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Abstract An isolated two-dimensional circular cylin-
der with two linear degrees of freedom, parallel and
perpendicular to the free-stream direction, and owning
a nonlinear energy sink (NES) is investigated by fluid–
structure interaction (FSI) simulations to assess vortex-
induced vibrations (VIV) at moderate Reynolds num-
bers. Subsequently, the wake-induced vibration (WIV)
of a pair of identical cylinders under the action of two
NES in a tandem arrangement and in a proximity–
wake interference regime is explored using the same
approach. The NES parameters (mass, nonlinear stiff-
ness and damping) are investigated to determine their
effects on the dynamic response of a single degree of
freedom (in transverse flow direction) coupled system
by a reduced-order model based on an experimentally
validated van der Pol oscillator. The CFD model cou-
pled with FSI method is also validated against VIV
experimental data for an isolated cylinder in a uniform
flow. The study is aimed to investigate the effect of the
passive suppression NES device on VIV andWIV. The
amplitude response, trajectories of cylinder motion and
temporal evolutions of vortex shedding are obtained by
conducting a series of numerical simulations. It is found
that placing a tuned NES in the cylinders can provide
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good suppression effect; however, the effectiveness is
function of the reduced velocity.
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1 Introduction

Vortex-induced vibration (VIV) is a flow-induced
vibration (FIV) phenomenon occurring when a struc-
ture is driven by cyclic loads produced by vortex shed-
ding [1]. VIV commonly occurs in ocean and civil
engineering structures; it is due to flows past ocean
risers, cables, bridges, chimneys and buildings, just to
name but a few. In case where the vortex shedding fre-
quency ( fv) is in the vicinity of the structure natural fre-
quencyof oscillation ( fn), the systemmay respondwith
a “lock-in” or “synchronization” phenomenon that pro-
duces high-amplitude vibration and could cause severe
fatigue and critical failure of structural elements [2–6].
Wake-induced vibration (WIV) produced on a down-
stream structure occurs in tandem arrangement, and
it is also a typical FIV phenomenon. The structure
located upstream is exposed to a free uniform current,
and Reynolds number (Re) of these two structures is
decided by the current velocity of the upstream struc-
ture.
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Assuming, for example, two cylinders in tandem
arrangement, vortices shed from the front cylinder not
only will impact on the rear cylinder, but also will inter-
fere with its own vortex shedding process forming the
downstream wake. Consequently, the rear cylinder is
immersed in a disturbed flow region which is created
by the wake of the front cylinder. The response of the
rear cylinder is dissimilar to the typical VIV, but a
type of vibration that is influenced by the wake coming
from the upstream cylinder and featured by the ampli-
tude response continue to grow during high reduced
velocities (Ur), and normally the maximum amplitude
response is larger than that of a typical VIV [1,5,7–
10]. The reduced velocity is defined as Ur = U/ fn D,
where U , D and fn are the flow speed, cylinder diam-
eter and cylinder natural frequency in still water or
air, respectively. Since FIV may lead to structural
fatigue or damage, VIV and WIV of cylindrical struc-
tures and their suppression are of critical importance
for practitioners. Indeed, in the past 20 years, many
approaches have been proposed in order to suppress
VIV responses, including active [11–14] and passive
[15–22] suppression solutions. Often excessive power
and complex actuation limit the practical application
of active control technologies [11,12]. Most of the pas-
sive suppression mechanisms resource to the addition
of appendages to the external cylinder, including the
use of small rods [16,17], helical [20], faring [21] and
shroud [22] which may lead to undesirable structural
issues of their own, including the increase in mass ratio
and possible increase in the drag coefficient.

A nonlinear energy sink (NES) is a strongly non-
linear local attachment that can pump energy from the
primary system is linked to and to reduce the vibra-
tion amplitude of such a system without changing its
natural frequencies. NES solutions have been devel-
oped to reduce unwanted structural vibration in differ-
ent engineering applications given their ability to mit-
igate vibrations in a broad frequency range [23–28].
Since the NES can absorb the vibration energy gener-
ated by general broadband transient excitations, it is an
attractive control strategy for structural vibration sup-
pression. In recent years, Tumkur et al. [29–31] intro-
duced an NES passive control approach to suppress
the VIV response of a sprung cylinder. The authors
used a variational multiscale finite-element methodol-
ogy to study the VIV of the flow cylinder–NES cou-
pled system and demonstrated that the NES played a
significant role in suppressing the VIV response with

suitable NES parameters. Mehmood et al. [32] investi-
gated the effects of NES parameters (mass and damp-
ing) on the VIV response of a cylinder system by com-
putational fluid dynamics (CFD) model coupled with
structure and NES. Significant suppressing effects of
the NES were obtained with properly tuned parame-
ters. Dai et al. [33] further investigated the passive sup-
pression mechanism of VIV of the cylinder by NES,
and a numerical model was established using a van
der Pol oscillator coupling to the structural dynamics
with NES. The results showed that the coupled system
dynamic behaves are periodic, aperiodic and multiple
stable responses, which depended upon the values of
the NES parameters. The significant reductions in the
VIV responses were obtained with properly tuned NES
parameter.

It is worth noting that the research performed by
Tumkur et al. [29–31], Mehmood et al. [32] and Dai
et al. [33] about VIV suppression was limited to one
degree of freedom (1-DOF) vibration of the cylinder.
However, in more realistic conditions, the cylinder can
also vibrate in the inflow direction, which may lead to
an effect on the cross-flow (CF) direction response [34].
It also should be noted that research by Tumkur et al.
[29–31] andMehmood et al. [32]was performed at very
low Reynold’s number (Re < 140) and one or two Re
from the “lock-in” range, which is clearly inadequate
if the intent is to assess the dynamics behavior of the
entire “lock-in” region when considering the influence
of NES parameters.

To properly understand the dynamic behavior and
effect of the NES and its parameters on the VIV of the
cylinderwithin the selectedUr regionwhich includes in
and out the typical “lock-in” region, further investiga-
tions are warranted. As such, the dynamic behavior of
VIV andWIV of cylinders under the action of NESs for
selectedUr and turbulent flows (Re from 2300 to 5600)
based on more accuracy models, considering also the
inflow direction vibration motion, constitutes the topic
of this paper. The NES parameters are, firstly, stud-
ied efficiently on the basis of the van der Pol oscillator
coupled with structure andNES. Then, the dynamics of
two- degrees-of-freedom (2-DOF) VIV of one cylinder
with and without NES for a range ofUr is investigated
by fluid–structure interaction (FSI)model coupledwith
NES. Finally, the dynamic behavior of WIV of a pair
of identical cylinders under the action of two NESs is
preliminarily explored using the same approach.
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The rest of the paper is organized as follows. In
Sect. 2, the problem description of three different mod-
els is introduced. In Sect. 3, the modeling of these
three models and validations is discussed. Section 4.1
presents the effect of NES parameters on this coupled
flow cylinder and NES system, Sect. 4.2 illustrates the
dynamic behaviors of 2-DOFVIVof the single cylinder
under the action of NES, while Sect. 4.3 explores the
dynamic behaviors of 2-DOF WIV of a pair of cylin-
ders in a tandem arrangement under the action of NES.
Finally, in Sect. 5 concluding remarks are offered.

2 Problem description

In order to obtain appropriate NES parameters for 2-
DOF VIV and WIV FSI model as to explore the circu-
lar cylinders dynamic response behavior, the reduced
model proposed in [33] is considered first. This model
assumes a single circular cylinder constrained to oscil-
late transversely (y-direction) in a uniform current
of free-stream velocity U (x-direction) following the
van der Pol oscillator dynamics. This model is pro-
posed here also to explore NES parameters, includ-
ing structural mass, damping and nonlinear stiffness.
The model, named Model I, having 1-DOF is shown
in Fig. 1a. The circular cylinder of diameter D is sup-
ported by the spring and damper. In order to suppress
the VIV of the single cylinder, an NES consisting of
mass mnes, nonlinear stiffness knes and a linear damper
cnes is considered. It should be noted that the NES is
placed inside of the cylinder to avoid the influence of
the flow on the NES system. Moreover, the mass of the
cylinder is reduced as to maintain unchanged both the
combinedmass of the cylinder andNES and the natural
frequency of the coupled system. To establish a more
accurate model and study the trajectories of cylinder
motion, the amplitude response and the temporal evo-
lution of the vortex shedding of the cylinder under the
action of the NES, the in-line (IL) flow direction vibra-
tion on theVIVorWIVof the cylinders is considered in
Models II and III. These models are established using
CFD models coupled with FSI and NES and are both
shown in Fig. 1b, c. Close-up view of the cylinder with
NES which have 2-DOF is shown in Fig. 1d. Bound-
ary conditions used in the CFD simulations are also
specified in Fig. 1b, c. For both Models II and III, the
computational domain is a rectangle region in which
the Re #, based on upstream cylinder velocity, diam-

eter of the cylinder and kinematic viscosity of fluid,
changes within the range 2300–5600. The mass, stiff-
ness, structural damping ratio and diameter of the cylin-
der are m = 15.708 kg, k = 2530.1N/m, ς = 0.0013
and D = 0.02m, respectively. The natural frequency
in still water is fn = 2Hz. As a result, in the carried
simulations the speed Ur changes from 3 to 7, which
correspond to a Re # within the range 2300–5600.

Nine different Ur values are considered to examine
the effect of flow velocity on the VIV response of the
cylinders with and without NES. As shown in Fig. 1c,
d, the center of the upstream cylinder is 10 times the
diameter of the cylinder (10D) from the inlet boundary,
while the outlet boundary is placed aft at 30D. In addi-
tion, the lateral boundaries are placed at 10D from the
centerline, and the overlappingmeshes zone around the
cylinder cover 3D. For Model 3, the distance between
upstream cylinder and downstream cylinder is 5D. No-
slip boundary condition is imposed on the cylinders,
and the top and bottom boundary conditions are of slip-
wall typewith ∂u/∂y = 0 and v = 0, where u and v are
velocity in x-and y-directions, respectively. The model
inflow and outflow boundaries are velocity inlet and
pressure outlet, respectively.

3 Mathematical modeling and numerical approach

UsingNewton’s second law, the governing equations of
VIV for the elastically mounted cylinders coupled with
NES, as shown in Fig. 1, and subjected to the external
fluid forces are given as:

mẍ1 + cẋ1 + kx1 = FD(t) (1)

(m − mnes)ÿ1 + cẏ1 + ky1 + cnes(ẏ1

−ẏ2) + knes(y1 − y2)
3 = FL(t) (2)

mnes ÿ2 + cnes(ẏ2 − ẏ1) + knes(y2 − y1)
3 = 0 (3)

where (·) implies derivative with respect to the dimen-
sional time t . The parameters m, c, and k are the
mass, damping and stiffness of the cylinder, respec-
tively, while mnes, cnes and knes are the mass, damp-
ing and nonlinear stiffness of the NES, respectively.
FD(t) and FL(t) represent the time-dependent external
forces (drag and lift, respectively) exerted by the fluid
flow on the cylinder. In addition, x1, ẋ1 and ẍ1 denote
the IL flow direction displacement, velocity and accel-
eration of the cylinder, respectively, while y1, ẏ1, ÿ1
and y2, ẏ2, ÿ2 represent the same quantities associated
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Fig. 1 Sketch of fluid flow over cylinders under action of NES:
a Model I; b computational domain with boundary conditions
for the single cylinder of Model II; c computational domain with

boundary conditions for a pair of cylinders of Model III; and d
close-up view of the 2-DOF vibration cylinder with NES
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with the CF direction motion of the cylinder and NES.
It should be noted that mass, damping and stiffness
parameters are defined per unit length since all models
are in two-dimensional. As indicated earlier, the mass
of the cylinder has been reduced to ensure the com-
bined mass of the cylinder and NES remains constant
[23].

The motions of the cylinders under the action of the
NES are described by the following equations:

ẍ1 + 2ςω0 ẋ1 + ω2
0x1 = FD(t)

m
(4)

(1 − β)ÿ1 + 2ςω0 ẏ1 + ω2
0 y1

+ 2ςnesω0(ẏ1 − ẏ2) + γ

D2ω2
0(y1 − y2)

3

= FL(t)

m
(5)

β ÿ2 + 2ςnesω0(ẏ2 − ẏ1) + γ

D2 ω2
0(y2 − y1)

3 = 0 (6)

in which

ω0 =
√

k

m
, ζ = c

2
√
km

, ζnes = cnes

2
√
km

,

β = mnes

m
, γ = knes · D2

k
(7)

For simplicity, the variable ξ = ςnes/ς will be used
later.

3.1 Mathematical modeling of model I and validation

3.1.1 Mathematical modeling of model I

The van der Pol oscillator [35,36] is used to compute
the cylinderwake and to express theVIV force inModel
I (Fig. 1a). Such model also provides an efficient char-
acterization of the dynamic behavior of VIV response
under the action of NES with various NES parame-
ters. The VIV loads of the cylinder include two ele-
ments; one is the basic fluid effects which are related
to the drag coefficient and the vibration velocity of the
cylinder; the other one is the effects of vortices, which
are associated with the unsteady lift coefficient on the
cylinder. As a result, the vortex-induced force FL(t) of
equation (2) can be empirically expressed as [33]:

FL(t) = −1

2
CDρfDU ẏ1 + 1

4
CL0ρfDU

2q(t) (8)

where CD and CL0 are the mean sectional drag coef-
ficients and steady lift coefficients in the transverse

direction, taken as 1.2 and 0.3 [36] in the region of
well-developed wakes, respectively; ρf is the density
of fluid flow; q(t) is defined as the reduced lift coef-
ficient, which describes the behavior of the near wake
and can be modeled by the following van der Pol equa-
tion [36]:

q̈ + λωs(q
2 − 1)q̇ + ω2

s q = P

D
ÿ1 (9)

Herein, ωs is the vortex shedding frequency defined as
ωs = 2π · St ·U/D, St is the Strouhal number, and the
value chosen in the present study is 0.2, consistent with
the Re # range of 2300–5600. The values found for the
empirical parameters λ and P are 0.24 and 15, respec-
tively, similarly to what reported in [36]. According to
Eqs. (5), (6), (8) and (9), the governing equations of
Model I which only have 1-DOF can be expressed as:

(1 − β)ÿ1 + 2ςω0 ẏ1 + ω2
0 y1 + 2ςnesω0(ẏ1 − ẏ2)

+ γ
ω2
0

D2 (y1 − y2)
3

= − 1

2m
CDρfDU ẏ1 + 1

4m
CL0ρfDU

2q(t) (10)

q̈ + λωs(q
2 − 1)q̇ + ω2

s q = P

D
ÿ1 (11)

β ÿ2 + 2ςnesω0(ẏ2 − ẏ1)+γ
ω2
0

D2 (y2−y1)
3=0 (12)

Equations (10–12) can be solved by ordinary differen-
tial equations (ODE-45) time marching scheme. The
initial conditions are set equal to y1 = 0.000001,
y2 = ẏ1 = ẏ2 = q = q̇ = 0, and the selected time step
is 0.01 s. It should be noted that the initial conditions
have significant effect on the response of the primary
circular cylinder [32].

3.1.2 Validation of model I

The usefulness of the model should be demonstrated
as the first logical step. To validate the van der Pol
oscillator and the coupling scheme, the present simula-
tion results have been compared with the experimental
data of Stappenbelt et al. [34]. For this purpose, the
response of the cylinder without the NES was consid-
ered using the same parameters of the experimental
work reported in [34]. It is noted that the mass m of
Eq. (10) of Model I should take into account both the
mass of the cylinder and the added fluid mass. The
mass ratio is defined as m∗ = m/mf − 1, where fluid
added mass mf = 0.25ρfπD2 [34]. The mass ratio
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Fig. 2 Validation of Model I for two different mass ratio (m∗)
using van der Pol oscillator: a comparison of non-dimensional
maximum displacement amplitudes (|y1|max/D) of the cylinder
versus reduced velocity with experiments from [34]; b time his-

tories of the vibration displacement (y1/D) of the cylinder when
Ur = 7; c power spectra for the cylinder in the case of Ur = 7;
d frequency ratio of the cylinder versus reduced velocity

parameter is therefore the ratio of the oscillating cylin-
der mass to the displaced fluid mass. For the cylinder
of experimental work [34], one group physical param-
eters are D = 0.0554m, ζ = 0.0056, ω0 = 7.486
rad/s, m∗ = 6.54, and another group of parameters
are D = 0.0554 m, ζ = 0.0057, ω0 = 6.0276 rad/s,
m∗ = 10.63. Figure 2a shows the comparison of
non-dimensional maximum displacement amplitudes
(|y1|max/D) of the cylinder versus Ur with the exper-
imental measurements of Stappenbelt et al. [34] for
two different values of mass ratios. It follows from the

predicted numerical results of Fig. 2a that van der Pol
oscillator can capture the resonance characteristics of
the cylinder compared with the experiment data [34].
However, the magnitudes of VIV amplitudes are quite
different from that of experimental results, especially
at the Ur region from 3 to 6. This is because there are
few empirical parameters in the van der Pol oscillator
model, and the simulation results depend heavily on the
selection of these parameters. The vibration displace-
ment (y1/D) time history of the cylinder for two mass
ratios and Ur = 7 is shown in Fig. 2b, while their fre-
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quency spectrum curves are depicted in Fig. 2c. The
shedding frequency was fv = 1.24Hz for m∗ = 6.54
with a cylinder natural frequency fn = 1.1914Hz and
fv = 0.99Hz for m∗ = 10.63 with a cylinder natu-
ral frequency fn = 0.9593Hz. The two simulations
imply that fv/ fn = 1.0408 and 1.0320, respectively.
The flow passing over the cylinder leads to separation
of the boundary layer with alternating vortices shed
with a specific frequency in the wake region. Similarly,
all the shedding frequencies of the cylinder in the cases
of various Ur from 2 to 16 are obtained. The “lock-
in” phenomenon can be observed from the frequency
responses. The vortex shedding frequency is extremely
close to the cylinder natural frequency (i.e., fv/ fn ∼ 1)
at a Ur range from 4 to 8 as shown in Fig. 2d, which
causes the cylinder to oscillate with a high amplitude,
as shown in Fig. 2a. Consequently, the wake oscillator
model, describing the fluctuating lift force, can capture
quite well the dynamic behavior of VIV response of
the elastically mounted cylinder.

3.2 Mathematical modeling and validation of models
II and III

3.2.1 Mathematical modeling of models II and III

CFD is as a methodology able to predict quite accu-
rately the aero/hydro dynamic loads for a range of
fluid dynamic phenomena related to many geometri-
cally complex, single or interacting multiple bluff bod-
ies [1,5–7,16,17]. In order to establish a more accu-
rate cylindrical model with NES accounting for IL flow
direction vibration effect and flow interaction between
the cylinders, CFD methodology is coupled with the
ODE model governing the motions of the cylinders
and NES. The commercial available FLUENT® ver-
sion 17.0 [37], its user-defined functions (UDFs) and
overlapping meshes technology are used in this study.
All simulations are run over 2 CPUs in parallel using
theHPZ820workstation. The flowover the cylinders is
treated as unsteady and incompressible flow with con-
stant fluid properties. The 2-D, time-dependent, incom-
pressible Reynolds-averaged Navier–Stokes (RANS)
equations, including equations for mass and momen-
tum conservation, are formulated as follows:

∂ ūi
∂xi

= 0 (13)

∂ ūi
∂t

+ ∂ ūi ū j

∂x j
= − 1

ρf

∂ p̄

∂xi
+ υ∇2ūi − ∂ ū′

i ū
′
j

∂x j
(14)

in which,

u′
i u

′
j == υt

(
∂ui
∂x j

+ ∂u j

∂xi

)
+ 2

3
ktδi j (15)

where ui represents the transient velocity component in
i direction, while u′

i is the fluctuation velocity compo-
nent in i direction, and ui or u′

i with a top bar represents
its time average one; xi , t , p and υ are the Cartesian
coordinate in i direction, time, pressure and kinematic
viscosity of fluid, respectively. In addition, υt is the
turbulent viscosity and kt is the turbulent energy. The
shear stress transport (SST) k − ω turbulence model
developed by Menter [38] gives good predictions in
simulating flows with adverse pressure gradients and
flow separations, and it is carried out for closing the
RANS equations [39,40]. The details of SSTk−ω tur-
bulence model can be found in Menter [38]. Once the
flow field is obtained, the drag coefficient CD and lift
coefficient CL can be calculated from the surface pres-
sure of oscillation cylinder boundary. The drag (FD)

and lift (FL) forces per unit length acting on the cylin-
der can be expressed as:

FD = 1

2
CDρfU

2D (16)

FL = 1

2
CLρfU

2D (17)

Thus, according to equation (4–6), (16) and (17), the
governing equations for Model II and III are cast as:

ẍ1 + 2ςω0 ẋ1 + ω2
0x1 = 1

2

CDρfU 2D

m
(18)

(1 − β)ÿ1 + 2ςω0 ẏ1 + ω2
0 y1 + 2ςnesω0(ẏ1 − ẏ2)

+ γ

D2ω2
0(y1 − y2)

3 = 1

2

CLρfU 2D

m
(19)

β ÿ2 + 2ςnesω0(ẏ2 − ẏ1) + γ

D2ω2
0(y2 − y1)

3 = 0

(20)

Runge–Kutta fourth-order (RK4) method [41,42] is
employed to solve ODE Eqs. (18–20) for the cylin-
ders with RANS equations (Eqs. 13, 14) to obtain the
velocity ẋ1, ẏ1, ẏ2 and position x1, y1, y2 of the cylin-
der and the NES. All the FSI equations with NES are
coded in the UDF of CFD software FLUENT®, and
the UDF code are presented in Appendix. The initial
conditions are set equal to x1(0) = ẋ1(0) = y1(0) =
ẏ1(0) = y2(0) = ẏ2(0) = 0, and the time step is 0.01s.

123



932 C. Dongyang et al.

Fig. 3 Computational
mesh: a close-up view of
overset component and
background meshes before
(a) and after (b) hole
cutting; c entire grid
(background and overset
component meshes) of
Model II; d entire grid
(background and a pair of
overset component meshes)
of Model III

(a) (b)

(c)

(d)

Background mesh

Overset component mesh

Background mesh

Overset component mesh

Background

Overset component

In this situation, the dynamic mesh technology
should be carried out to perform mesh deforma-
tion based on the motion of the cylinder boundaries.
In order to update grid successfully, computational
domain from overlapping meshes, which also known

as Chimera or overset methodology, is adopted, and it
is shown in Fig. 3.

This technology offered a facile way to build the
complete mesh which can avoid the negative mesh
problem due to the large motion of the cylinder [37].
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Numerical study of flow-induced vibrations of cylinders under the action of nonlinear energy sinks (NESs) 933

Fig. 4 Validation of CFD model: a trajectories of the isolated 2-DOF cylinder at different Ur ; b and c power spectra for the cylinder
for various Ur ; d and e comparison of amplitude and frequency ratio responses of the cylinder versus Ur with experiment data
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Fig. 5 Temporal evolution of vortex shedding for flow over the elastic supported cylinder at Ur = 5
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Fig. 6 Effect of the mass ratios on the maximum oscillating amplitudes of a the cylinder; b the relative motion between the cylinder
and the NES as a function of Ur when ξ = 0.8 and γ = 0.8.

The moving overlapping grids used for the rectangular
fluid domain around the cylinders are composed of a
static background grid and overset component meshes.

Figure 3a shows an overset mesh before the hole
has been cut. Hole cutting is a process by which lying
outside of the flow region (that is, inside bodies and
outside of the computational domain) are marked as
dead cells. This is achieved by marking all the grids
that are cut by physical boundary zones, and mark-
ing seed cells determined to lie outside the flow region
for subsequent flood filling of dead cells. The result of
this flood filling is a valid overset mesh with maximum
mesh overlap [37].

Figure 3b shows an overset mesh after hole cutting
process and have valid mesh transition regions, which
can offer high-quality data interpolation between back-
ground and overset component meshes. For one cylin-
der, one overset component grid is assigned. Model II
has one overset component mesh (see Fig. 3c), while
Model III has a pair of overset component mesh (see
Fig. 3d). The overset componentmesh of cylinderswith
high quality is used to simulate the viscous flows and
wake in near field. The grid utilizes 15,731 cells back-
groundmesh forModel II and 22,035 cells background
mesh for Model III, with 5262 cells overset compo-
nent mesh, while the location of the first row of cells is
such that Y+ < 1. Moreover, since the flow is incom-
pressible, the pressure- based algorithm is selected and
the coupled algorithm is chosen to solve the pressure–

velocity coupling scheme. The second-order upwind
method is used for spatial discretization. The conver-
gence criteria for the residual of each parameter are
smaller than 10−5.

3.2.2 Model validation

To confirm the accuracy of the CFD numerical model,
2-DOFVIV of a single cylinder with elastic supports in
a uniform current is investigated against the experimen-
tal results by Khalak and Williamson [4]. The param-
eters selected for this validation are m = 2.7325 kg,
ς = 0.00542, k = 17.26N/m and fn = 0.4Hz [4]. In
the present work simulations and the experiment that
performed in [4], Ur is increased from 0 to 16, which
corresponds to a Re # ranging from 0 to 7000. The time
step chosen for the validation simulations is 0.005 s.

Figure 4a shows the trajectories of the isolated 2-
DOF cylinder at variousUr. The combination of IL and
CF directions vibrations is such the cylinder displays a
figure “8” motion. The synchronization region is from
Ur = 4–10, where the amplitude of oscillation is higher
than for other speeds. The temporal evolution of the
vortex shedding from t = 75–78.5 s for the elastically
supported cylinder at Ur = 5 is presented in Fig. 5. It
displays P+S vortex shedding pattern (sheds a single
vortex and a vortex pair per cycle) which has the rela-
tion with large-amplitude vibration of the cylinder in
thewake. The initial position of the cylinder (marked as
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Fig. 7 Time histories of the non-dimensional displacements (y1/D, y2/D) (a, c, e) and power spectral density (b, d, f) in the cases of
β = 0.03 for a, b; β = 0.1 for c, d; and β = 0.5 for e, f when Ur = 5, ξ = 0.8 and γ = 0.8

123



Numerical study of flow-induced vibrations of cylinders under the action of nonlinear energy sinks (NESs) 937

Fig. 8 Comparison of frequency ratios of the cylinder versus Ur : a the y1 and y2 displacements responses’ frequency ratio in case of
β = 0.1; b the y1 displacement responses’ frequency ratio in cases of variable mass ratios

dotted line in Fig. 5) is used to recognize the cylinder’s
displacement. The trajectory of the cylinder from t =
75–78.5 s (every 0.25 s mark location of the center of
the circle as a point) in case ofUr = 5 is shown as figure
“8”motion in Fig. 5. All of these dynamic behaviors are
also found in the study by Bao et al. [43,44]. Figure 4b,
c shows the exhibitions of the power spectra for the
cylinder CF directions vibrations response in the case
of variousUr. Figure 4d, e shows |y1|max/D and fv/ fn
responses of the elastically mounted cylinder versus
Ur. The simulation results show the three branches,
including initial, upper and lower branches (see Fig. 4d)
which is presented byKhalak andWilliamson [41]. The
“lock-in” phenomenon ( fv/ fn ≈ 1) can be seen from
the frequency ratio responses within theUr range from
4 to 10 in Fig. 4e. As discussed above, the amplitude,
frequency responses and the dynamic behaviors are in
good agreement with experiment evaluations, which
provides confidence in the accuracy of the CFD cou-
pled FSI model.

4 Results and discussion

4.1 Influences of the NES and its parameters on the
dynamic responses of the cylinder

The extensive use of CFD and FSI simulations to evalu-
ate the influence of the NES parameters on the dynamic

responses of the elastically supported cylinders can be
considered a paramount task. Since this is an expensive
task, more efficiently, the van der Pol oscillator [35,36]
can be used as an empiricalmean of computing theVIV
forces necessary in Model I and as to assess the NES
parameters effect on the VIV response of the cylinder.

4.1.1 Effect of the mass ratio on the dynamic
responses of the cylinder and NES

The non-dimensional NES parameter mass ratio β

effect on the VIV response of the cylinder is examined
when keeping other NES non-dimensional parameters
constant. In this subsection, β is varied over the range
0.01 ≤ β ≤ 0.5, and the damping ratio ξ and stiff-
ness ratio γ are both set equal to 0.8. Figure 6 shows
that the maximum oscillation amplitudes of the cylin-
der and the relative motion between the cylinder and
the NES as a function of Ur in the cases of various
mass ratios. Figure 6a shows the lock-in region is in
the range of Ur from 4.5 to 5.5 for a cylinder with-
out NES. When the values of β are 0.01 and 0.03, the
lock-in range is unaffected by the NES, e.g., results
are virtually identical with or without the NES. The
lock-in ranges shown a right shift with the increase in
β, a phenomenon which was also observed by Dai et
al. [33]. The maximum amplitudes of the cylinder are
significantly influenced by β. When the mass ratio is
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Fig. 9 Effect of the non-dimensional stiffness ratios on the maximum oscillating amplitudes of the cylinder and the relative motion
between the cylinder and the NES as a function of Ur : a, b when β = 0.1 and ξ = 0.8; c, d when β = 0.03 and ξ = 0.8

0.01, it resulted hard to suppress the VIV of the cylin-
der. On the other hand, with β set to 0.1, the cylinder
has the lowest resonant amplitude compared to other
mass ratios, and no optimization was carried for this
value of the mass ratio. Figure 6b shows the maxi-
mum relative motion is about 40% of the cylinder’s
diameter. It should be noted that in the practical imple-
mentation, the size of the NES which is placed inside
the cylinder should be considered appropriately due to
the maximum relative motion amplitude that must be
lower than 0.5D. Figure 7 shows the dynamic behav-
iors of the cylinder and NES for selected values of β,

namely 0.03, 0.1 and 0.5, when Ur = 5. The cylinder
and NES have synchronized periodic vibrations, and
the NES starts to pump the energy from the cylinder at
t= 11.5s when β = 0.03 as shown in Fig. 7a. There-
fore, the cylinder’s amplitude is a bit lower than that
of the case without NES. When β increased to 0.1, as
shown in Fig. 7c, the cylinder and NES start show-
ing aperiodic responses. As a result, the VIV energy is
transferred to the NES, leading to high vibration ampli-
tudes (y2/D) for the NES, as shown in Fig. 7c. In addi-
tion, significant decrease in the cylinder’s oscillating
amplitude is observed. Figure 7e shows that the cylin-
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Fig. 10 Comparison of frequency ratios of the cylinder versus
Ur , the y1 and y2 displacements responses’ frequency ratio in
case of γ = 0.8: a β = 0.1; c β = 0.03; the y1 displacement

responses’ frequency ratio in cases of non-dimensional stiffness
ratios: b β = 0.1; d β = 0.03

der and NES return to the periodic responses but in
the asynchronous manner when β = 0.5. It is noted
that the vibration amplitudes of both cylinder and NES
are very small due to lock-in region and have a large
shift to the right when β= 0.5. Consequently, Ur = 5
is not in the lock-in region (see Fig. 6a). To further
investigate and understand the dynamic response of the
cylinder and NES, the frequency spectrum curves are
depicted in Fig. 7b, d, f. It is clearly observed that peri-
odic responses take place when β = 0.03 and 0.5,
while aperiodic responses take place when β = 0.1. In

addition, NES and the cylinder show the identical dis-
placement responses’ frequencies in theUr range from
3 to 7 and for different β as illustrated in Figs. 7b, d, f
and 8a.

The sequence of simulations illustrate that the NES
has a critical feature of mitigating vibrations in a broad
frequency range. Figure 8b illustrates the cylinder dis-
placement responses’ frequency ratios versusUr in the
cases of variable mass ratios. According to Figs. 6a and
8b, it can be seen that when the value of β equals 0.01
and 0.03, the frequency ratio values are still close to 1
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Fig. 11 Response of the cylinder and NES (y1/D, y2/D) in the cases of a γ = 0.3; b γ = 0.8; c γ = 2, and d γ = 4, when Ur = 5,
β = 0.1 and ξ = 0.8

similarly to the case without NES during lock-in region
(Ur from 4.5 to 5.5). Thus, the cases β = 0.01 and 0.03
suppress the VIV amplitude only marginally. However,
when β > 0.06 and the fv/ fn ratio is greater than 1,
for Ur in the range from 4.5 to 5.5, a more significant
VIV suppression occurs in the lock-in region. It is also
evident from the same figure that the fv/ fn values are
remarkably higher and levels to constant values for Ur

in the range 6 to 7 and for = 0.3, 0.4 and 0.5. There-
fore, the lock-in regions have obvious right shift. From
the assessment of performance using selected value of

mass ratios, one can observe that the mass ratios have
a significant effect on the alteration of lock-in regions
and the VIV amplitudes.

4.1.2 Effect of the non-dimensional stiffness ratio on
the dynamic responses of the cylinder and NES

The maximum amplitudes of the cylinder and NES for
various values of γ are plotted in Fig. 9 for selected
conditions, namely β = 0.1, ξ = 0.8 in Fig. 9a, b and
β = 0.03, ξ = 0.8 in Fig. 9c, d. In order to better
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Fig. 12 Effect of the damping ratios on the maximum oscillating amplitudes (a, c) and frequency ratios (b, d) of the cylinder as a
function of Ur in the cases of β = 0.1 for a, b and β = 0.03 for c, d when γ = 0.8

understand the non-dimensional stiffness ratios effect
on the dynamic behaviors of the cylinder under the
action of NES, the frequency ratios of the entire Ur

range for the cases of distinct γ are depicted in Fig. 10b,
d which correspond to the ones presented in Fig. 9a,
c. Clearly, Fig. 9a shows that with the increase in γ ,
the maximum amplitude of the cylinder significantly
decreases. Moreover, a very small shift in the lock-
in region to higher reduced speed is discovered when
NES parameters designed as β = 0.1 and ξ = 0.8.
Figure 10 shows the comparisons of frequency ratios
of the cylinder versus Ur for different γ where β= 0.1,

ξ = 0.8 in Fig. 10a, b and β = 0.03, ξ = 0.8 in
Fig. 10c, d. It is easy to recognize that frequency ratio
fv/ fn of the synchronization region has significantly
increased with the increase in γ which contributes to
the decrease in the VIV response of the cylinder in the
lock-in range (see Fig. 10b). In addition, the slope of
the frequency ratio response curves is reduced in the
range ofUr from 5 to 6, explaining the right shift of the
amplitude peak displayed in Fig. 9a. Figure 11 shows
the response of the cylinder and NES (y1/D , y2/D)

in the cases of various γ , when Ur = 5, β = 0.1
and ξ = 0.8. Inspecting Fig. 11a, the cylinder and
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Fig. 13 Various models’ simulation results: amaximum oscillating amplitude; b frequency ratios of the cylinder with and without NES
versus Ur

NES show asynchronous periodic responses for γ =
0.3, with a vibration amplitude of the NES lower than
the cylinder, implying that the NES does not reach the
desired effect of pumping energy. On the other hand,
with the increase in the value γ , the cylinder and NES
show aperiodic motion which contributes to a lower
vibration amplitude for the cylinder, as presented in
Fig. 11b, c, d. However, Fig. 9c shows a slight decrease
in the maximum vibration amplitude of the cylinder
when β = 0.03 and ξ = 0.8. It can be explained by
Fig. 10d that fv/ fn values are in close proximity to 1
with the increase in γ within the lock-in region. While
the mass ratios have a significant effect on VIV of the
coupled NES–cylinder system, the nonlinear stiffness
ratios do not have much influence on the shift of the
lock-in region. Figure 9b, d both shows that the relative
motion between the cylinder andNES is less than 0.5D.
The cylinder and NESmaintain the same displacement
responses’ frequency in case of γ = 0.8 as shown
in Fig. 10a, c which reveals that the NES suppression
mechanism is resonance capture pumping energy from
the cylinder to the NES. From the above results, it can
be found that increasing the nonlinear stiffness ratio
helps in suppressing the VIV response of the cylinder
quite significantly when an appropriate NES parameter
mass ratio is selected.

4.1.3 Effect of the non-dimensional damping ratio

Another parameter of the coupled NES-cylinder sys-
tem is non-dimensional damping ratio ξ . To determine

the effect of ξ on the VIV response of the cylinder,
selected values of ξ are investigated while keeping
other parameters constant. Figure 12 shows the effect
of ξ on maximum oscillating amplitudes (see Fig. 12a,
c) and frequency ratios (see Fig. 12b, d) of the cylin-
der as a function of Ur in various conditions, namely
β = 0.1, γ = 0.8 in Fig. 12a, b and β = 0.03, γ = 0.8
in Fig. 12c, d. It follows from Fig. 12a that the NES
is unable to effectively suppress VIV response of the
cylinder when ξ = 0.1 and 0.3. With the increase in
ξ , the oscillation amplitudes of the cylinder decrease
when β = 0.1 and γ = 0.8. In addition, the lock-in
regions have a slight right shift (see Fig. 12a, b) which
is similar to themodulated dynamic behavior discussed
above.However, it is clear that ξ has a negligible impact
on the maximum amplitudes of the cylinder and the
lock-in region in case of β = 0.03, γ = 0.8, as shown
in Fig. 12c. The displayed results show that for small
damping ratios and given mass ratios, the NES is not
able to reduce the oscillation amplitude of the cylin-
der, and the damping ratios have no influence on the
movement of lock-in region.

4.2 Dynamic behaviors of 2-DOF VIV of the cylinder
under the action of NES

Generally speaking, the empiricalmodel hasmany lim-
itations. The classical van der Pol oscillator model can-
not handle cylinders’ interference problem, the model
with complex geometry shapes and cylinders withmul-
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Fig. 14 Trajectories of 2-DOF VIV of one isolated cylinder at differentUr in cases of various conditions: a without NES; b with NES,
β = 0.1, γ = 0.8, ξ = 0.8; c with NES, β = 0.1, γ = 2, ξ = 0.8; d with NES, β = 0.5, γ = 0.8, ξ = 0.8

tiple degrees of freedom. Its accuracy depends on the
empirical parameters selected to match the experimen-
tal parameters. In order to better understand the FIV
dynamic behavior of the cylinders under the action of
NES, more fidelity CFD model considering IL flow
direction vibration effect and cylinders’ interference is
carried out to simulate the FIV dynamic behavior of
the cylinders with and without NESs. Figure 13 shows
the CF vibration amplitudes and frequency ratios of the
cylinderwith andwithoutNES versusUr based on vari-
ous numerical models (van der Pol model, 1-DOFCFD
model and 2-DOF CFD model). It is observed that the
maximum oscillating amplitude values for the cylin-
ders with 1-DOF and 2-DOF CFD models are higher

than the one obtained from the van der Pol model sim-
ulations (see Fig. 13a). Moreover, the lock-in region
produced for a 1-DOF CFD model’s simulation result
is quite similar to that of van der Pol model, while the
lock-in regionhas a slight right shift for the 2-DOFCFD
simulation results when compared with the results of
van der Pol model (see Fig. 13a, b). One can argue that
the van der Pol simulation results can be reasonable by
ignoring the IL direction vibration effect and by prop-
erly selecting the empirical parameters of the van der
Pol model. For the fixed cylinder, the vortex shedding
frequency is proportional to the current speed [3]. It is
observed that frequency ratios are proportional to the
reduced velocities when using 1-DOF or 2-DOF CFD
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Fig. 15 Maximum oscillating amplitude of the cylinder (a) and the relative motion between the cylinder and NES (b) versus Ur when
ξ = 0.8

Fig. 16 Comparison of frequency ratios of the cylinder versus Ur , y1, y2 and CL responses’ frequency ratio in case of a β = 0.1,
γ = 0.8 and ξ = 0.8; b y1 responses’ frequency ratio in various conditions

models with NES. That means the CFD model results
show the vibration of the cylinder during lock-in region
under the action of NES is veryweak. However, the van
der Pol model results show the frequency ratios tend to
be quite proportional to the Ur.

In this paper, 2-DOF CFD model simulations are
also carried out to study the dynamic responses of one
isolated circular cylinder without NES. As the flow

passes over a cylinder, vortices are formed in the wake
and shed with a specific frequency. The trajectories,
maximum oscillating amplitudes, frequency ratios and
temporal evolution of vortex formations of 2-DOFVIV
of one isolated cylinder with and without NES versus
Ur are shown in Figs. 14, 15, 16 and 17. Figure 14a
shows the trajectories of the vibration at different Ur.
The combined IL and CF directions vibrations of the
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Fig. 17 Temporal evolution of vortex formations for flow over an isolated cylinder with and without NES at Ur = 5: a without NES;
b with NES, β = 0.1, γ = 0.8, ξ = 0.8
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Fig. 18 Time histories of the non-dimensional displacements (y1/D , y2/D) (a, c, e) and power spectral density (b, d, f) in the cases
of Ur = 3.5 for a, b; Ur = 5 for c, d; and Ur = 7 for e, f when β = 0.1, γ = 0.8, ξ = 0.8

123



Numerical study of flow-induced vibrations of cylinders under the action of nonlinear energy sinks (NESs) 947

Fig. 19 Time histories of the non-dimensional displacements (y1/D) (a) and power spectral density; b in the cases of Ur = 3.5, 5 and
7 when β = 0.5, γ = 0.8 and ξ = 0.8

cylinder typically present a figure “8” motion under
most conditions. The lock-in region is from Ur = 5–
6, where the amplitudes are higher than other areas
(see Figs. 14a and 15a). Frequency synchronization
( fv/ fn ≈ 1) occurs at Ur = 5–6 in which the vortex
shedding frequency is extremely close to the natural
frequency of the cylinder (see Fig. 16, the case without
NES). The temporal evolution of vortex shedding from
t = 35–35.5 s of the cylinder without NES atUr = 5 is
presented in Fig. 17a, and it displays a 2P vortex shed-
ding pattern (sheds two vortex pair per cycle) in the
wakewhich is a vortex structure shedding phenomenon
that occurs when the cylinder vibration is violent.

The dynamic behavior of the VIV of the cylinder
under the action of NES is generally well understood
from the above simulation results of van der Pol model.
Herein, simulations of 2-DOF VIV of one isolated
cylinder with the addition of three sets of NES param-
eters based on model II are also performed. The trajec-
tories of 2-DOF VIV of the cylinder with NES (set I:
β = 0.1, γ = 0.8, ξ = 0.8; set II: β = 0.1, γ = 2,
ξ = 0.8; set III:β = 0.5, γ = 0.8, ξ = 0.8) at different
Ur are shown in Fig. 14b, c, d. The CF direction vibra-
tion is distinctly decreased whenUr is in the range 5–6
in comparisonwith the casewithoutNES. Figure 14b, c
shows that the trajectories of the cylinder with set I and
II NES parameters are chaotic whenUr is in the range 5
to 6.5, but regular figure “8”motion whenUr outside of
the lock-in region. Figure 14d shows all the trajectories

of the cylinder are figure “8” motion when Ur is in the
range 3–7. The VIV amplitude increases constantly for
increasing Ur as reported in Fig. 14d. The NES signif-
icantly suppresses the vibration amplitude using these
three set NES parameters. The lock-in regions have
sight right shift when set I and II NES parameters are
chosen. The trends are similar to the simulation results
in Fig. 9a. In addition, the maximum amplitudes of the
cylinder decrease when the stiffness ratios increase for
the equivalent mass ratio (see Fig. 15a). In this case, the
maximum relative motion is less than 0.5D as shown
in Fig. 15b. As expected, the VIV cylinder amplitudes
with andwithoutNESall are different, similarly towhat
shown in Sect. 4.1B. Nevertheless, the dynamic behav-
iors are very similar to the one reported for van der Pol
model in the same section. Frequency responses of the
cylinder with NES are also reported in Fig. 16 and are
obtained through a power spectral density analysis of
CF direction displacements and lift coefficients signals
using fast Fourier transformprocess. TheNES, cylinder
displacement responses and the lift coefficients show
the identical signal responses’ frequencies when Ur

ranges from 3–7 in the cases of β = 0.1, ξ = 0.8 and
γ = 0.8 (see Fig. 16a). The NES is essentially a strong
nonlinear passive control device lacking an inherent
linearized natural frequency. Depending on the driv-
ing force energy and frequency content, the NES can
engage in resonance capture with the cylinder, leading
to dissipation of the vibration energy of the cylinder

123



948 C. Dongyang et al.

Fig. 20 Trajectories of 2-DOF VIV of the cylinders at different
Ur in cases of various conditions: a upstream cylinder without
NES; b downstream cylinder without NES; c upstream cylinder

with NES (β = 0.1, γ = 0.8, ξ = 0.8); d downstream cylinder
with NES (β = 0.5, γ = 2, ξ = 0.8)

system. It may point out that these behaviors have sim-
ilar trends as shown in Figs. 8a and 10a, c. Figure 16b
shows the cylinder displacement responses’ frequency
ratios versusUr for three sets of NES parameters. Dur-
ing the lock-in region (Ur = 5–6), the frequency ratios
have a slight increase due to the increase in stiffness
ratio. In addition, all the values of fv/ fn are sufficiently
far from 1 for Ur in the range 5–6, relative to the case
without NES, so that the VIV of the cylinder in the
lock-in region can be suppressed. Moreover, the cou-
pled response’s frequencies are constantly increasing
until Ur= 6 and then increase more slowly as shown in

Fig. 16b for the case with NES and β = 0.5, γ = 0.8,
ξ = 0.8. This illustrates that the lock-in region has a
significantly right shift when set III NES parameters
are considered. Vorticities due to the flow process from
time 35 to 35.5 s of the case β = 0.1, ξ = 0.8 and
γ = 0.8 when Ur = 5 are shown in Fig. 17b. The
cylinder’s vibration amplitude is slight relatively to the
initial position of the cylinderwhich ismarked as dotted
line in Fig. 17b. It displays a 2S vortex shedding mode
(two single vortices being formed in one cycle) in the
wakewhich is a vortex structure shedding phenomenon
that occurs when the cylinder vibration is slight.
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Fig. 21 Variation of the maximum vibration amplitudes versus
Ur for cylinders with and without NES: a upstream cylinder and
b downstream cylinder. Case 1: β = 0.1, γ = 0.8 and ξ = 0.8

(upstream cylinder), β = 0.1, γ = 0.8 and ξ = 0.8 (downstream
cylinder); case 2: β = 0.1, γ = 0.8 and ξ = 0.8 (upstream cylin-
der), β = 0.5, γ = 0.8 and ξ = 0.8 (downstream cylinder)

When the elastic supported cylinder under the action
of NES, the CF displacement responses may show
type I synchronous and type II asynchronous peri-
odic and type III aperiodic behavior. The VIV sup-
pression mechanism is essentially changing the cou-
pled responses’ frequencies as to avoid the natural
frequency of the cylinder in the lock-in region. For
example, Fig. 18 shows the time series of CF vibra-
tion (y1/D, y2/D) alongwith the corresponding power
spectral density curves for the cases of Ur = 3.5, 5
and 7 when β = 0.1, ξ = 0.8 and γ = 0.8. Peri-
odic response takes place when Ur = 3.5 and 7 (see
Fig. 18a, b, e, f), while the aperiodic response takes
place whenUr = 5 (see Fig. 18c, d). Figure 18c shows
that the maximum amplitude of oscillation of the cylin-
der with NES (y1/D (NES)) is approximately 0.13D,
compared to the steady periodic amplitude of 0.55D for
the cylinder without the NES (y1/D (without NES)).
Thus, a 76.4% reduction in themaximum displacement
can be attributed to the NES. The resonant vibration of
theNES (y2/D(NES)) is observed in Fig. 18c. The vor-
tex shedding pattern in the wake displays as 2S mode
which is a flowphenomenon that occurswhen the cylin-
der vibration is very weak. The non-dimensional dis-
placements response and power spectral density curves
are presented in Fig. 19a, b. Clearly, periodic responses
are observed in the cases of Ur = 3.5, 5 and 7 when
β = 0.5, ξ = 0.8 and γ = 0.8.

4.3 Dynamic behaviors of 2-DOF WIV of two
tandem cylinders under the action of NES

The previous CFD coupled FSI and NES technique
is adopted in this section to compute the vibration
amplitudes of a pair of identical tandem cylinders with
and without NES in the proximity–wake interference
regime. The dynamic responses of two tandem circu-
lar cylinders without NES are considered firstly. The
distance between the upstream cylinder (cylinder 1)
and downstream cylinder (cylinder 2) is 5D. Figure 20
shows the trajectories of the two tandem springs sup-
ported cylinders with and without NES in the cases
of various Ur. A figure “8” trajectory is shown by
the front cylinder; however, the combined IL and CF
directions motion affects the rear cylinder modes of
vibration due to the induced wake interference effect
(see Fig. 20a, b, the case without NES). Figure 21a,
b shows the CF vibration amplitude with Ur for the
two cylinders with and without NES arranged in tan-
dem. The results for a single cylinder without NES are
also included for comparison. The maximum vibration
amplitudes of the cylinder 1 without NES are observed
at an identical reduced velocity Ur = 5.5 with a mag-
nitude of |y1|max/D ≈ 0.56 which is similar to the
displacement |y1|max/D of the single cylinder. In con-
trast to the behavior of the front cylinder, the effect of
the wake interactions between the couple of cylinders
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Fig. 22 Temporal evolution of vortex formations for flow over a pair of cylinders without NES at a Ur = 5.5; b Ur = 7

on the vibration amplitude responses of the rear cylin-
der is evident. ThemaximumCFvibration amplitude of
cylinder 2 is about |y1|max/D ≈ 0.69 when Ur = 6.5.
The cylinder 1 shows a typical VIV response with very
small vibration amplitudes at high Ur (Ur = 6–7). In
contrast, for the present study (the distance between the

two cylinders is 5D), the fully detached vortices from
cylinder 1 shown in Fig. 22 cause the WIV of cylinder
2 with relatively large-amplitude vibration being main-
tained up until themaximumUr considered. The vortex
shedding contours of the two tandem cylinders at dif-
ferent time instants when Ur = 5.5 and 7 are shown in
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Fig. 23 Comparison of frequency ratios of the cylinder versus Ur : a upstream cylinder; b downstream cylinder

Fig. 22a, b, respectively. A variation of the vortex shed-
ding patterns around cylinders 1 and 2 is discovered.
The vortices from behind the cylinder 1 interact with
the shear layers of cylinder 2when they reach the cylin-
der 2 surface. 2P vortex shedding pattern is observed
behind cylinder 1 and also cylinder 2, and they are inter-
actingwith each otherwhenUr = 5.5. The vortex shed-
ding exhibits a 2S mode behind cylinder 1 where the
vibration of the cylinder is weak when Ur = 7. Mean-
while, a 2P mode associated with the large-amplitude
vibration of the cylinder occurs behind cylinder 2 and
interacts with the wake from cylinder 1 when Ur = 7.
This confirms the observation from the trajectories of
the cylinders’ motion as shown in Figs. 20a, b and 21
the cases without NES.

Figure 23, also a case without NES, shows the com-
parison of frequency ratios ( fv/ fn) between the sin-
gle cylinder and the two tandem cylinders. The lock-in
range of the single cylinder in terms of Ur is from 5
to 6 based on the synchronization between fv and fn.
For two tandem flexible cylinders, the lock-in range of
cylinder 1 occurs forUr= 5–5.5 (see Fig. 23a, cylinder
1 without NES). The synchronization of the cylinder 2
also starts from Ur = 5 until the maximum Ur consid-
ered in the present simulation (see Fig. 23b, cylinder
2 without NES, fv/ fn ≈ 1 in the Ur region from 5 to
7). It should also be noted that the frequency ratio of
cylinder 2, in the Ur range from 3 to 5.5, is similar as
the corresponding frequency ratio of cylinder 1. From

the previous simulation results based on the van der
Pol model and CFD model, the fundamental dynamic
behaviors of the single cylinder under the action of
NES are obtained. The mass ratio had a significantly
effect on the alteration of lock-in regions and the VIV
amplitudes. Thus, selecting a suitable mass ration is
very important to the simulation. During this section
study, it observed that the lock-in region of the down-
stream cylinder without NES extends to the right until
the maximum selected Ur is reached.

In order to preliminarily explore the dynamic behav-
iors and suppress the FIV amplitude of the two tandem
cylinders under the action of NESs, two cases of NES
parameters (case 1: β = 0.1, γ = 0.8 and ξ = 0.8
(upstream cylinder), β = 0.1, γ = 0.8 and ξ = 0.8
(downstream cylinder); case 2: β = 0.1, γ = 0.8 and
ξ = 0.8 (upstream cylinder), β= 0.5, γ = 0.8 and
ξ = 0.8 (downstream cylinder)) are selected for the
simulation of WIV of the two tandem cylinders under
the action of theNES. In case 1, theNESparameters are
identical for upstream and downstream cylinder. How-
ever, in case 2, only cylinder 2 NES parameter β is
increased relative to the NES parameters of cylinder 1.
Themaximumdisplacement amplitude of the cylinders
with NES (cases 1 and 2) as a function of Ur defines
the lock-in curve shown in Fig. 21. It follows from that
the oscillating amplitudes of the upstream cylinder are
significantly decreased in case 1, while there is almost
no effect on the WIV amplitudes of the downstream
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Fig. 24 Temporal evolution of vortex formations for flow over a pair of cylinders with NES (upstream cylinder’s NES: β = 0.1,
γ = 0.8, ξ = 0.8; downstream cylinder’s NES: β = 0.5, γ = 0.8, ξ = 0.8) at a Ur = 5.5; b Ur = 7

cylinder. More interestingly, the WIV amplitudes of
both front and rear cylinders significantly decrease in
case 2. The greatest performances are observed for a
Ur = 5.5 (front cylinder),with a 76.3%reduction, and a
Ur = 6.5 (downstream cylinder) with an 88.5% reduc-

tion in the transverse vibration response. This can also
be confirmed by the observation from the trajectories of
the cylinders’ motion as shown in Fig. 20c, d. Clearly,
the trajectories of the front cylinder in case 2 mostly
exhibit a figure “8” mode but show a chaotic trajectory
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Fig. 25 Time histories of the non-dimensional displacements (y1/D,y2/D) (a, c) and power spectral density (b, d) in the cases ofUr=
5.5 for a, b upstream cylinder; c, d downstream cylinder

when Ur = 5.5. The frequency ratios of the cylinders
1 and 2 in case 2 are almost identical independently
of Ur (see Fig. 23a, b) for fv/ fn outside the lock-in
region. This illustrates that the vibration of the cylinder
2 is quite weak during lock-in and the NES is effective
in suppressing the vibration of cylinder 2. Moreover,
the trajectories of the rear cylinder show more disor-
dered behavior relative to the case without NES when
Ur = 5.5. Figure 24a, b shows the temporal evolu-
tion of vortex shedding for case 2 at Ur = 5.5 and 7,
respectively. It is found that the front and rear cylin-
der’s vibration amplitudes are slightly relative to the

initial position of the cylinder, and the vortex shed-
ding pattern displays 2S mode behind the front and
rear cylinders when Ur = 5.5. The vortex shedding
exhibits a 2S mode behind the upstream cylinder and a
weak 2P mode behind the downstream cylinder when
Ur = 7. Figure 25 shows CF vibration (y1/D, y2/D)

responses and power spectral density curves of the front
and rear cylinder in case 2whenUr = 5.5. It is observed
that aperiodic responses take place on cylinder 1
(see Fig. 25a, b), while periodic responses take place
on cylinder 2 (see Fig. 25c, d). Consequently, a 76.3%
reduction in the maximum displacement of cylinder
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1 and 84.5% reduction in maximum displacement of
cylinder 2 can be attributed to the effectiveness of the
NES.

5 Conclusions

The dynamics of a single and a tandem arrange-
ment of two-dimensional circular cylinders is inves-
tigated by fluid–structure interaction (FSI) simulations
to assess low Reynolds number vortex-induced (VIV)
and wake-induced vibration (WIV). The suppression
of FIV of elastically supported single and two-degrees-
of-freedom circular cylinders by utilizing NES based
on various numerical models has been investigated. At
first, a van der Pol model is used to explore the effect
of the NES parameters on the dynamic behavior of the
VIV of a single cylinder. Then, a CFD coupled FSI
model is adopted to determine FIV dynamic behav-
iors of an isolated and a tandem cylinders arrangement
with and without van der Pol modeled NES. The NES
is a strong nonlinear passive control device without
inherent linearized natural frequency. Its characteristics
depend upon the driving force energy and frequency
content; hence, the NES can engage in resonance cap-
ture with the cylinders, leading to the dissipation of
the cylinder’s vibration energy. The NES suppression
mechanism is resonance capture, and then, the energy
is transferred from the cylinder toNES. Themass ratios
affect significantly the lock-in regions and the VIV
amplitudes, while the nonlinear stiffness ratios have
virtually no influence on the shift of the lock-in region.
However, by increasing the nonlinear stiffness ratio, the
amplitude of the VIV response of the cylinder can be
reduced significantly when an appropriate NES param-
eter mass ratio is identified. On the other hand, with
small damping and ineffective mass ratios, the NES is
not capable of reducing the oscillation amplitude of the
cylinder, and the damping ratio has no influence on the

shift of the lock-in region. When the NES pumps the
energy from the cylinder to NES, the cross-flow dis-
placement responses will show type I synchronous and
type II asynchronous periodic and type III aperiodic
behavior. The VIV suppression mechanism is essen-
tially changing the coupled responses’ frequencies to
avoid approaching the natural frequency of the cylin-
der in the lock-in region. Within the lock-in region, the
wake behind the cylinders nearly displays a 2P vor-
tex shedding patterns if the cylinder does not have an
NES. However, the vortex shedding mode in the wake
displays as 2S mode when the cylinder has a properly
tuned NES. It is found that placing a tuned NES in the
cylinders can suppress the FIV amplitude quite well.
The best performance is obtained atUr = 5 for a single
isolated cylinder, with a 76.4% reduction in the trans-
verse vibration response compared to a case without
NES. For the tandem arrangement, the greatest perfor-
mance is observed at Ur = 5.5 for the front cylinder,
with a 76.3% transverse vibration response reduction,
and at Ur = 6.5 for the downstream cylinder with a
88.5% reduction.
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Appendix

TheUDF codes of VIV of 2-DOF cylinder under action
with NES are shown as follows:
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#include "udf.h"
#include "sg_mem.h"
#include "dynamesh_tools.h"
#define PI 3.1415926 
#define ball1_ID 3 
#define usrloop(n,m) for(n=0;n<m;++n) 
#define mass 15.7080 
#define beta 0.1 
#define dtm 0.01 
#define ke_si 0.0013 
#define ke_si_nes 0.00104 
#define k_nes 5060200 
#define ome_ga 12.6914 
real v_body1[ND_ND]; 
real vv_body1[2]={0.0,0.0}; 
real a1_ctr; 
real b1_ctr; 
real bb1_ctr=0; 
real t=0.0; 
FILE *fp; 
DEFINE_EXECUTE_AT_END(save_weiyi) 
{ 
int n;
real un,xn,Un,Xn; 
real K1,K2,K3,K4; 
real vn,yn,Vn,Yn,vvn,yyn,VVn,YYn; 
real T1,T2,T3,T4; 
real M1,M2,M3,M4; 
real N1,N2,N3,N4; 
real L1,L2,L3,L4; 
real x_cg1[3],f_glob1[3],m_glob1[3]; 
Domain *domain=Get_Domain(1); 
Thread *tf1=Lookup_Thread(domain,ball1_ID); 
usrloop(n,ND_ND) 
x_cg1[n]=f_glob1[n]=m_glob1[n]=0; 
x_cg1[0]=a1_ctr; 
x_cg1[1]=b1_ctr; 
if (!Data_Valid_P()) 
return; 

Compute_Force_And_Moment(domain,tf1,x_cg1,f_glob1,m_glob1,False); 
un=v_body1[0]; 
xn=a1_ctr; 
K1=f_glob1[0]/mass-2*ke_si*ome_ga*un-ome_ga*ome_ga*xn; 
K2=f_glob1[0]/mass-(un+dtm*K1/2)*2*ke_si*ome_ga-ome_ga*ome_ga*(xn+un*dtm/2); 
K3=f_glob1[0]/mass-(un+dtm*K2/2)*2*ke_si*ome_ga-ome_ga*ome_ga*(xn+un*dtm/2+dtm*dtm*K1/4); 
K4=f_glob1[0]/mass-(un+dtm*K3)*2*ke_si*ome_ga-ome_ga*ome_ga*(xn+un*dtm+dtm*dtm*K2/2); 
Un=un+dtm*(K1+2*K2+2*K3+K4)/6; 
Xn=xn+dtm*un+dtm*dtm*(K1+K2+K3)/6; 

v_body1[0]=Un; 
a1_ctr=Xn; 
vn=v_body1[1]; 
vvn=vv_body1[1]; 
yn=b1_ctr; 
yyn=bb1_ctr; 

T1=vn; 
M1=(1/(1-beta))*(f_glob1[1]/mass-2*ke_si*ome_ga*vn-ome_ga*ome_ga*yn-2*ke_si_nes*ome_ga*(vn-vvn)-(k_nes/mass)*(yn
-yyn)*(yn-yyn)*(yn-yyn)); 
N1=vvn; 
L1=(1/beta)*(-2*ke_si_nes*ome_ga*(vvn-vn)-(k_nes/mass)*(yyn-yn)*(yyn-yn)*(yyn-yn)); 

T2=vn+dtm*M1/2; 
M2=(1/(1-beta))*(f_glob1[1]/mass-2*ke_si*ome_ga*(vn+dtm*M1/2)-ome_ga*ome_ga*(yn+dtm*T1/2)-2*ke_si_nes*ome_ga*(
(vn+dtm*M1/2)-(vvn+dtm*L1/2))-(k_nes/mass)*((yn+dtm*T1/2)-(yyn+dtm*N1/2))*((yn+dtm*T1/2)-(yyn+dtm*N1/2))*((yn+dt
m*T1/2)-(yyn+dtm*N1/2))); 
N2=vvn+dtm*L1/2; 
L2=(1/beta)*(-2*ke_si_nes*ome_ga*((vvn+dtm*L1/2)-(vn+dtm*M1/2))-(k_nes/mass)*((yyn+dtm*N1/2)-(yn+dtm*T1/2))*((yy
n+dtm*N1/2)-(yn+dtm*T1/2))*((yyn+dtm*N1/2)-(yn+dtm*T1/2))); 

T3=vn+dtm*M2/2; 
M3=(1/(1-beta))*(f_glob1[1]/mass-2*ke_si*ome_ga*(vn+dtm*M2/2)-ome_ga*ome_ga*(yn+dtm*T2/2)-2*ke_si_nes*ome_ga*(
(vn+dtm*M2/2)-(vvn+dtm*L2/2))-(k_nes/mass)*((yn+dtm*T2/2)-(yyn+dtm*N2/2))*((yn+dtm*T2/2)-(yyn+dtm*N2/2))*((yn+dt
m*T2/2)-(yyn+dtm*N2/2))); 
N3=vvn+dtm*L2/2; 
L3=(1/beta)*(-2*ke_si_nes*ome_ga*((vvn+dtm*L2/2)-(vn+dtm*M2/2))-(k_nes/mass)*((yyn+dtm*N2/2)-(yn+dtm*T2/2))*((yy
n+dtm*N2/2)-(yn+dtm*T2/2))*((yyn+dtm*N2/2)-(yn+dtm*T2/2))); 

T4=vn+dtm*M3; 
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