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Abstract Lévy noise plays a significant role in jump-
noise processes found in neurons. We perform numeri-
cal simulations of synaptically coupled Izhikevich net-
works under the effect of general non-Gaussian Lévy
noise. Firing dynamics of an all-to-all coupled Izhike-
vich network and two excitatory coupled Izhikevich
networks with differing adaptation properties are stud-
ied in response to applied Lévy noise. Whole param-
eter space of Lévy noise is investigated by changing
its characteristic exponent, skewness, scale and mean
parameters. The simulation results show that the noise
generated from α-stable Lévy distribution causes sig-
nificant dynamical changes in the firing pattern of neu-
ronal network. Different firing patterns exhibited by
Izhikevich neurons such as tonic spiking, chattering,
intrinsic bursting, low threshold spiking and fast spik-
ing are studied in the network level with and without
Lévy noise. In all cases, neurons are found to be irregu-
larly spikingwhen Lévy noisewith characteristic expo-
nent α equal to 0.5 is applied. Lévy noise with this par-
ticular value of α as 0.5 causes the Izhikevich network
to have a dynamical behaviour independent of topology
and heterogeneity of the network. At this value of char-
acteristic exponent, density of the stable Lévy distribu-
tion in standard parameterisation is maximum. Other
parameters of Lévy noise do not influence the way in
which a particular neuron is firing. The effects of Lévy
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noise on the correlation between individual neurons
and on the networks are investigated using statistical
measures.
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1 Introduction

In recent times, the spiking neuron models have been
subjected to intense research in the field of neuronal sci-
ence owing to the fact that neurons carry information
among each other using their firing rates [1]. Exam-
ples of commonly investigated spiking neuron models
are Hodgkin–Huxley-type model, FitzHugh–Nagumo
model and Hindmarsh–Rose model [2]. Also, several
hybrid neuron models have been introduced which
combine continuous spike-generation mechanisms and
discontinuous resetting process after spiking.An exam-
ple of nonlinear hybrid neuron model is the Izhike-
vich neuron model which can generate different types
of bifurcation and is capable of reproducing most of
the spiking activities observed in the actual neural sys-
tems by tuning a few parameters. This two-dimensional
model has been shown to capture a wide range of cellu-
lar firing characteristics in various parts of mammalian
brain. It is a biologically plausible neuron model and
can reproduce spiking and bursting behaviour of known
types of neocortical and thalamic neurons [3,4].

It is well known that the brain can produce fluctua-
tions with complex scaling properties. Using the sta-
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tistical properties of these fluctuations, evolution of
the brain dynamics can be studied [5]. The fluctua-
tions during a brain activity can be considered as a ran-
dommotion. In the continuous limit, these fluctuations
can also be approximated as the motion of a diffus-
ing macroscopic particle [6,7]. This framework can be
well modelled by a generalised Langevin differential
equation consisting of Lévy noise with deterministic
and stochastic components [8,9].

Though the stochastic effect is often regarded as
unwanted as it damages the extraction of useful infor-
mation, in certain nonlinear systems it is realised that
the presence of internal or external noise can enhance
the response of the dynamics of the signal [10]. The
noise in dynamical systems has wide applications in
various fields of physics, biology, geology and neurol-
ogy [11–16]. Usually, the random excitations of noise
are assumed to be of Gaussian white noise kind which
can only describe random small fluctuations without
big jumps. But it has been investigated that small dis-
turbances are present in the biological and neurologi-
cal activities and those disturbances are always com-
bined with discontinuous unpredictable jumps of ran-
dom nature. Also, the statistical characteristics of the
random noise significantly deviate from the Gaussian
distribution [17–19]. Therefore, it is necessary to con-
sider the non-Gaussian disturbance in the studies of
biological systems. Lévy noise can model such non-
Gaussian noise having both small and big random fluc-
tuations [20,21]. Since the paths of Lévy processesmay
contain random jump discontinuities of arbitrary size
occurring at arbitrary random times, Lévy processes
form a rich class of stochastic processes having appli-
cations in many different areas of science [22].

Another advantage of Lévy noise model is that it
includes not only pure-diffusion and pure-jump mod-
els but also jump-diffusion models [23,24], and it is
much better than a pure-diffusion neuron model with
additive Gaussian noise in describing the evolution of
membrane potential of a neuron. Pure-diffusion neu-
ronmodels require large number of synapseswith small
membrane effects due to the small coupling coefficients
or the synaptic weights [25,26]. On the contrary in
real scenarios, often fewer synaptic inputs are produced
near the postsynaptic neuron’s trigger zone, and these
inputs produce impulses in noise amplitudes [27,28].
Thus, standardGaussian noise does not faithfully repre-
sent the dynamics of realistic neuron models but Lévy
noise does. The general Lévy model is favourable in

engineering applications as well [29–31]. Lévy noise
can also effectively represent the random noises due to
external radiation-induced magnetic flux of electrical
fields when applied on neuron networks [32–34].

Lévy noise can greatly describe the complex bio-
logical and neuronal environment [35,36]. One of the
simplest creatures Escherichia coli has been studied
based on biological fluctuation framework using the
Lévy walks model [37]. Dubkov and Kharcheva [38]
have examined the steady- state time characteristics
of anomalous diffusion in the form of Lévy flights
in a symmetric bistable quadratic potential. Xu et al.
have investigated stochastic resonance phenomenon in
a FitzHugh– Nagumo system induced by an additive
Lévy noise [39]. Wu et al. [40] have investigated the
electrical activities in an improved Hindmarsh–Rose
model excited by the external electromagnetic radiation
of Lévy noise. They have observed that decreasing of
the characteristic exponent of Lévy noise improves the
firing of Hindmarsh–Rose neuron. They have chosen
arbitrary values for characteristic exponent and skew-
ness parameter of the noise. In this paper, complete
parameter space of Lévy noise is investigated, and the
Lévy noise with particular characteristic exponent is
found to increase the firing activity of neurons. Cai et
al. [41] have considered the dynamics of escape in the
stochastic FitzHugh–Nagumo (FHN) neuronal model
driven by symmetric α-stable Lévy noise. Zhang et
al. [42] have done a study on low-dimensional reduc-
tion for a slow–fast data assimilation system with non-
Gaussian α-stable Lévy noise via stochastic averaging.
Zhan and Liu [43] have studied dynamical response of
Morris–Lecar system with electromagnetic induction
(EMI) and Gaussian white noise. Jin et al. [44] have
explored how noise can affect the synchronisation and
stability of a neuronal network. Transition of electrical
activities in neurons induced by electromagnetic radi-
ation has been also explored by researchers [45,46].
But the influence of Lévy noise on the networks of
Izhikevich neurons models has not been investigated.
Therefore, the study of effect of non-Gaussian Lévy
noise on the neurons of such model is relevant.

2 Neuron model and method

2.1 Izhikevich neuron model

The Izhikevich model consists of two parts: a two-
dimensional system of ordinary differential equations
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and a reset mechanism. The differential equations
model the subthreshold behaviour of the system and
generate the upstroke of the action potential, while the
resetmechanism is responsible for producing thedown-
stroke of the action potential. V and U are the model
variables. V is themembrane potential.U is the current
which represents the effect of the slow currents on spike
generation and allows for spike- frequency adaptation
[3,4]. The model is represented as

While V < Vpeak:

CV̇ = k (V − VR) (V − VT) −U + Iext (2.1)

U̇ = a [b (V − VR) −U ] (2.2)

When V crosses a certain value called Vpeak from
below, V and U are updated as

V ← c, U ← U + d (2.3)

C is the membrane capacitance, VR is the resting
membrane potential, Iext is the applied current (the
effect of externally injected and synaptic currents), VT
is the voltage threshold when b = 0 and Iext = 0,
Vpeak is the spike cut-off value, k is a scaling factor that
affects the value of dV/dt and the spike width, a is the
time constant of the adaptation current U , b describes
the sensitivity of the adaptation current to subthresh-
old fluctuations of the membrane potential V, c is the
voltage reset value, d describes the difference between
outward and inward currents activated during the spike
which affects the after-spike behaviour.

When neuronmodels of Izhikevich kind are coupled
together in large networks, they show bifurcations that
isolated neuron model cannot generate [47]. A feasible
method of analysing large networks is through popula-
tion density equations. In population densitymethods, a
time-varying population density function is defined ini-
tially whose evolution is determined by a conservation
law. Population density equation is simplified using
moment closure methods and a sequence of approx-
imations as described in the literature [48,49]. Finally,
a system of ODEs is achieved which can be anal-
ysed numerically. Equations (2.1)–(2.3) are rewritten
as [48]:

CV̇i = k (Vi − VT) (Vi − VR) −Ui + Iext (2.4)

U̇i = η (Vi−VR)−Ui

τU
(2.5)

ṡ = − s

τsyn
+ sjump j (t) (2.6)

Vi (t
−
spike) = Vpeak ⇒ Vi (t

+
spike) = Vreset

and Ui (t
+
spike) = Ui (t

−
spike) +Ujump (2.7)

for i = 1, 2, . . . N . The parameter values are chosen
as follows. C = 250 pF, k = 2.5 nS/mV, VR = − 65
mV, VT = VR + 40 − η

k = 41.7 mV, Vpeak = 30 mV,
Vreset = − 55 mV, Ujump = 200 pA, τU = 100 ms,
η = − 1 nS, sjump = 0.8, τsyn = 2 ms.

2.2 The Lévy noise

Let ξ denotes the time-dependent Lévy noise and obeys
the probability density function Lα,β(ξ ; σ, μ), whose
characteristic function is [50]:

�(k) =
∫ +∞

−∞
dξ eikξ Lα,β(ξ ; σ, μ) (2.8)

Therefore, for α ∈ (0, 1)
⋃

(1, 2],

�(k) = exp
[
iμk − σα |k|α

(
1 − iβsgn(k) tan

πα

2

)]

(2.9)

and for α = 1,

�(k) = exp
[
iμk − σ |k|

(
1 + iβsgn(k)

π

2
ln |k|

)]

(2.10)

here α∈(0, 2] is known as the characteristic exponent,
and it denotes the stability index that describes an
asymptotic power law of the Lévy distribution. The
constant β (β ∈ [− 1, 1]) is the asymmetry or skew-
ness parameter.σ (σ ∈ (0,∞)) is the scale parameter,
and μ (μ ∈ R) is the mean parameter. The noise inten-
sity is denoted as D = σα , and hence, the Lévy pro-
cess can also be represented as Lα,β(ξ ; D, μ). When
α = 0.5, the stable distribution is called α-stable Lévy
distribution.

We analyse the effect of Lévy noise on Izhikevich
neurons using the approachmentioned in Sect. 2.1. The
paper is organised as follows: we consider two neural
networks that are deterministic and homogeneous. The
first example, studied in Sect. 2.3, is a homogeneous
all-to-all coupled Izhikevich network. Section 2.4 con-
siders two Izhikevich networks that are all-to-all cou-
pled both internally and externally and each network
is split into two populations, one strongly adapting and

123



1136 M. Vinaya, R. P. Ignatius

the other weakly adapting. The parameters are chosen
so as to match the neuronal experimental results from
research papers [47,48].

2.3 The single all-to-all coupled Izhikevich network
with Lévy noise

We consider a network of N identical neurons of the
Izhikevichmodel [Eqs. (2.4)–(2.6)], with all-to-all cou-
pling. The coupling is modelled as synaptic [51]. The
postsynaptic neuron generates a postsynaptic potential
by integrating the inputs from the neighbouring presy-
naptic neuron. The synaptic current in the j th neuron
is modelled by

Isyn, j = gsyn (Vj − Ermr )

N∑
i=1,i �= j

s j,i (t, Vi ) (2.11)

where gsyn is the maximal synaptic conductance and
Er is the synaptic reversal potential. s j,i is the gating
variable of the synapse from the i th neuron to the j th,
and it is not allowed to exceed 1.

When Vi crosses 0 from below:

s j,i → s j,i + Smax (2.12)

where Smax is a synaptic update parameter and is chosen
to be 0.8.

Otherwise:

τsyn
ds j,i
dt

= −s j,i (2.13)

Also, the total effect of current in the neuronal sys-
tem is taken as

Iext = Iapp − Isyn, j (2.14)

Therefore, dimensionless form of the single all-to-
all coupled Izhikevich network with synaptic coupling
and Lévy noise is given by

v̇i = vi (vi − α) − ui + I + g(er − vi )s + ξ (2.15)

u̇i = a(bvi − ui ) (2.16)

ṡ = − s

τs
+ sjump j (t) (2.17)

vi (t
−
spike) = vpeak ⇒ vi (t

+
spike) = vreset

and ui (t
+
spike) = ui (t

−
spike) + ujump (2.18)

for i = 1, . . . , N , where vi = 1 + V i
|VR| , ui = Ui

k|VR|2 .
The dimensionless parameters are given as follows:

α = 1 + VT|VR| = 0.62, b = η
k|VR| = 0.006,

I = Iapp
k|VR|2 = 0.14, g = gsyn

k|VR| = 1.23, a =(
C

τU k|VR|
)

= 0.015, τs = τsynck|VR|
C = 1.3, ujump =

Ujump

k|VR|2 = 0.0189, Iapp = 1500 pA, gsyn = 300 nS,

N = 1000.

2.4 Excitatory coupled pair of Izhikevich networks
with different adaptation properties with Lévy
noise

Neuronal adaptation refers to the response profilewhen
a stimulus is applied to a neuron. It indicates the ability
of a neuron to adapt to a particular situation by chang-
ing its threshold. Strongly adapting neurons quickly
modify their firing rate in response to a stimulus. The
adaptation levels of the networks are determined and
controlled by τU,SA, τU,WA, Iapp,SA, Iapp,WA and synap-
tic gating variables s j . We consider a pair of networks
which are excitatory in nature, and they are all-to-all
coupled. Each network consists of two distinct homo-
geneous populations: one is strongly adapting and the
other is weakly adapting. Biological networks present
samples for such cases. For example, pyramidal neu-
rons in hippocampal area CA3 can be grouped into
strongly adapting, weakly adapting and intrinsically
bursting populations based on the amount of spike-
frequency adaptation they exhibited [53]. Since there
are two populations, four maximal synaptic conduc-
tances gmj and two synaptic gating variables s j are
needed. Here j denotes the presynaptic network and m
denotes the postsynaptic network,with j =SA indicat-
ing the subnetwork with strong adaptation and j =WA
is the subnetwork with weak adaptation, and similarly
for m.

The equations for the network are [48],

CV̇i,m = k (Vi,m − VT) (Vi,m − VR) −Ui,m + Iapp,m

+ (1 − p) gsyn,mSA(Er − Vi,m) sSA

+ p gsyn,mWA (Er − Vi,m) sWA (2.19)

U̇i,m = η(Vi,m − VR) −Ui,m

τU,m
(2.20)

ṡSA = − sSA
τsyn

+ sjump jSA(t) (2.21)

ṡWA = − sWA

τsyn
+ sjump jWA(t) (2.22)
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Fig. 1 Simulation of a neuron in the homogenous network of 1000 tonic spiking Izhikevich neurons without Lévy noise

jSA(t) = 1

NSA

NSA∑
j=1

∑
t j,k,SA<t

δ(t − t j,k,SA)

jWA(t) = 1

NWA

NWA∑
j=1

∑
t j,k,WA<t

δ(t − t j,k,WA)

for i = 1, . . . Nm . Note that p = NSA/(NSA + NWA)

is the proportion of strongly adapting neurons in the
network.

Equations (2.19)–(2.22) are converted into dimen-
sionless form. There are separate population density
equations for strongly and weakly adapting popula-
tions. Then moment closure reduced population den-
sity equations are coupled together by the two cou-
pling variables and two adaptation variables [48]. Lévy
noise is applied to the voltage variable of each neu-
ron of Izhikevich population. The other parameter val-
ues are τU,SA = 100 ms, τU,WA = 10 ms, Iapp,SA =
1000–2000 pA, Iapp,WA = 1200 pA, gsyn,mj = 200 nS,
NSA = 800 and NWA = 200.

3 Results

3.1 Dynamics of single all-to-all network with Lévy
noise

For analysing the time series of the Izhikevich model
network, Euler method is used. The whole parame-
ter space of Lévy noise is investigated. It is found
that when characteristic exponent α becomes 0.5, Lévy

noise causes the neuronal firing to be irregular in dif-
ferent types of firing activities shown by Izhikevich
network such as tonic spiking, intrinsic bursting, chat-
tering, low threshold spiking and fast spiking (refer
Figs. 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14). Other param-
eter values of Lévy noise are varied in their respective
ranges, but a significant change in neuronal firing is not
observed. According to Nolan, density takes maximum
value when α becomes 0.5 in the standard parameteri-
sationof the stableLévydistribution [52]. This property
may be considered as the reason why Lévy noise with
α equal to 0.5 triggers irregular firing in the neuronal
network. Figure 15 shows the probability density func-
tion f(x) of stable Lévy distribution for different values
of α. Other parameters of Lévy distribution are chosen
to be β = 0, σ = 1, μ = 0. This figure is reproduced
using the program stable.exe with permission from the
website http://fs2.american.edu/jpnolan/www/stable/.
When α = 0.5, the stable density is found to be maxi-
mum. Therefore, maximum influence due to the Lévy
noise on the neurons occurs when Lévy noise has the
characteristic exponent α = 0.5. Noise with other val-
ues of α has minimal effect on the neuronal firings.

In Figs. 1 and 2,membrane potential, adaptation cur-
rent and synaptic conductance of a randomly selected
tonic spiking neuron of all-to-all Izhikevich network
are plotted without and with Lévy noise, respectively.
The parameters of Lévy noise are chosen as α =
0.5, β = 1, σ = 1, μ = 0. The spiking activities are
found to be different with and without Lévy noise. It
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Fig. 2 Simulation of a neuron in the network of 1000 tonic spik-
ing Izhikevich neurons with Lévy noise (α = 0.5, β = 1, σ =
1, μ = 0). Membrane potential V and synaptic conductance g(t)
exhibit irregular and random spiking behaviour. As time evolves,

the adaptation current U also behaves randomly. Lévy noise with
α = 0.5 causes additional spike resettings in the neurons of the
network
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Fig. 3 Simulation of a neuron in the network of 1000 tonic spiking Izhikevich neurons with Lévy noise (α = 1, β = 1, σ = 1, μ = 0).
This noise does not force the network to alter its dynamics

has been observed that only for the Lévy noise char-
acterised by the α-stable distribution Lα,β(ξ ; σ, μ) =
L0.5,β(ξ ; 1, 0), the activitymodes showdeviation from
the noise-free case. The tonic spikingmodeof themem-
brane potential has become aperiodic and irregular. It
can be seen that the neurons which produced 2 spikes
in a particular time interval have been excited to yield
3, 4 or more spikes in the same interval under the influ-
ence of Lévy noise with α = 0.5. The spiking pattern

of membrane voltage shows transition into an irregu-
lar state. The adaptation current also exhibits a devia-
tion from the fluctuation pattern shown when noise is
absent. It can also be seen that synaptic conductance
goes into a completely random and irregular pattern.
For all other cases of parameter values of Lévy noise,
even if they are varied within their respective limits,
no significant difference in spiking activities is noticed.
Figures 3 and 4 represent the caseswhere noise does not
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Fig. 4 Simulation of a neuron in the network of 1000 tonic spiking Izhikevich neuronswith Lévy noise (α = 1.7, β = 0, σ = 1, μ = 0).
The spiking dynamics of the network is similar to the case when noise is not applied

alter the spiking behaviour of the neurons and retains
the dynamics of noise-free network. The phase space
plots of the network without and with Lévy noise are
represented in Figs. 5 and 6.

Also, the effect of Lévy noise is studied for other
firing types shown by Izhikevich neuronal network,
namely intrinsic bursting, chattering, fast spiking and
low threshold spiking (Figs. 7, 8, 9, 10, 11, 12, 13,
14). In all cases, it is found that when α parameter
of Lévy noise is 0.5, firings become random and irreg-
ular.

3.2 Dynamics of excitatory coupled pair of networks
with Lévy noise

To study the response of excitatory coupled pair of
Izhikevich networks towards the applied noise, neu-
rons are randomly chosen from strongly and weakly
adapting populations. Figure 16 represents the neu-
ronal fluctuations without noise. Neuronal fluctuations
for strongly adapting neuron are marked in red colour,
while those for weakly adapting neuron are in green
colour. The strongly adapting neuron population is
bursting, while the weakly adapting population has
an oscillatory non-bursting firing pattern. Figure 17
denotes the dynamics of the networks with Lévy noise
having parameters α = 0.5, β = 1, σ = 1, μ = 0.
Spikes have become irregular in nature. Completely
random fluctuations appear in the membrane potential
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Fig. 5 Phase space plot of Izhikevich neuron
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Fig. 6 Phase space plot of Izhikevich neuron with Lévy noise
(α = 0.5). The limit cycle behaviour of the neuron has been
changed
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Fig. 7 Simulation of a neuron in the network of 1000 chattering Izhikevich neurons without Lévy noise. Similar behaviour is seen
when a Lévy noise is applied with α other than 0.5
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Fig. 8 Simulation of a neuron in the network of 1000 chattering Izhikevich neurons with Lévy noise (α = 0.5, β = 0, σ = 1, μ = 0).
The spiking dynamics of the network have become irregular

and in the synaptic conductance variables of strongly
adapting population. The spiking patterns of mem-
branepotential ofweakly adaptingpopulationhave also
undergone a change with a loss in periodicity. But the
current of weakly adapting population is not showing a
change in the firing pattern. The noise is found to have
no effect on the overall behaviour of the networks for
any other α parameter value of the Lévy noise. It is
interesting to note that the strongly adapting neuronal
population in coupled pair of heterogeneous networks
under Lévy noise with α = 0.5 (Fig. 17) shows spik-

ing patterns similar to those exhibited by the single
homogenous network under the Lévy noise with same
α (Fig. 2). It shows that Lévy noise with particular
value of α equal to 0.5 causes the Izhikevich network
to have a dynamical behaviour independent of topology
and heterogeneity of the network. In cases where the
networks are either noise-free or has Lévy noise with
α �= 0.5 (Figs. 18, 19), spiking dynamics depend on
the topology of the networks.
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Fig. 9 Simulation of a neuron in the network of 1000 intrinsic bursting Izhikevich neurons without Lévy noise. When a Lévy noise is
applied with α other than 0.5, same kind of firing is observed
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Fig. 10 Simulation of a neuron in the network of 1000 intrinsic bursting Izhikevich neurons with Lévy noise (α = 0.5, β = 0, σ =
1, μ = 0). Randomness is brought about by the Lévy noise with α = 0.5

3.3 Statistical analysis

The irregularity and spiking variability of the neuronal
fluctuations of the networks with Lévy noise (α = 0.5)
are further analysed using statistical methods. Analy-
ses show that clustered neuronal networks behave in
a random manner. Single all-to-all coupled Izhikevich
network and the excitatory coupled pair of Izhikevich
networks produce similar graphs for spike rate and vari-
ation measures. The analyses are carried out for tonic
spiking neuron network for a time duration of 1000ms.

3.3.1 Spiking rate

Spike rate is a measure of neuronal activity over a dura-
tion of time measured in Hz. They are commonly used
to quantify a neural response over a given duration of
time T .When a neuron’s spiking activity is represented
as a vector of spike times t1, t2, t3 . . . tN , the rate is
defined by

R = N

T
where N is the total number of spikes over a given
duration T . Spike rates can be computed as a function
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Fig. 11 Simulation of a neuron in the network of 1000 fast-spiking Izhikevich neuronswithout Lévy noise. Firing shows same behaviour
when a Lévy noise is applied with α other than 0.5
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Fig. 12 Simulation of a neuron in the network of 1000 fast- spiking Izhikevich neuronswithLévy noise (α = 0.5, β = 0, σ = 1, μ = 0).
Firing has gone irregular when Lévy noise with α = 0.5 is applied

of single neuron across trials, or over a network, thus
generating a distribution of rates with variability [54].

The activities of the 100 neurons randomly chosen
from the Izhikevich population are plotted as a func-
tion of their firing rate. Without noise, neurons fire
approximately at a constant rate of 0.162 (Fig. 20). It
is observed that the population activity is significantly
increased to 0.36–0.365 when the Lévy noise is applied
(Fig. 21). Such increase is seen only when Lévy noise
with the parameter α = 0.5 is applied. This result is
in agreement with the increased spiking behaviour of

both single homogeneous network (Fig. 2) and coupled
pair of heterogeneous networks (Fig. 17) with Lévy
noise having α = 0.5. When the α value of Lévy noise
is changed, spiking rate decreases to its value in the
noise-free case.

3.3.2 Inter-spike intervals (ISIs)

An ISI measures the latency �t between precise spike
times. ISIs can be computed for every single spike
(minus one) or a percentage of spikes. When a neu-
ron’s spiking activity is arranged in a vector of spike
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Fig. 13 Simulation of a neuron in the network of 1000 low- threshold-spiking Izhikevich neurons without Lévy noise. When a Lévy
noise is applied with α other than 0.5, we get the same pattern
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Fig. 14 Simulation of a neuron in the network of 1000 low- threshold-spiking Izhikevich neurons with Lévy noise (α = 0.5, β =
0, σ = 1, μ = 0)

times t1, t2, t3 . . . tN , the i4th ISI is defined by

�ti = ti+1 − ti

where t represents a given spike time. Intervals are then
counted, generating a distribution of ISIs [54].

A bifurcation plot of ISIs is drawn against varying
neuronal currents of the network under the Lévy noise
with α = 0.5 (Fig. 22). Noise is imposed on the neu-
ronal network from time t=0 onwards. It is observed
that chaotic nature is introduced from the beginning of
time when the applied Lévy noise is having character-
istic index α as 0.5.

3.3.3 Coefficient of variation (Cv)

The Cv is a measure of the dispersion in the ISI distri-
bution. Using the vector of spike times t1, t2, t3 . . . tN ,
then Cv is defined by

Cv =
√

1
N−2

∑N−1
i=1 (�ti−�̄t)2/�̄t

whereN is the total number of spikes,�t is a given ISI,
and �̄t is defined by

�̄t = 1

N − 1

N−1∑
i=1

(�t)
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Fig. 15 Stable densities in the standard parameterisation ofLévy
distribution (β = 0, σ = 1, μ = 0). Graphs are drawn for
α = 0.5, 0.75, 1.0, 1.25, 1.5, 1.75

APoisson process produces distributionswithCv =
1. When Cv > 1, it implies that a given spike train
is less regular than a Poisson process with the same
firing rate. Cv detects a global variability of a whole
ISI sequence and is sensitive to the firing rate fluc-
tuation which may occur in natural conditions. Cases
where either noise is absent or Lévy noise (α �= 0.5)
is applied, neurons in the network show a Cv value
much less than 1 (Fig. 23). For Izhikevich networks
having Lévy noise (α = 0.5), the coefficient of vari-

ation of each neuron has a value greater than 1 which
indicates the irregularity in the spiking nature of the
neurons introduced by the particular α- stable Lévy
noise (Fig. 24).

3.3.4 Autocorrelation

Autocorrelation gives a measure of how well a signal
is correlated with itself. Using an autocorrelation, we
quantify the self-similarity of a neuron signal as a func-
tion of the time lag τ [55]. Autocorrelation plot helps
to check randomness in a data set. This randomness
is ascertained by computing autocorrelations for data
values at varying time lags. If random, such autocor-
relations should be near zero for any and all time-lag
separations. If non-random, then one or more of the
autocorrelations will be significantly nonzero.

The neuronal fluctuations of Izhikevich networks
with Lévy noise (α = 0.5) show the autocorrela-
tion diagram as in Fig. 26. They have self-similarity
only when τ = 0. It occurs when the Lévy noise with
α = 0.5 is added to the action potentials of the neu-
rons in the network.Whennoise distribution takes other
parameter values, such irregularity is lost (Fig. 25).
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Fig. 16 Simulation of a network of Izhikevich neurons without
Lévy noise. The network consists of two distinct populations:
800 strongly adapting neurons and 200 weakly adapting neu-
rons. Dynamics of strongly adapting neuron are shown in red,

while that of weakly adapting neuron is in green. Approximately
regular bursting dynamics can be seen for both kinds of neurons
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Fig. 17 Simulation of Izhikevich network with 800 strongly
adapting neurons and 200 weakly adapting neurons. Lévy noise
(α = 0.5, β = 1, σ = 1, μ = 0) is applied. The regularity
of the dynamics has been lost. In the noise-free case, strongly
and weakly adapting neurons had undergone bursting simulta-
neously. But when Lévy noise (α = 0.5, β = 1, σ = 1, μ = 0),

no such synchronisation is seen between neurons with differ-
ent adaptations. Quiescent states in the firing patterns have
undergone a resetting into spiking states. The whole dynamical
behaviour of coupled pair of these heterogeneous networks under
Lévy noise (α = 0.5) matches with that of a single homogenous
network under the same Lévy noise (refer Fig. 2)
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Fig. 18 Simulation of Izhikevich network of 800 strongly adapting neurons and 200 weakly adapting neurons. Lévy noise (α = 1, β =
1, σ = 1, μ = 0) is applied. This noise retains the behaviour of the noise-free neuronal networks
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Fig. 19 Simulation of a network of Izhikevich neurons. The net-
work consists of two distinct populations: 800 strongly adapting
neurons and 200 weakly adapting neurons. Lévy noise (α =

1.7, β = 0, σ = 1, μ = 0) is applied. No change in the dynam-
ical behaviour is brought about by the introduction of this noise
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Fig. 20 Spiking rate graph of Izhikevich networks when Lévy noise is absent. The neurons fire at an almost constant rate of 0.162.
Similar graph is obtained when a Lévy noise with α �= 0.5 is applied to the networks
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Fig. 21 Spiking rate graph when Lévy noise (α = 0.5, β = 1, σ = 1, μ = 0) is applied. The applied noise forces all the neurons to
increase their firing so that their spiking rate is more than double in comparison with the noise-free neurons

Fig. 22 Bifurcation graph
of ISI versus the current
when Lévy noise (α = 0.5)
is applied
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Fig. 23 Coefficient of
variation graph of neurons
when Lévy noise is absent.
Cv values of the neurons lie
in the range of 0.01–0.016.
It is much less than 1. The
Izhikevich neurons behave
in a more or less periodic
spiking manner in the
absence of Lévy noise.
Neurons produce similar
graph with low values of Cv

when Lévy noise (α �= 0.5)
is applied
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Fig. 24 Coefficient of
variation graph of neurons
with Lévy noise (α = 0.5).
Cv values of the neurons
are increased to more than
1. It indicates that the spike
trains produced by these
neurons are random and
irregular
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Fig. 25 Autocorrelation graph of the networks with no Lévy
noise. Similar firing patterns exist in such networks. This kind of
periodic nature exists also when Lévy noise (α �= 0.5) is present

4 Discussion

Thepresentwork investigates thedimensionless stochas-
tic Izhikevich model under the effect of non-Gaussian
Lévynoise and examines the electrical activities of neu-
rons. It is observed that the noise generated from Lévy
noise distribution can cause themode transition of elec-
trical activities both in single Izhikevich network and in
excitatory coupled pair of Izhikevich networks. When
the noise produced from the Lévy distribution with
parameter α = 0.5 is applied to neuronal networks,
the rest states of the electrical activities of neurons are
excited to be firing states. The spiking states in a peri-
odic electrical activity can be induced to be spiking
states with high randomness. Also, the spiking states
can be changed into a sort of bursting state. Irregularity
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Fig. 26 Autocorrelation graph with Lévy noise (α = 0.5). It
shows the less periodical pattern and high variability of neuronal
firings introduced by this α-stable noise

brought about by the Lévy noise depends only on the
value taken by the characteristic exponent α. Even a
slight deviation in the α parameter value of Lévy noise
causes the neurons to revert to their more or less peri-
odically spiking state. It is also noted that the strongly
adapting neuronal population in coupled pair of hetero-
geneous networks under Lévy noise with α = 0.5 and
the single homogenous network under the Lévy noise
with same α show similar spiking patterns. It shows
that Lévy noise with particular value of α as 0.5 causes
the Izhikevich network to have a dynamical behaviour
independent of topology and heterogeneity of the net-
work. When the networks are either noise-free or have
Lévy noise with α �= 0.5, spiking dynamics depend on
the topology of the networks. The statistical measure
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also shows the increased firings of neurons under the
Lévy noise with α = 0.5.

Wu et al. [40] have studied the influence of Lévy
noise on Hindmarsh–Rose (HR) model under elec-
tromagnetic induction. They have investigated that
decrease in characteristic exponent from its upper
boundary value 2 and increase in intensity ofLévynoise
can heighten neuronal firings in HR neuron. Also the
upward or downward skewing of the jumps of Lévy
noise can alter HR neuron’s firing dynamics. In this
paper, we have explored that in the case of Izhikevich
network an increase in neuronal firings is observed
when characteristic exponent is set at α = 0.5. But
intensity, skewness andmean parameters of Lévy noise
do not influence the dynamics of Izhikevich network.

In general, our studies establish that α-stable Lévy
noise could improve electrical activity in a neuron indi-
vidually and on the network level. This study can be
extended to investigate themean field approximation of
the present network and to study the cumulative effect
of electromagnetic radiation and Lévy noise on the net-
work.
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