
Nonlinear Dyn (2018) 94:977–989
https://doi.org/10.1007/s11071-018-4404-x

ORIGINAL PAPER

Dynamics of superregular breathers in the quintic nonlinear
Schrödinger equation

Lei Wang · Chong Liu · Xuan Wu ·
Xin Wang · Wen-Rong Sun

Received: 13 January 2018 / Accepted: 1 June 2018 / Published online: 12 June 2018
© Springer Nature B.V. 2018

Abstract In this paper, we consider an extended
nonlinear Schrödinger equation that includes fifth-
order dispersion with matching higher-order nonlin-
ear terms. Via the modified Darboux transformation
and Joukowsky transform, we present the superregular
breather (SRB),multipeak soliton and hybrid solutions.
The latter two modes appear as a result of the higher-
order effects and are converted from a SRB one, which
cannot exist for the standardNLS equation. These solu-
tions reduce to a small localized perturbation of the
background at time zero, which is different from the
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previous analytical solutions. The corresponding state
transition conditions are given analytically. The rela-
tionship between modulation instability and state tran-
sition is unveiled. Our results will enrich the dynamics
of nonlinear waves in a higher-order wave system.

Keywords The quintic nonlinear Schrödinger
equation · Superregular breathers · Multipeak
solitons · Hybrid solutions · State transition ·
Modulation instability

1 Introduction

Wave evolution in different physical fields is gov-
erned by the nonlinear partial differential equations [1–
14]. Though the nonlinear Schrödinger (NLS) equation
contains only the lowest-order dispersion and lowest-
order nonlinearity, it can well describe the propagation
and dynamics of nonlinear pulses in diverse physics,
including water waves [15], nonlinear optics [16],
plasma [17], Bose–Einstein condensates [18,19] and
several other cases. The integrability of this equa-
tion [20] enables us to get such analytical solutions
as solitons, breathers [21] and rogue waves [22–31],
which have been observed in numerous experiments in
these areas [32–37]. In many cases, the dynamics of
a system influenced by modulation instability (MI) is
also described by the NLS equation. In particular, there
are some special interests on the nonlinear evolution
stage and long-time dynamics, which are beyond the
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linear stability analysis. Zhakarov and Gelash [38,39]
proposed a kind of breather solution of the NLS equa-
tion, namely the superregular breather (SRB) solution.
They further claimed that the SRB solution starts with
infinitesimally small localized perturbation and could
be used to describe the nonlinear stage of MI [38–40].
The SRBs are unique nonlinear wave structures on a
plane-wave background formed by a nonlinear super-
position of pairs of quasi-Akhmediev breathers [38–
40]. This unique feature has been observed in both
optics and hydrodynamics, based on exact superregu-
lar breather solution of the standardNLS equation [40].
However, in order to claim that one has characterized
the nonlinear stage ofMI, onemust study solutions gen-
erated by generic initial conditions [41,42]. Biondini
and Mantzavinos [41,42] have studied the nonlinear
stage of theMI by characterizing the initial value prob-
lem for the focusingNLSequationwith nonzerobound-
ary conditions at infinity. As shown in [41], for generic
perturbations of the background, the signature of MI
lies precisely in the portion of the continuous spectrum
which is the nonlinearization of the unstable Fourier
modes. In fact, it was also shown in [41] that there
are classes of initial conditions that are modulational
unstable but that do not generate any discrete spectrum.
These classes include small localized perturbations of
the background. Since these perturbations generate no
discrete spectrum, they do not produce SRBs. More-
over, as shown in [42], small localized perturbations
of the background lead to a universal wedge-shaped
structure. Asymptotically in time, the spatial domain
divides into three regions: a far left and a far right field,
in which the solution is approximately equal to its ini-
tial value, and a central region in which the solution has
oscillatory behavior described by slow modulations of
the periodic traveling wave solutions [42].

The above studies show that the NLS equation is
a good candidate describing various physical mecha-
nisms in different contexts. Nevertheless, to increase
the wave amplitude, we have to consider the higher-
order effects which do not exist in the simplest NLS
equation [43]. In studies of pulse propagation in
optical fibers, for transmitting the ultrashort pulses
whose durations are shorter than 100 fs, the higher-
order effects such as the third-order dispersion, self-
steepening and delayed nonlinear response have to be
taken into account. Thus, it is necessary to study the
other integrable models of the whole hierarchy except
for the NLS equation. Two extensions of the hier-

archy to third- and fourth-order terms are known as
the Hirota equation [44] and Lakshmanan–Porsezian–
Daniel (LPD) equation [45–48]. More recently, the
quintic equation of the hierarchy has been studied
by Hoseini and Marchant [49]. The quintic nonlinear
Schrödinger (QNLS) equation reads as [50–53],

i qt + S[q(x, t)] − i ε Q[q(x, t)] = 0, (1.1)

where S[q(x, t)] is the second-order NLS operator,

S[q(x, t)] = 1
2qxx + q|q|2, (1.2)

while Q[q(x, t)] is the fifth-order quintic operator,

Q[q(x, t)] = qxxxxx + 10|q|2qxxx + 10(q|qx |2)x
+ 20q∗qxqxx + 30|q|4qx .

(1.3)

and ε is an arbitrary real parameter and can be varied
and set close to an experimental value. This flexibility
allows us tomake reasonable adjustments for the actual
physical phenomenon to be approximated in future
experiments. Here x is the propagation variable, and t
is the transverse variable (time in a moving frame). The
function |q(x, t)| is the envelope of the waves. A series
of works on this equation have been done including the
Darboux transformation [50], conservation laws [51],
breather solutions [52], and breather-to-soliton conver-
sions [53].

Well recent studies suggest that advanced improve-
ment in NLS equation could lead to some qualitatively
new characteristics for rogue waves and breathers [54,
55]. Increasing the value of higher-order terms causes
the observation of the compression effects of the
breathers in the LPD equation [56]. These effects
could make the rogue wave twisted in the Sasa–
Satsuma equation [57–59]. The state transitions among
breathers and other types of nonlinear waves such as
the multipeak soliton, anti-dark soliton, periodic wave
andW-shaped soliton can appear as a result of the exis-
tence of the higher-order effects [53,60–67]. And the
rogue waves can be also converted into the W-shaped
solitons [68,69]. In particular, the higher-order effects
affect theMI, the growth rate of which shows a nonuni-
form distribution characteristic in the low perturbation
frequency region and opens up a stability region as the
background frequency changes [63–69].
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In the present work, based on the QNLS equation,
we mainly concentrate the dynamics of the SRB solu-
tions and their state transition induced by the fifth-
order effects. By means of the Darboux transforma-
tion, we first show that the SRB solutions still exist
in the NLS equation in spite of the fifth-order disper-
sion with matching higher-order nonlinear terms. Fur-
ther, we transform the SRBs into themultipeak solitons
while keep the small localized perturbation unchanged.
Such transition occurs under a special condition where
the radial and angle satisfy a transition equation. The
transformed solitons are expected to be observed in
future optical experiments. We finally reveal the rela-
tionship between transformed soliton and linear MI.

2 The SRB solutions and state transitions

In this section, via the Darboux transformation and
method in Refs. [38,39], we discuss the characteris-
tics of the SRB solutions for the QNLS equation. Due
to the fifth-order dispersionwithmatching higher-order
nonlinear terms, we show that the SRB solutions can
be transformed into other two types of ones, i.e., the
multipeak soliton solution and hybrid solution.

2.1 The SRB solutions

Equation (1.1) is the compatibility condition for the
following overdetermined linear system for a matrix
function Ψ [50]

Ψx = UΨ = (λU0 +U1)Ψ,

Ψt = VΨ =
(

A B
− B∗ − A

)
Ψ,

(2.1)

with U and V being 2 × 2 matrices,

Ψ =(ϕ, ψ)T,

U0 =
(−i 0

0 i

)
, U1 =

(
0 q

−q∗ 0

)
,

A = − 16iλ5ε + 8iλ3ε|q|2
+ 4λ2ε

(
qq∗

x − qxq
∗) − iλ2

− 2iλε
(
qq∗

xx + q∗qxx − |qx |2 + 3|q|4
)

+ 1

2
i |q|2

+ ε
(
q∗qxxx − qq∗

xxx + qxq
∗
xx − qxxq

∗
x

+ 6|q|2q∗qx − 6|q|2q∗
x q

)
,

B =16λ4εq + 8iλ3εqx − 4λ2ε
(
qxx + 2|q|2q

)

− 2iλε
(
qxxx + 6|q|2qx

)
+ λq

+ ε
(
qxxxx + 8|q|2qxx

+ 2q2q∗
xx + 4|qx |2q + 6q2x q

∗ + 6|q|4q
)

+ 1

2
iqx ,

whereλ is an eigenvalue parameter andϕ andψ are two
linear complex functions. Using the Darboux transfor-
mation, we can give the N-order solutions of Eq. (1.1)

q[n] = q[0] − 2 i
Δ1

Δ
, (2.2)

with

Δ1 =

∣∣∣∣∣∣∣∣∣

ϕ1 ψ1 · · · λn−2
1 ϕ1 λn−2

1 ψ1 λn−1
1 ϕ1 λn1ϕ1

ϕ2 ψ2 · · · λn−2
2 ϕ2 λn−2

2 ψ2 λn−1
2 ϕ2 −λn2ϕ2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

ϕ2n ψ2n · · · λn−2
2n ϕ2n λn−2

2n ψ2n λn−1
2n ϕ2n −λn2nϕ2n

∣∣∣∣∣∣∣∣∣
,

Δ =

∣∣∣∣∣∣∣∣∣

ϕ1 ψ1 · · · λn−2
1 ϕ1 λn−2

1 ψ1 λn−1
1 ϕ1 λn−1

1 ψ1

ϕ2 ψ2 · · · λn−2
2 ϕ2 λn−2

2 ψ2 λn−1
2 ϕ2 λn−1

2 ψ2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ϕ2n ψ2n · · · λn−2
2n ϕ2n λn−2

2n ψ2n λn−1
2n ϕ2n λn−1

2n ψ2n

∣∣∣∣∣∣∣∣∣
.

Hereby, q[0] is a certain particular solution of Eq. (1.1)
and Ψ j = (ϕ j , ψ j )

T are the fundamental matrix solu-
tions of Lax Pair (2.1). Choosing N complex numbers
λ j corresponding toΨ j , we can obtain the new solution
of Eq. (1.1) by Expression (2.2).

In order to obtain the breather solutions, we consider
the plane-wave solution q[0] = c ei (a x+b t) as the ini-
tial one, where c, b and a represent the amplitude, wave
number and frequency, respectively. Further, to facil-
itate the SRB solutions, we perform the Joukowsky
transform to λ as follows

λ = −i
c

2

(
ξ + 1

ξ

)
− a

2
, ξ = R ei α, (2.3)

which maps the plane of λ onto the outer part of the
circle of unit radius. The parameters R (radius) and α

(angle) are the polar coordinates of the point. Then,
the first-order breather solution can be written in the
following form (n = 1):
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q[1]
B = c

(
1 − 2

(
R + 1

R

)
cosα

ϕ1ψ
∗
1

|ϕ1|2 + |ψ1|2
)

q[0],

(2.4)

with

ϕ1 = eA−i α

R
+ e−A, ψ1 = e−A−i α

R
+ eA,

A = h x + ω t + 1

2
(μ − i θ),

h = hR + i h I = c

2

(
R − 1

R

)
cosα

+ i
c

2

(
R + 1

R

)
sin α,

ω = h(ωR + i ωI )

= h
[
2a4ε − 4a3λ1ε + 8a2ε

(
λ21 − 3c2

)

+ a
(
24c2λ1ε − 16λ31ε − 1

)

+ 2
(
6c4ε − 8c2λ21ε + λ1 + 16λ41ε

) ]
,

λ1 = −a

2
+ c

2

(
R − 1

R

)
sin α − i

c

2

(
R + 1

R

)
cosα,

hR = c

2

(
R − 1

R

)
cosα, hI = c

2

(
R + 1

R

)
sin α,

ωR = 2(−a + 5 a4 ε − 40 a2 c2 ε + 16 c4 ε)

− c (R − R−1)(1 − 20 a3 ε + 50 a c2 ε) sin α

+ 4 c2(−5 a2 + 3 c2)(R2 + R−2)ε cos 2α

− 10 a c3(R3 − R−3)ε sin 3α

+ 2 c4 (R4 + R−4)ε cos 4α,

ωI = −c (R + R−1)(1 − 20 a3 ε + 50 a c2 ε) cosα

− 4 c2(−5 a2 + 3 c2)(R2 − R−2)ε sin 2α

− 10 a c3(R3 + R−3)ε cos 3α

− 2 c4 (R4 − R−4)ε sin 4α,

InEq. (2.4), the parameters θ andμ, respectively, define
the location and phase of the breather. The group veloc-
ity and phase velocity of the breather can be given by

Vph = −hR ωI

h I
− ωR, Vgr = −ωR + hI ωI

hR
.

(2.5)

Similarly, the second-order breather solution via
Expression (2.2) can be given by (n = 2)

q[2]
B = c

(
1 − i

(
R2 − 1

R2

)
sin 2α

NR + i NI

Δ

)
ei ρ,

(2.6)

with

NR =
(
R + 1

R

)
cosα

[(
|ψ1|2− |ϕ1|2

)
ϕ2ψ

∗
2

+
(
|ϕ2|2 − |ψ2|2

)
ϕ1ψ

∗
1

]
,

NI = −
(
R − 1

R

)
sin α

[(
|ψ1|2 + |ϕ1|2

)
ϕ2ψ

∗
2

+
(
|ϕ2|2 + |ψ2|2

)
ϕ1ψ

∗
1

]
,

Δ = sin2 α

(
R − 1

R

)2

(|ϕ1|2|ϕ2|2 + |ψ1|2|ψ2|2)
+ 4 cos2 α(|ϕ1|2|ψ2|2 + |ψ1|2|ϕ2|2)
− cos2 α

(
R + 1

R

)2

(ϕ1ψ2ψ
∗
1ϕ∗

2 + ψ1ϕ2ϕ
∗
1ψ

∗
2 )

+
(
R − 1

R

)2

(|ϕ1|2|ψ2|2 + |ψ1|2|ϕ2|2),

ϕ1 = eA1−i α

R
+ e−A1 , ψ1 = e−A1−i α

R
+ eA1 ,

A1 = h x + ω t + 1

2
(μ1 − i θ1),

ϕ2 = eA2−i α

R
+ e−A2 , ψ2 = e−A2−i α

R
+ eA2 ,

A2 = h∗ x + ω t + 1

2
(μ2 − i θ2),

ω = h∗(ω
R + i ω

I )

= h∗ [
2a4ε − 4a3λ2ε + 8a2ε

(
λ22 − 3c2

)

+ a
(
24c2λ2ε − 16λ32ε − 1

)

+ 2
(
6c4ε − 8c2λ22ε + λ2 + 16λ42ε

)]
.

In fact, solution (2.6) includes two sets of parameters
R j , α j , θ j and μ j for j = 1, 2. Hereby, we only con-
sider the case R1 = R2 = R and α1 = −α2 = α

for the SRBs in opposite directions. This is depicted in
Fig. 1.

Solutions (2.4) and (2.6) describe different types of
nonlinear waves depending on the values of the param-
eters R andα. The case R > 1 andα = 0 is response for
the Kuznetsov–Ma breather, while R = 1 and α �= 0
give rise to the Akhmediev breather. When α → 0,
solution (2.4) describes the Peregrine rogue wave. In
addition, we set R = 1 + σ (σ is a small param-
eter), which could lead to the observation of quasi-
annihilation at the moment of collision. Conversely,
the case R = 1 will cause two Akhmediev breathers
with opposite values of angular parameter completely
annihilate each other. In order to illustrate the effect of
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Fig. 1 (Color online)Uniformization of symmetrical eigenvalue
parameters of second-order breather with the help of Joukowsky
transform with the same small parameter σ and symmetrical
angle α

R on the breather more clearly, Fig. 2 is plotted to show
the conversion process from a Akhmediev breather
(R = 1) to a quasi-Akhmediev breather (R = 1.2) to
a general breather (R = 1.5) as the value of R grows.
Two additional phase-shift parameters θ and μ affect
the shape and amplitude of the perturbation. The degree
of complexity of thewave profile at the area of collision
depends on the difference between θ1 + θ2 and π . For
example, the most effective annihilation appears when
θ1 + θ2 approaches π . This will allow us to observe
the SRBs. For the detailed discussion of the effects of
parameters θ and μ, one can refer to Refs. [38,39].

In Fig. 3a, we display the first-order breather solu-
tion of the QNLS equation with R = 1.13, α = 0.6,

μ1,2 = 0, c = 1, a = 0.5 and ε = 0.1. This type of
solution is periodic in neither time nor space while it
is periodic along the line connecting the peak maxima.
Figure 3b describes the ghost interaction of breathers.
The collision point is just another maximum of either
breather solution. Each breather then appears seem-
ingly without influence of the collision process. Fig-
ure 3c characterizes the synchronized collisionbetween
two SRBs from which we can observe a second-order
rogue wave at the origin. Figure 3d is plotted for the
quasi-annihilation of SRBs at the origin. Such phe-
nomena correspond to the cases θ1,2 = 0, θ1,2 = π

2
and θ1,2 = π , respectively. And μ1,2 = 0, R = 1.13
and α = 0.6 for all cases. Hereby, we are particu-
larly focused on the last interaction since it has more
physical and practical significance. It is well known
that the Akhmediev breathers develop from periodic
perturbations in Benjamin–Feir instability that require
the whole infinite space [40]. While the two quasi-
Akhmediev breathers reduce to a small localized per-
turbation (LP) of the background at time zero, which is
shown in Fig. 4 clearly. Further, the perturbation δq =
1−q[2] on the continuouswave can be approximated by

δq = q[2]
B − c ei ρ

≈ 4 i c σ
cosh (i α + 2 VG hRt) cos(2 sin α x − θ1−θ2

2 )

cosh(2 σ x cosα)
,

(2.7)

the temporal width of which increases with decreasing
σ , whereas the amplitude decreases. This means that

Fig. 2 (Color online) Intensity distribution of fundamental
modes (I = |q|2)with the sameα (=π/3) as R → 1.5.aAkhme-
diev breather (R = 1), b quasi-Akhmediev breather (R = 1.2),

c general breather (R = 1.5). The solid lines represent the group
velocity Vgr, while the dashed lines describe the phase velocity
Vph
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Fig. 3 (Color online) Intensity distribution (I = |q|2) of a first-
order quasi-AB and the three modes of second-order breather
solution (R = 1.13, α = 0.6, μ1,2 = 0, c = 1, a = 0.5 and
ε = 0.1) with the following phase shifts: b ghost case: θ1,2 = 0,

c amplification case: θ1,2 = π , d superregular case: θ1,2 = π
2 .

Notice that the amplitudes |q[2](0, 0)|2 are b 5.4104, c 18.7145,
d 1.1636, respectively

Fig. 4 (Color online) The development of the quasi-annihilation
of breathers with the same parameters as in Fig. 3d. Red solid
line is small perturbation at the moment t = 0. Blue dashed line
is the breathers solution at the moment t = 5

the small parameter σ plays an important role in the LP.
Note that δq possesses a perturbed frequency 2 sin α.

Despite the fifth-order dispersion and nonlinearity
terms, the SRB solutions still exist in the QNLS equa-
tion. Additionally, these terms have no influence on the
small LP, at first glance. However, as previous studies
pointed out, the higher-order effects can lead to the state
transition between breather and soliton [53,60,62–64].
Therefore, we will expect to observe some new phe-
nomena in next part.

2.2 The multipeak soliton solution

As shown in Ref. [53], the breathers can be converted
into solitons when the fifth-order dispersion parameter
ε, real part λr , and imaginary part λi of the eigenvalue
satisfy the following equation [53]

2 ε[a3 − 4 a2λr − 2 a(3 c2 − 6 λ2r + 2 λ2i )

+ 8λr (c
2 − 4 λ2r + 4 λ2i )] = 1 i = 1, 2.

(2.8)

Here, Eq. (2.8) is formulated in polar coordinate form
to facilitate the transformation. To convert two quasi-
Akhmediev breathers into solitons completely, we use
two different sets of values of the radius and angle as
follows

R1 = 1 + σ1, R2 = 1 + σ2,

σ1 �= σ2, α1 �= −α2. (2.9)

In this case, Eq. (2.8) can be expressed in forms of

ε = R3
i

/[
4 sin(αi )

(
2R2

i

(
R2
i − 1

) (
5a2 − c2 − 2

) − 1
)

+ 10aRi
(
2R2

i

(
a2 − c2 − 2

) + R4
i + 1

)
− 4Ri

(
R4
i − R2

i + 1
)
cos(2αi )(5a + 2Ri sin(αi ))

+ 4 sin(3αi )

]
, i = 1, 2.

(2.10)

Equation (2.10) is the state transition equation in polar
coordinates. It includes four important parameters,
namely the radius R, the angle α, the frequency a and
the higher-order term ε. Thus, for the given ε and a, we
can realize the state transition by the manipulation of
the other two parameters Ri and αi . On the other hand,
one can easily check that Eq. (2.10) is equivalent to the
condition

Vgr,i = Vph,i , i = 1, 2. (2.11)

Interestingly, Eq. (2.11) suggests that the transformed
solitons appear as a result of the case where the group
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Fig. 5 (Color online) Phase diagrams of fundamental nonlin-
ear modes in the Re(ξ )–Im(ξ ) plane (ξ = R eiα) with (a)
a �= as1 and (b) a = as1. a shows well-known breathing modes
including “GB” (general breather), “QAB” (quasi-Akhmediev
breather),“AB” (Akhmediev breather), “KMB” (Kuznetsov–Ma

breather), and “PRW” (Peregrine roguewave),while for the same
pole (i.e., the sameR,α),b displays non-breathingmodes includ-
ing “MPS” (multipeak soliton), “QPW” (quasiperiodic wave),
“PW” (periodic wave), “SPS” (single-peak soliton), and “WSS”
(W-shaped soliton)

velocity and phase velocity of the SRB solution have
an equal value. Note that both Vgr,i and Vph,i are related
to the frequency a that can be flexibly adjusted. So we
can satisfy condition (2.11) by controlling the value of
a. Solving Eq. (2.11), we obtain the values of ai = as,i
for i = 1, 2. For the fixed Ri , αi and ε, using ai = as,i
in Eq. (2.10) will lead to the conversion between the
SRBs and solitons. Therefore, we have different routes
to realize the state transition by the manipulation of the
eigenvalue (Ri , αi ) or the frequency a. Similar to the
case in Refs. [63,64], the solitons also have different
types of nonlinearmodeswith the corresponding eigen-
values. Hereby, we demonstrate the phase diagrams of
fundamental nonlinear modes in Fig. 5.

The independence of the two sets of eigenvalue
parameters (Ri and αi , i = 1, 2) allows us to conve-
niently control the two transformed solitons. But these
two eigenvalue parameters should be associated with
the same values of ε and a. Each set of Ri and αi meet-
ing Eq. (2.10) can turn a SRB into a multipeak soliton.
However, we have to require the amplitude of the small
LP almost unchanged after the conversion except for its
shape. This means that not all values of Ri and αi are
suitable for transformations. Only the Ri and αi whose
values do not significantly increase the amplitude of the
small LP can be considered. On the other hand, the two
quasi-Akhmediev breathers are required to have differ-
ent group velocity to prevent the overlap. In addition to

R and α, one can find the group velocity is related to
three other parameters, namely a, c and ε. The parame-
ter c denotes the background amplitude and is generally
taken as 1 while ε is a system parameter. Consequently,
we mainly control the group velocity of the two SRBs
by adjusting the value of the frequency a. The condition

Vgr,i = Vgr, j , i �= j. (2.12)

will result in the overlap of two SRBs which have been
studied in Ref. [60]. Solving Eq. (2.12) with respect to
a, we have a = a f . We omit this case since it does not
involve LP. Instead, under the condition

Vgr,i ≈ Vgr, j , i �= j, (2.13)

the group velocity of one of solitons is closed to that
of another one. This could allow us to observe some
novel nonlinear modes in the nonlinear stage of MI.
Therefore, we consider the case a ≈ a f . It should be
pointed out that we fail to obtain a f analytically due to
the computational complexity. However, we show how
the parameter a affects the group velocity and phase
velocity in Fig. 6. Conditions (2.11), (2.12) and (2.13),
respectively, correspond to the cases a = as,i , a = a f ,
and a ≈ a f . So in conclusion, we can choose the suit-
able value of the frequency a to manipulate the dynam-
ics of the SRBs and solitons.
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Fig. 6 (Color online) Evolution of Vgr,i and Vph,i (i = 1, 2)with
a. The conditions Vgr,i = Vph,i , Vgr,i = Vgr, j and Vgr,i ≈ Vgr, j ,
respectively, correspond to the cases a = as,i , a = a f , and
a ≈ a f

As mentioned, the solution of Eq. (2.10) is com-
plicated and has to be found numerically. Solving
Eq. (2.10) for a fixed values of ε and a (for exam-
ple ε = − 0.049 and a = 0.5) provides us with two
solutions, i.e., R1 = 1.03, α1 = 0.6 and R2 = 1.08,
α2 = 0.715. In this case, the two transformed solitons
have the similar velocity but they do not overlap. The
corresponding wave profile is shown in Fig. 7a from
which we observe that two quasi-Akhmediev breathers
are converted into the stable multipeak solitons in the
same direction over a period of time. Fig. 7b depicts a
global scene of collision between two multipeak soli-
tons clearly. The fifth-order dispersion and nonlinear
term inhibit the periodic oscillations of the SRBs dur-

ing their propagations.We also note that these two soli-
tons have the same propagation direction, which breaks
the limit of definition of SRB in opposite directions
in Refs. [38,39]. Unfortunately, we have not found the
transformed solitons with different directions since this
casewill produce a larger LP. Such case isworth further
study.Another interesting phenomenon is that a beating
pattern appears before the formation of the multipeak
solitons, which is depicted in Fig. 8a. The beating pat-
terns are formed by the nonlinear superposition of two
general breathers, as reported in Refs. [52,60]. This
occurs when the directions of propagation of the two
colliding breathers coincide. Nevertheless, the veloci-
ties of twowaves in Fig. 7a are similar but not identical.
Thus, the beating pattern is different from the previous
ones and shows the feature of the short-lived life. As
shown in Fig. 8b, at the branch point (BP), the beat-
ing structure is beginning to divide into two multipeak
solitons. It is difficult to give the position of this point
analytically. It may be associated with the separation
distance between the two waves. Hereby, we define the
position of the BP on which twomain peaks of the soli-
tons are formed and present its coordinate numerically
(t = 141.14, x = 213.47).

2.3 The hybrid solution

In this part, we are concerned with another type of state
transition that only involves one multipeak soliton. In
this case, the eigenvalue parameters meet the following
condition

Fig. 7 (Color online) a The quasi-annihilation of two multipeak
solitons (they have the similar velocities) propagating in same
directions with R1 = 1.03, R2 = 1.08, α1 = 0.6, α2 = 0.715,
μ1,2 = 0, θ1,2 = π

2 , c = 1, a = 0.5 and ε = − 0.049. b is the

global scenario of development of a small localized perturbation.
A small localized perturbation experiences two major phases of
developments, i.e., the beating pattern and two multipeak soliton
state
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Fig. 8 (Color online) a The
beating pattern [area A in
enlarged Fig. 7a]. b The BP
[area B in enlarged Fig. 7a]

R1 = R2 = R = 1 + σ, α1 = −α2 = α. (2.14)

The above relation indicates that the two sets of param-
eters (R j , α j ) for j = 1, 2 relate to each other. The val-
ues of the radiuses are equal, while the angles are anti-
symmetric. Consequently, if one of quasi-Akhmediev
breathers is converted into a soliton, then the other
one cannot be transformed. The governing equation for
such transition is given by

ε = R3
/[

4 sin(α)
(
2R2 (

R2 − 1
) (
5a2 − c2 − 2

) − 1
)

+ 10aR
(
2R2 (

a2 − c2 − 2
) + R4 + 1

)
− 4R

(
R4 − R2 + 1

)
cos(2α)(5a + 2R sin(α))

+ 4 sin(3α)

]
,

(2.15)

which is equivalent to the following relation

Vph,1 = Vgr,1. (2.16)

As depicted in Fig. 9, one can observe the collision
between a stable multipeak soliton and a breather with
fast group velocity in opposite directions. The two
waves reduce to a small localized perturbation of the
background at time zero as before. This again confirms
the fact that the higher-order effects can lead to more
nonlinear wave patterns. In addition, by selecting the
suitable values of Ri and αi for i = 1, 2, we could
observe other types of nonlinear waves such as the anti-
dark solitons, W-shaped solitons and M-shaped soli-
tons in the nonlinear stage of MI.

3 The relation between state transition and linear
MI

To reveal the relation between the state transition and
linear MI, we perform the linear stability analysis of
the background wave q[0] via adding small-amplitude
perturbed Fouriermodes p, i.e., qp = [c+ p]eiρ , where
p = f+ei(Λx−Ωt) + f ∗−e−i(Λx−Ω∗t) with small ampli-
tudes f+, f ∗−, perturbed frequencyΛ, andwave number

Fig. 9 Quasi-annihilation
of a multipeak soliton and a
superregular breather with
R1 = R2 = 1.13, α1 =
− α2 = 0.6, μ1,2 =
0, θ1,2 = π

2 , c = 1, a =
− 0.1271 and ε = 0.1. b is
the cross-sectional view of a
at t = 0 and t = 20
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Ω . Substituting the perturbed solution qp into Eq. (1),
followed by the linearization process in Refs. [68,69],
leads to the following dispersion relation

Ω =Λ [a − 5 a4 ε + 10 a2 ε (6 c2 − Λ2)

− ε (30 c4 − 10 c2 Λ2 + Λ4)]

±
√

Λ2 − 4 c2

2

∣∣∣Λ[1 − 10 a ε(2 a2 − 6 c2 + Λ2)]
∣∣∣.

(3.1)

MI exists when Im(Ω) > 0 (thus MI exists in the
regionΛ < 2cwithΛ[1−10 a ε(2 a2−6 c2+Λ2)] �=
0) and is described by the growth rate G = k Im(Ω) >

0 , where k > 0 is a real number. Namely, a small-
amplitude perturbations in this case sufferMI and grow
exponentially like exp(G t) at the expense of pump
waves.

As mentioned, δq possesses a perturbed frequency
Λ = 2 sin α which belongs to the linear MI region
|Λ| < 2. Conversely, the MI is absent and the small
perturbation cannot be amplified. In addition, the trans-
formed solitons generated from the SRB solutions
have close relations with the linear MI in the pres-
ence of higher-order effects. Figure 10 shows the MI
growth rate distribution with ε �= 0. It is obviously
found that the higher-order effects affect the distribu-

Fig. 10 (Color online) Distribution of linear MI growth rate
G = k Im(Ω) > 0 on (Λ, a) plane with c = 1, ε = 0.1, k = 2.
The abscissa values of the red points in (10) correspond to three
roots of Eq. (3.3), namely a j for j = 1, 2, 3

tion characteristic of MI growth rate in the subregion
− 2 < Λ < 2. There are three asymmetric modu-
lation stability (MS) regions where the corresponding
MI growth rate is equal to zero. Further, theMS regions
can be given analytically by

ε = 1

10 a
(
2 a2 − 6 c2 + Λ2

) , (3.2)

which is shown by the solid lines in Fig. 10. If the value
of Λ in Eq. (3.2) is closed to zero, we have

ε = 1

10 a
(
2 a2 − 6 c2

) . (3.3)

Solving Eq. (3.2) with respect to a, we have

a1 = −1

2

(
4 × 5

1
3 c2ε

M
1
3

+ M
1
3

5
1
3 ε

)
, (3.4a)

a2 = 5
1
3 (1 + i

√
3) c2ε

M
1
3

+ (1 − i
√
3) M

1
3

4 × 5
1
3 ε

, (3.4b)

a3 = 5
1
3 (1 − i

√
3) c2ε

M
1
3

+ (1 + i
√
3) M

1
3

4 × 5
1
3 ε

, (3.4c)

with

M = − ε2 +
√

ε4 − 1600 c6ε6.

Interestingly, state transition condition (2.8) can also
be converted into Eq. (3.3) as we consider the rogue
wave eigenvalue λ = − a

2 + c i . In this case, the SRBs
are transformed into the W-shaped solitons. This indi-
cates that theW-shaped solitons appears in aMS region
where the perturbation frequency satisfies Λ = 0 and
the frequency of the background wave a = a j for
j = 1, 2, 3 [also see the red points in Fig. 10].

4 Conclusions

To conclude, we have studied the dynamics of SRB
solutions governed by theQNLS equation that includes
the fifth-order dispersion with matching higher-order
nonlinear terms. We have shown that the SRB solu-
tions can also exist for the QNLS equation. We have
presented the multipeak soliton and hybrid solutions,
both of which are caused by the higher-order effects.
All three types of solutions reduced to small localized
perturbations of the background at time zero. We have

123



Dynamics of superregular breathers 987

revealed the relationship between the state transition
and the linear MI.
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