t0−σ, t0],Rn) → R
n is piecewise

continuous and locally Lipschitz,
(ii) V (t, u) ∈ C1(R × R

n,R) → R and there exists
two positive functions q1(s) and q2(s) (s > 0)
satisfying q1(||u||) ≤ V (t, u) ≤ q2(||u||), where
q1(0) = q2(0) = 0 and q2(s) is strictly increasing.

(iii) There exist two constants ε > μ > 0 such
that DαV (t, u(t)) ≤ −εV (t, u(t))+μ sup−σ≤θ≤0
V (t + μ, u(t + θ)) for t ≥ t0.

Lemma 5 [60] The equilibrium point u = 0 of
the fractional-order differential equation Dαu(t) =
g(t, u(t)) with initial condition u(t0) = ut0 is Mittag-
Leffler stable if the following conditions are satisfied:

(i) V (t, u(t)) is a continuously differential function
and satisfy

α1‖u‖a ≤ V (t, u(t)) ≤ α2‖u‖ab,

Dβ V (t, u(t)) ≤ −α3‖u‖ab,

where t ≥ 0, 0 < β < 1, α1, α2, α3, a, b are
positive constants.

(ii) 0 ∈ D ⊂ R
n, for u ∈ D, V (t, u(t)) is locally Lip-

schitz. D = R
n implies the global Mittag-Leffler

stability of u = 0.

Remark 2 The asymptotical stability can be derived
from Mittag-Leffler stability.

Remark 3 The common integer-order Lyapunovmeth-
ods used in the state estimation of neural networks are
not suitable to deal with fractional-order ones. For this
reason, Lemmas 4 and 5 are adopted to investigate the
state estimation of FNNs.
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3 Main results

We will present state estimation theorems for FMNNs
in this section.

Theorem 1 Suppose that (H1) holds, for given con-
stants ε > μ > 0, system (5) is an asymptotical state
estimator of the delayed FMNN (1), if there exist two
real matrices P1 > 0, P2 > 0, one real matrix X,

and constants β > 0, ρ1 > 0, ρ2 > 0, satisfying the
following LMIs:

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Φ11 0 P1B 0 P1E1 0
∗ Φ22 0 P2B P2E1 0
∗ ∗ −β I 0 0 P1E2

∗ ∗ ∗ −β I 0 P2E2

∗ ∗ ∗ ∗ −ρ1 I 0
∗ ∗ ∗ ∗ ∗ −ρ2 I

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0, (8)

[
βLT L − μP1 0

0 βLT L − μP2

]
< 0, (9)

where

Φ11 = −P1C − CT P1 + P1AL + LT AT P1 + εP1

+ ρ1LT FT
1 F1L + ρ2LT FT

2 F2L ,

Φ22 = −P2C − X D − CT P2 − DT X T + P2AL

+ LT AP2 + εP2 + X H + H T X T .

Furthermore, the gain matrix is designed by

K = P−1
2 X.

Proof Construct the following Lyapunov functional as

V (t) = v̄T (t)P v̄(t),

where P = diag{P1, P2}.
According to (H1), (4) and Lemmas 1, 2, we get

DαV (t) ≤ 2v̄T (t)P Dαv̄(t)

= 2v̄(t)P[−C̄ v̄(t) + Āξ1(t) + B̄ξ2(t) + K̄ ξ3(t)]
≤ v̄T (t)(−PC̄ − C̄T P)v̄(t) + 2v̄T (t)P ĀL̄ v̄(t)

+ 2v̄T (t)P B̄ L̄ v̄(t − σ) + 2v̄T (t)P K̄ H̄ v̄(t)

≤ v̄T (t)(−PC̄ − C̄T P)v̄(t) + 2v̄T (t)P ĀL̄ v̄(t)

+ 2v̄T (t)P K̄ H̄ v̄(t) + 1

β
v̄T (t)P B̄ B̄T P v̄(t)

+βv̄T (t − σ)L̄T L̄ v̄(t − σ)

≤ v̄T (t)(−PC̄ − C̄T P + P ĀL̄ + L̄T ĀT P

+ 1

β
P B̄ B̄T P + P K̄ + K̄ T P)v̄(t)

+βv̄T (t − σ)L̄T L̄ v̄(t − σ), (10)

where L̄ = diag{L , L}.
By Lemma 3, Φ < 0 is equivalent to

(Ψ1 + ρ1 Ñ T
1 Ñ1 + ρ2 Ñ T

2 Ñ2) + ρ−1
1 Ẽ1 ẼT

1

+ ρ−1
2 Ẽ2 ẼT

2 < 0, (11)

where

Ψ1 =
[

Ψ11 P Be

∗ −β I

]
4n×4n

,

Ψ11 = −PC̄ − C̄T P + P Āe L̄ + L̄T ĀT
e P + εP

+P K̄ H̄ + H̄ T K̄ T P.

Ẽ1 =
⎡
⎣ P1E1

P2E1

02n×n2

⎤
⎦ , Ẽ2 =

⎡
⎣02n×n2

P1E2

P2E2

⎤
⎦

Ae =
[

A 0
0 A

]
, Be =

[
B 0
0 B

]
.

Ñ1 = [F1L , 0n2×3n], Ñ2 = [F2L , 0n2×3n].
Let

Ψ
′
1 = Ẽ1Σ1(t)Ñ1 + Ñ T

1 ΣT
1 (t)ẼT

1

+ Ẽ2Σ2(t)Ñ2 + Ñ T
2 ΣT

2 (t)ẼT
2

≤ ρ−1
1 Ẽ1 ẼT

1 + ρ−1
2 Ẽ2 ẼT

2

+ ρ1 Ñ T
1 Ñ1 + ρ2 Ñ T

2 Ñ2.

It follows from (10) and (11),

Ψ � Ψ1 + Ψ
′
1 < 0, (12)

where

Ψ =
[

Ψ
′
11 P B̄
∗ −β I

]
,

Ψ
′
11 = −PC̄ − C̄T P + P ĀL̄ + L̄T ĀT P + εP

+ P K̄ H̄ + H̄ T K̄ T P.

Based on Lemma 3, Ψ < 0 implies that

−PC̄ − C̄T P + P ĀL̄ + L̄T ĀT P + 1

β
P B̄ B̄T P

+P K̄ + K̄ T P < −εP. (13)

Using (9), (10) and (13), we have

DαV (t) ≤ −εV (t) + μV (t − σ).

Combing the conditions ε > μ > 0, all the condi-
tions in Lemma 4 are satisfied, therefore, system (7)
is globally asymptotically stable. So, system (5) is an
asymptotical state estimator of system (1). This com-
pletes the proof. �
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1220 H. Bao et al.

Remark 4 The state estimation criteria given in The-
orem 1 are given in terms of LMIs that are of less
conservatism and can be solved easily by MATLAB.
The conservatism can also be effectively decreased by
using the delay-partitioning technique. It is known that
the results obtained by delay-partitioning technique are
dependent on the partitioning size. The size of the LMIs
will get bigger and the computation complexity will
increase if delay-partitioning technique is adopted. So,
how to balance the partitioning size and the calculation
burdens is also an interesting problem.

When B(v(t)) = 0, there is no delay in system (1).
In this case, we have the following systems and results:

Dαv(t) = −Cv(t) + (A + ΔA) f̃ (v(t)) + J. (14)

The estimator is of the form

Dαv̂(t) = −C v̂(t) + A f̃ (v̂(t)) + J

+ K (u(t) − Dv̂(t) − h(t, v̂(t))), (15)

and the error dynamical system and the augmented sys-
tem are as follows.

Dαṽ(t) = −(C + K D)ṽ(t) + A f (ṽ(t)) + K h̃(t, ṽ(t)))

+ ΔA f̃ (v(t)), (16)
Dαv̄(t) = −C̄ v̄(t) + Āξ1(t) + K̄ ξ3(t), (17)

Suppose that the activation functions satisfy the fol-
lowing condition:

(H2) [61] For i ∈ {1, 2,. . . , n}, the neuron activation
functions f̃i (·) are continuous and bounded, and
satisfy the following conditions:

l−i ≤ f̃i (s1)− f̃i (s2)
s1−s2

≤ l+i ,∀s1, s2 ∈ R(s1 �= s2)

f̃i (0) = 0, i = 1, 2, . . . , n.

Remark 5 The conditions in (H2) are weaker than the
usual Lipschitz conditions because the constants l−i , l+i
can be positive, negative, or zero. The lower and upper
bounds of the activation functions can be accurately
determined. Hence, the conservatism can be effectively
reduced by means of LMIs.

Theorem 2 Suppose (H2) holds, system (15) is an
asymptotical state estimator of FMNN (14), if there

exist positive matrices P1 > 0, P2 > 0, Λ =
diag{λ1, λ2, . . . , λn} > 0, ρ > 0, γ > 0, such that

Π =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π11 0 Π13 0 0 0 P1E1 0
∗ Π22 0 Π24 0 X P2E1 0
∗ ∗ Π33 0 0 0 0 0
∗ ∗ ∗ −Λ 0 0 0 0
∗ ∗ ∗ ∗ −ρ I 0 0 0
∗ ∗ ∗ ∗ ∗ −ρ I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −γ I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(18)

where

Π11 = −P1C − CT P1 + ρH T H − ΛC1,

Π13 = P1A − ΛC2,

Π22 = −P2C − CT P2 + ρH T H

−ΛC1 − X D − DT X T ,

Π24 = P2A − ΛC2, Π33 = −Λ + γ FT
1 F1.

Moreover, the state estimator gain matrix can be
designed as

K = P−1
2 X.

Proof Weconstruct the followingLyapunov functional

V (t) = v̄T (t)P v̄(t),

where P = diag{P1, P2}.
Calculating the fractional derivative of V (t) along

the solution of (17), we obtain that

DαV (t) ≤ 2v̄T (t)P Dαv̄(t)

= 2v̄(t)P[−C̄ v̄(t) + Āξ1(t) + K̄ ξ3(t)]. (19)

From (H2), there exist Λ = diag{λ1, λ2, . . . , λn} > 0,
such that

[
v̄(t)
ξ1(t)

]T [
�C1 �C2
�C2 �

] [
v̄(t)
ξ1(t)

]
≤ 0 (20)

where � = diag{Λ,Λ}, C1 = diag{C1, C1}, C2 =
diag{C2, C2}, C1 = diag{l−1 l+1 , . . . , l−n l+n }, C2 =
diag{− l−1 +l+1

2 , . . . , − l−n +l+n
2 }.

From (4), one gets for a positive constant ρ > 0,

ρξ T
3 (t)ξ3(t) − ρv̄(t)HTHv̄(t) ≤ 0, (21)

where H = diag{H, H}.
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Using (19)–(21), we obtain that

DαV (t) ≤ ζ T (t)Π̃ζ(t),

where

Π̃ =
⎡
⎣ Π̃11 P Ā − �C2 P K̄

∗ −� 0
∗ ∗ −ρ I

⎤
⎦ ,

Π̃11 = −PC̄ − C̄T P + ρHTH − �C1, ζ(t) =
[v̄T (t), ξ T

1 (t), ξ T
3 (t)]T .

Noticing Π̃ = Ω1 + Ω
′
1, where

Ω1 =
⎡
⎣ Π̃11 P Ae − �C2 P K̄

∗ −� 0
∗ ∗ −ρ I

⎤
⎦
6n×6n

,

Ω
′
1 = Ẽ1Σ1(t)Ñ1 + Ñ T

1 ΣT
1 (t)ẼT

1

≤ γ −1 Ẽ1 ẼT
1 + γ Ñ T

1 Ñ1

Ẽ1 =
⎡
⎣ P1E1

P2E1

04n×n2

⎤
⎦ , Ñ1 = [0n2×2n, F1, 0n2×3n].

Letting Ω̃1 � Ω1+γ Ñ T
1 Ñ1 and Ω̃ � Ω̃1+γ −1 Ê1 ÊT

1 ,

by Lemma 3, Ω̃ < 0 is equivalent to (18).
Therefore, Π̃ ≤ Ω̃ < 0, and

DαV (t) ≤ ζ T (t)Π̃ζ(t) ≤ −λmin(−Π̃)ζ T (t)ζ(t)

≤ −λmin(−Π̃)ēT (t)ē(t)

≤ −λmin(−Π̃)

λmax(P)
V (t)

FromLemma5, v̄(t) = 0 is globallyMittag-Leffler sta-
ble. So system (15) is an asymptotical state estimator of
system (14), and the proof ofTheorem2 is completed.�
Remark 6 The sufficient conditions in Theorems 1, 2
are simple and in terms of LMIs, instead of algebraic
conditions, which makes them easy to be checked by
MATLAB Toolbox.

4 Numerical examples

In this section, numerical simulations are given to illus-
trate the effectiveness of the obtained results.

Example 4.1 Consider the FMNNs (1)with the follow-
ing parameters:

C =
⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦ , D =

⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦ ,

A(v(t)) =
⎡
⎣ a11(v1) a12(v1) a13(v1)

a21(v2) a22(v2) a23(v2)
a31(v3) a32(v3) a33(v3)

⎤
⎦ ,

B(v(t)) =
⎡
⎣ b11(v1) b12(v1) b13(v1)

b21(v2) b22(v2) b23(v2)
b31(v3) b32(v3) b33(v3)

⎤
⎦ ,

where

a11(v1) =
{− 2.9, |v1| ≤ 1

− 2.7, |v1| > 1
,

a12(v1) =
{
0.19, |v1| ≤ 1
0.14, |v1| > 1

,

a13(v1) =
{
0.3, |v1| ≤ 1
0.28, |v1| > 1

,

a21(v2) =
{
0.4, |v2| ≤ 1
0.5, |v2| > 1

,

a22(v2) =
{− 0.8, |v2| ≤ 1

− 1, |v2| > 1
,

a23(v2) =
{
0.36, |v2| ≤ 1
0.4, |v2| > 1

,

a31(v3) =
{
0.2, |v3| ≤ 1
0.16, |v3| > 1

,

a32(v3) =
{
0.1, |v3| ≤ 1
0.08, |v3| > 1

,

a33(v3) =
{− 2, |v3| ≤ 1

− 2.3, |v3| > 1
,

b11(v1) =
{− 0.4, |v1| ≤ 1

− 0.46, |v1| > 1
,

b12(v1) =
{− 0.32, |v1| ≤ 1

− 0.3, |v1| > 1
,

b13(v1) =
{
0.2, |v1| ≤ 1
0.27, |v1| > 1

,

b21(v2) =
{
0.5, |v2| ≤ 1
0.47, |v2| > 1

,

b22(v2) =
{− 0.6, |v2| ≤ 1

− 0.5, |v2| > 1
,

b23(v2) =
{
0.3, |v2| ≤ 1
0.2, |v2| > 1

,

b31(v3) =
{
0.2, |v3| ≤ 1
0.17, |v3| > 1

,

b32(v3) =
{− 0.2, |v3| ≤ 1

− 0.25, |v3| > 1
,

b33(v3) =
{− 1.2, |v3| ≤ 1

− 1, |v3| > 1
.
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The activation functions are taken as f1(v1) = −0.2
tanh (|v1| − 1) + 0.3 sin(v1), f2(v2) = tanh(0.5v2),
f3(v3) = 0.5 tanh(v3), h j (v j ) = 0.2 sin(v j ) + 0.1
( j = 1, 2, 3). J = [1, 0.8,−1]T , σ = 2, α = 0.9.
It is easy to verify that

A =
⎡
⎣− 2.8 0.165 0.29

0.45 − 0.9 0.38
0.18 0.09 − 2.15

⎤
⎦ ,

B =
⎡
⎣− 0.43 − 0.31 0.235

0.485 − 0.55 0.25
0.185 − 0.225 − 1.1

⎤
⎦ ,

Ã =
⎡
⎣ 0.1 0.025 0.01
0.05 0.1 0.02
0.02 0.01 0.05

⎤
⎦ ,

B̃ =
⎡
⎣ 0.03 0.01 0.015
0.015 0.05 0.05
0.015 0.025 0.1

⎤
⎦ ,

L =
⎡
⎣0.25 0 0

0 0.25 0
0 0 0.25

⎤
⎦ .

Taking ε = 1, μ = 0.8, we can verify by MATLAB
Toolbox that LMIs (8), (9) are solved and the feasible
solutions are given below

P1 =
⎡
⎣ 7.2235 0.3780 0.6551
0.3780 8.4632 0.3721
0.6551 0.3721 6.3554

⎤
⎦ ,

P2 =
⎡
⎣ 9.9037 − 0.0783 1.1608

− 0.0783 7.6432 0.1966
1.1608 0.1966 5.8398

⎤
⎦ ,

X =
⎡
⎣− 5.9963 0.9088 − 1.0012

0.9088 1.8799 0.3457
− 1.0012 0.3457 1.3601

⎤
⎦ ,

K =
⎡
⎣− 0.5979 0.0898 − 0.1310

0.1142 0.2460 0.0373
− 0.0564 0.0331 0.2577

⎤
⎦ ,

β = 13.6123, ρ1 = 14.0888, ρ2 = 14.0872.
According to Theorem 1, it can be concluded that

system (5) is an asymptotical state estimator of system
(1), which is further verified by Figs. 1 and 2. Figure 1
shows the state trajectories of vi (t), v̂i (t), (i = 1, 2, 3),
respectively; and the initial conditions are taken as
v(t) = [1.5, 1.8,−1.8]T , v̂(t) = [−1.2,−0.5, 2.3]T ,

∀t ∈ [−2, 0]. It can be seen from Fig. 1 that the actual
states can be well tracked by their estimators. Figure 2
depicts that the error states ṽi (t) (i = 1, 2, 3) asymp-
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Fig. 1 State trajectories of v(t), v̂(t) in (1) and (5), respectively
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Fig. 2 Estimation error in Example 1

totically converge to zero, which confirms the effec-
tiveness of the proposed approach to the design of the
state estimator for the FMNNS.

Example 4.2 Consider the FMNNS with time delay
(1):

C =
[
1.9 0
0 1.9

]
, D =

[
1 0
0 1

]
, J = [−1, 0.8]T .

A(v(t)) =
[

a11(v1(t)) a12(v1(t))
a21(v2(t)) a22(v2(t))

]
,

B(v(t)) =
[

b11(v1(t)) b12(v1(t))
b21(v2(t)) b22(v2(t))

]
,

where

a11(v1) =
{− 1.4, |v1| ≤ 1

− 1.6, |v1| > 1
,
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a12(v1) =
{− 0.22, |v1| ≤ 1

− 0.18, |v1| > 1
,

a21(v2) =
{− 2.1, |v2| ≤ 1

− 1.9, |v2| > 1
,

a22(v2) =
{− 2, |v2| ≤ 1

− 1.6, |v2| > 1
,

b11(v1) =
{− 1.3, |v1| ≤ 1

− 1.1, |v1| > 1
,

b12(v1) =
{
0.35, |v1| ≤ 1
0.25, |v1| > 1

,

b21(v2) =
{− 1.45, |v2| ≤ 1

− 1.35, |v2| > 1
,

b22(v2) =
{− 1.8, |v2| ≤ 1

− 1.7, |v2| > 1
,

α = 0.98, σ = 1.
The activation functions are taken as f j (v j ) =

0.5 tanh (|v j |), h j (v j ) = 0.2|v j | ( j = 1, 2).
It is easy to verify that

L =
[
0.5 0
0 0.5

]
,

A =
[− 1.5 0.2

− 2 − 1.8

]
,

B =
[− 1.2 0.3

− 1.4 − 1.75

]
,

Ã =
[
0.1 0.02
0.1 0.2

]
,

B̃ =
[
0.1 0.05
0.05 0.05

]
.

Letting ε = 1, μ = 0.8, we use MATLAB LMI Con-
trolToolbox to solve theLMIs in (8), (9), andobtain that
the following feasible solution with tmin = −0.0247
(“tmin” is negative, and it shows that LMI has a feasible
solution.), β = 0.7368, ρ1 = 0.8626, ρ2 = 0.8730,

P1 =
[

0.4541 − 0.0899
− 0.0899 0.3262

]
,

P2 =
[

0.5231 − 0.0644
− 0.0644 0.3342

]
,

X =
[− 0.4667 − 0.0578

− 0.0578 − 0.0576

]
,

K =
[− 0.9356 − 0.1349

− 0.3532 − 0.1983

]
.

According to Theorem 1, system (5) is an asymp-
totical state estimator of system (1), which is verified
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Fig. 3 State trajectories of v(t), v̂(t) in (1) and (5), respectively
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Fig. 4 Estimation errors in Example 2

by Figs. 3 and 4. Figure 3 depicts the time evolu-
tion of vi (t), v̂i (t), (i = 1, 2) with the initial con-
ditions v(t) = [1.5, 1.8]T , v̂(t) = [−1.2,−0.5]T ,

∀t ∈ [−1, 0]. Figure 4 depicts the estimation errors
of ṽi (t) (i = 1, 2), which tend to zero as t → ∞.

5 Conclusions

The dynamics of fractional-order memristor-based
neural networks have drawn considerable research
attention. However, the problem of state estimation of
FMNNs has not been studied. This paper makes up
this gap. Based on the fractional-order Lyapunov direct
method, several new sufficient conditions are given to
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ensure the existence of the state estimator. Further-
more, we would like to point out that within the same
LMI framework, it is not difficult to extend our main
result to the state estimation problem for fractional-
order memristor-based neural networks with discontin-
uous activation functions and this will be considered in
future papers.
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