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Abstract A study of high-order solitons in three non-
local nonlinear Schrödinger equations is presented.
These include the PT -symmetric, reverse-time, and
reverse-space-time nonlocal nonlinear Schrödinger
equations.General high-order solitons in three different
equations are derived from the same Riemann–Hilbert
solutions of the AKNS hierarchy, except for the differ-
ence in the corresponding symmetry relations on the
“perturbed” scattering data. Dynamics of general high-
order solitons in these equations is further analyzed.
It is shown that the high-order fundamental-soliton is
moving on several different trajectories in nearly equal
velocities, and they can be nonsingular or repeatedly
collapsing, depending on the choices of the parame-
ters. It is also shown that the high-order multi-solitons
could have more complicated wave structures and
behave very differently from high-order fundamental-
solitons. More interestingly, via the combinations of
different size of block matrix in the Riemann–Hilbert
solutions, high-order hybrid-pattern solitons are found,
which describe the nonlinear interaction between sev-
eral types of solitons.
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1 Introduction

The integrable nonlinear wave equations and soliton
theory have been studied for many years [1–5]. They
are significant subjects in many branches of nonlin-
ear science. For the integrable nonlinear models, most
of them are local equations, i.e., the solutions evolu-
tion depends only on the local solution value with its
local space and time derivatives. Recently, a number
of nonlocal integrable equations were found and trig-
gered renewed interest in integrable systems. The first
such nonlocal equation was thePT -symmetric nonlin-
ear Schrödinger (NLS) equation [6,7]:

iqt (x, t) = qxx (x, t) + 2q2(x, t)q∗(− x, t), (1)

where asterisk * represents complex conjugation. For
this equation, the evolution of the solution at location
x depends both on the local position x and the distant
position − x . This implies that the states of the solu-
tion at distant opposite locations are directly related,
reminiscent of quantum entanglement in pairs of parti-
cles. Mathematically, this nonlocal integrable equation
is interesting and distinctly different from local equa-
tions. In the viewof potential applications, this equation
was linked to an unconventional system of magnetics
[8]. Moreover, since Eq. (1) is parity-time (PT ) sym-
metric, it is related to the concept of PT -symmetry,
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which is a hot research area of contemporary physics
[9].

For nonlocal Eq. (1), it was actively investigated
[6,7,10–20]. Meanwhile, many other nonlocal non-
linear integrable equations with different space and/or
time couplingwere also introduced and studied [10,21–
36]. Indeed, solution properties in several nonlocal
equations had been analyzed by the inverse scatter-
ing transform method, Darboux transformation, or the
bilinear method. These new systems could reproduce
solution patterns which had already been discovered
in the corresponding local equations. Moreover, inter-
esting behaviors such as blowing-up (i.e., collapsing)
solutions [6,16,25] and the novel dynamic patterns
were also revealed [17,24,29–31]. In Ref. [25], the
connection between nonlocal and local equations was
discovered, where it was shown that many nonlocal
equations could be converted to local equations through
transformations. In addition, this equation-deformation
idea could be further applied to broader nonlinear
Hamiltonian mathematical models or some fractional-
order differential equations [37–39].

In this article, we study high-order solitons and their
dynamics in the PT -symmetric NLS Equation (1) as
well as the reverse-time NLS equation [10]:

iqt (x, t) = qxx (x, t) + 2q2(x, t)q(x,− t), (2)

and the reverse-space-time NLS equation [10]:

iqt (x, t) = qxx (x, t) + 2q2(x, t)q(− x,− t). (3)

Introducing the following coupled Schrödinger equa-
tions [1,2,5]:

iqt = qxx − 2q2r, (4)

irt = − rxx + 2r2q. (5)

Then, Eqs. (1)–(3) can be, respectively, obtained from
coupled systems (4)–(5) under the following nonlocal
reductions

r(x, t) = − q∗(− x, t), (6)

r(x, t) = − q(x,− t), (7)

r(x, t) = − q(−x,− t). (8)

As we know, in the framework of inverse scatter-
ing transform method, the poles of reflection coeffi-
cient (or zeros of the Riemann–Hilbert problem) give
rise to the soliton solutions. In Ref. [19], the general
N-solitons (corresponding to N-simple poles in the
spectral plane) are derived for nonlocal Eqs. (1)–(3)
by using the inverse scattering and Riemann–Hilbert

method. From this Riemann–Hilbert framework, new
types of multi-solitons with novel eigenvalue configu-
rations in the spectral plane are discovered. Therefore,
as more general case, the high-order solitons, which
correspond to multiple poles in the spectral plane, can
be taken into consideration for nonlocal NLS Equa-
tions (1)–(3).

The high-order solitons have wide applications. It
can not only describe a weak bound state of solitons,
but may also appear in the study of train propagation
of solitons with nearly equal velocities and amplitudes
[40]. High-order soliton for several local equations
have been investigated in several studies before, such as
the Sine-Gordon, nonlinear Schrödinger, Kadomtsev–
Petviashvili I, and Landau–Lifshitz equations [40–
43,47,48]. To the best of our knowledge, high-order
solitons for nonlocal NLS Eqs. (1)–(3) have never been
reported.

In this article, we derive the general high-order soli-
tons in the PT -symmetric, reverse-time, and reverse-
space-time nonlocal NLS Eqs. (1)–(3). These solu-
tions are reduced from the sameRiemann–Hilbert solu-
tions of the AKNS hierarchy with different symme-
try relations on the “perturbed” scattering data, which
consist of the “perturbed” eigenvalues as well as the
eigenfunctions. Dynamics of these solitons are also
explored. We show that a generic feature for high-
order solitons in all the three nonlocal equations is
repeated collapsing. This feature is firstly reported in
Ref. [19] for the general N -solitons of nonlocal NLS
Equations (1)–(3). Here, we show that the high-order
fundamental-soliton describes several traveling waves
move on different trajectories with nearly equal veloc-
ities. We also show that the high-order multi-solitons
couldhavemore complicatedwave and trajectory struc-
tures; thus, they behave very differently from the high-
order fundamental-soliton. In this case, the configura-
tion of eigenvalues corresponds to equal numbers of
zeros with equal order in the upper and lower com-
plex planes. Moreover, we find the high-order hybrid-
pattern solitons, which corresponds to novel eigen-
value configurations, i.e., combinations between zeros
of unequal order in the upper and lower complex planes.
These new patterns describe the nonlinear interaction
between several types of solitons, and they exhibit
distinctively dynamical patterns which have not been
found before.
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2 High-order solitons for general coupled
Schrödinger equations

To derive high-order solitons in Eqs. (1)–(3), we first
need the Riemann–Hilbert solutions of high-order soli-
tons in the coupled Schrödinger equations for given
scattering data. Then imposing appropriate symmetry
relations on the scattering data, the high-order solitons
for each nonlocal equations can be obtained. The cou-
pled systems (4)–(5) admit the followingLax-pair [1,2]

Yx = − iζΛY + QY, (9)

Yt = 2iζ 2ΛY − 2ζQY − iΛ
(
Qx − Q2

)
Y, (10)

where

Λ = diag(1,− 1), Q(x, t) =
(

0 q(x, t)
r(x, t) 0

)
.

(11)

For localized functions q(x, t) and r(x, t), the inverse
scattering transform and the modern Riemann–Hilbert
method was developed [2,44–46]. Following this
Riemann–Hilbert treatment, N-solitons in the coupled
Schrödinger system can be written as ratios of deter-
minants [3,5] :

q(x, t) = 2i

∣∣∣∣∣
M Y

T
2

Y1 0

∣∣∣∣∣
|M | , r(x, t) = − 2i

∣∣∣∣∣
M Y

T
1

Y2 0

∣∣∣∣∣
|M | ,

(12)

where Y = (v1(x, t), . . . , vN (x, t)) ,Y = (v̄1(x, t),
. . . , v̄N (x, t)). Yk and Y k represents the k-th row of
matrix Y and Y , respectively.

Here, vk(x, t) and v̄k(x, t) are both column vectors
given by

vk(x, t) = exp[− iζkΛx + 2iζ 2
k Λt]vk0, (13)

v̄k(x, t) = exp[i ζ̄kΛx − 2i ζ̄ 2
k Λt]v̄k0. (14)

M is a N × N matrix defined as:

M =
(
M (N )

j,k

)
1≤ j,k≤N

,

M (N )
j,k = v̄Tj vk

ζ̄ j − ζk
, 1 ≤ j, k ≤ N , (15)

here ζk ∈ C+ (upper half complex plane), ζ̄k ∈ C−
(lower half complex plane), vk0, v̄k0 are constant col-
umn vectors of length two.

Using this formula, the general high-order solitons
can be directly obtained through a simple limiting pro-
cess. For this purpose, setting N discrete spectral in the

eigenfunction (13) to be:

ζ2 = ζ1 + ε1,1, . . . , ζn1 = ζ1 + ε1,n1−1,

ζn1+1 = ζ2, ζn1+2 = ζ2 + ε2,1, . . . , ζn1+n2

= ζ2 + ε2,n2−1, · · ·
ζN−nr+1 = ζr ,

ζN−nr+2 = ζr + εr,1, . . . , ζN = ζr + εr,nr−1.

Similarly, setting another N discrete spectral in the
adjoint eigenfunction (14) to be:

ζ̄2 = ζ̄1 + ε̄1,1, . . . , ζ̄n̄1 = ζ̄1 + ε̄1,n̄1−1,

ζ̄n̄1+1 = ζ̄2, ζ̄n̄1+2 = ζ̄2 + ε̄2,1, . . . , ζ̄n̄1+n̄2

= ζ̄1 + ε̄2,n̄2−1, · · ·
ζ̄N−n̄s+1 = ζ̄s,

ζ̄N−n̄1+2 = ζ̄s + ε̄s,1, . . . ,

ζ̄N = ζ̄s + ε̄s,n̄s−1.

Here, we should have
∑r

i=1 ni = ∑s
i=1 n̄i = N , and

r, s ∈ Z+.
Then, we have the following expansions:

v j (ζ j + ε j,k j ) =
∞∑
k=0

v
(k)
j εkj,k j ,

v̄i (ζ̄i + ε̄i,ki ) =
∞∑
k=0

v̄
(k)
i ε̄ki,ki ,

v̄Ti (ζ̄i + ε̄i,ki )v j (ζ j + ε j,k j )

ζ̄i − ζ j + ε̄i,ki − ε j,k j

=
∞∑
l=0

∞∑
k=0

M [k,l]
i, j ε̄ l

i,ki ε
k
j,k j .

Therefore, applying these expansions to each matrix
element in N-soliton formula (12), performing sim-
ple determinant manipulations and taking the limits
of ε j,k j , ε̄i,ki → 0 (k j = 1, . . . , n j − 1, ki =
1, . . . , n̄i − 1), we derive general high-order solitons
for the coupled Schrödinger Eqs. (4)–(5). Those results
are summarized in the following theorem.

Theorem 1 The general high-order solitons in the
coupled Schrödinger Eqs. (4)–(5) can be formulated
as:

q(x, t) = 2i
τ12

τ0
, r(x, t) = − 2i

τ21

τ0
, (16)

where

τ0 = det (M) , τk j = det

(
M φ̄T

j
φk 0

)
,

M = (
Mi, j

)1≤i≤s
1≤ j≤r , Mi, j =

(
M [k,l]

i, j

)0≤k≤n̄i−1

0≤l≤n j−1,
,
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with

φ =
[

v
(0)
1 , . . . , v

(n1−1)
1 , . . . , v(0)

r , . . . , v(nr−1)
r

]
,

φ̄ =
[

v̄
(0)
1 , . . . , v̄

(n̄1−1)
1 , . . . , v̄(0)

s , . . . , v̄(n̄s−1)
r

]
.

Here, φk and φ̄ j stand the k-th row and the j-th row in
matrix φ and φ̄, respectively.

This general soliton formula (16) has been reported
in [47] (via using dressing method) as well as in [48]
(by the generalized Darboux transformation method).
So the proof of this theorem can be given along the
lines of [47,48].

3 Symmetry relations of “perturbed” scattering
data in the nonlocal NLS equations

First of all, let us recall revelent results on symmetry
relations of scattering data for the nonlocal NLS Equa-
tions (1)–(3) presented in [19]. For this purpose, we
denote:

vk0 = [ak, bk]
T , v̄k0 = [

āk, b̄k
]T

. (17)

Next, potential matrix Q(x, t) has the following initial
condition:

Q0 := Q(x, 0) =
(

0 q(x, 0)
r(x, 0) 0

)
, (18)

here q(x, 0), r(x, 0) are the initial value of functions
q(x, t) and r(x, t) at t = 0.

Considering the eigenvalue problem

Yx = − iζΛY + Q0Y, (19)

and its adjoint eigenvalue problem

KT
x = iζKTΛ − KTQ0. (20)

By using the symmetry of potential matrix Q0 for
each nonlocal reduction (6)–(8), along with the large-
x asymptotics of ζk’s eigenfunction Yk(x) as well as
ζ̄k’s eigenfunction Kk(x), Ref. [19] derives the connec-
tions between each subset of scattering data {ζk , ak, bk}
and {ζ̄k, āk, b̄k} with rigorous proof. Therefore, those
important results can be directly used for our purpose.

In the following, we intend to show that: through
a simple modification to the original scattering data,
more free parameters can be introduced. In that case,
the original scattering data can be modified with a per-
turbation, i.e.,

{ζk, ak, bk} �→ {ζk(ε), ak(ε), bk(ε)}, (21)

where ζk(ε) := ζk + ε, and ak(ε) and bk(ε) can be
further defined as:

ak(ε) : = eφ0+φ1ε+φ2ε
2+···,

bk(ε) : = eϕ0+ϕ1ε+ϕ2ε
2+···. (22)

Here φk , ϕ j are free complex parameters.
According to the theoretical derivation of Theo-

rem 1 in Ref. [19] along with the large-x asymptotics
of “perturbed” eigenfunctions, we can obtain symme-
try relations of “perturbed” scattering data (21)–(22)
for the PT -symmetric NLS Equation (1): for a pair
of non-imaginary eigenvalues (ζk, ζ̂k) ∈ C+, where
ζ̂k = − ζ ∗

k , the corresponding “perturbed” eigenvalues
are defined as (ζk(ε), ζ̂k(ε)) ∈ C+, where ζ̂k(ε) ≡
− ζ ∗

k (ε). After scaling the first element a(ε) to 1, the
“perturbed” eigenvectors vk0(ε) and v̂k0(ε) are related
as

v̂k0(ε) = σ1v
∗
k0(ε),

vk0(ε) =
[
1, e

∑∞
j=0 bk j ε

j
]T

, bkj ∈ C. (23)

Repeating above arguments on the adjoint eigen-
value problem, we have: for a pair of non-imaginary

(ζ̄k,
ˆ̄ζk) ∈ C−, ˆ̄ζk = − ζ̄ ∗

k , the “perturbed” eigen-

values are defined as (ζ̄k(ε̄),
ˆ̄ζk(ε̄)) ∈ C−, whereˆ̄ζk(ε̄) ≡ − ζ̄ ∗

k (ε̄), and the form of their eigenvectors
can be similarly obtained as

ˆ̄vk0(ε̄) = σ1v̄
∗
k0(ε̄),

v̄k0(ε̄) =
[
1, e

∑∞
j=0 b̄k j ε̄

j
]T

, b̄k j ∈ C. (24)

Especially, if ζk(ε) is purely imaginary, from above
definition of “perturbed” eigenvalues, we have ζ̂k(ε) =
ζk(ε). Because −ζ ∗

k = ζk , we have ε∗ = −ε. In this
case, their “perturbed” eigenvectors are also the same,
which can be further scaled into the following form:

v̂k0(ε) = vk0(ε)

=
[
1, e

∑∞
j=0(i)

j+1θk j ε
j
]T

, θk j ∈ R. (25)

Similarly, when ζ̄k(ε) is also purely imaginary, its
eigenvector becomes

ˆ̄vk0(ε̄) = v̄k0(ε̄)

=
[
1, e

∑∞
j=0(i)

j+1θ̄k j ε̄
j
]T

, θ̄k j ∈ R. (26)

Next, base on the derivation of Theorem 2 in Ref.
[19] as well as the above analysis, we can also derive
the symmetry relations of “perturbed” scattering data
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for the reverse-time NLS Equation (2): for a pair of
discrete eigenvalues (ζk, ζ̄k), where ζk ∈ C+ and
ζ̄k = −ζk ∈ C−. The “perturbed” eigenvalues are
defined as (ζk(ε), ζ̄k(ε̄)), where ζk(ε) ∈ C+, ζ̄k(ε̄) ≡
−ζk(−ε̄) ∈ C−. Scaling “perturbed” eigenvectors
vk0(ε) and v̄k0(ε̄) with their first elements become 1,
we have

vk0(ε) = [1, e
∑∞

j=0 bk, j ε
j ]T,

v̄k0 = vk0(− ε̄), bkj ∈ C. (27)

where bk is an arbitrary complex parameter.
However, for the reverse-space-time NLS Equa-

tion (3), according to the symmetry relations on the
scattering data given by Theorem 3 in Ref. [19]: the
eigenvalues ζk can be anywhere in C+ and ζ̄k can be
anywhere in C−, and the corresponding eigenvectors
must be of the forms

vk0 = [1, ωk]T, ωk = ± 1;
v̄k0 = [1, ω̄k]T, ω̄k = ± 1. (28)

Then, we find that all the parameters in the “perturbed”
scattering data can be eliminated in the “perturbed”
eigenvectors. Thus, no more parameters can be intro-
duced in (28) so we have vk0(ε) = vk0, v̄k0(ε̄) = v̄k0.

Therefore, utilizing the above symmetry relations
on the “perturbed” scattering data in the high-order
Riemann–Hilbert solution (16), wewill construct high-
order solitons for nonlocal NLS Equations (1)–(3) in
the sections below.

4 Dynamics of high-order solitons in the
PT -symmetric nonlocal NLS equation

To derive the N -th order solitons in thePT -symmetric
NLS Equation (1), we just need to apply corresponding
symmetry relations of “perturbed” scattering data to the
high-order soliton formula (16). Then, we investigate
solution dynamics in the high-order fundamental (one)-
soliton as well as the high-order multi-solitons.

4.1 High-order fundamental-soliton

Firstly, we consider the second-order fundamental-
soliton, which corresponds to a single pair of purely
imaginary eigenvalues (zero of multiplicity two) ζ1 =
iη1 ∈ iR+, and ζ̄1 = i η̄1 ∈ iR−, where η1 >

0 and η̄1 < 0, In this case, symmetry relations

on the perturbed eigenfunctions are given by (25)–

(26), i.e., v10(ε) = [
1, eiθ10−θ11ε

]T
, and v̄10(ε̄) =[

1, ei θ̄10−θ̄11 ε̄
]T
, where θ10, θ11, θ̄10, θ̄11 are real con-

stants. Substituting these expressions into formula (16)
with N = n1 = n̄1 = 2, we obtain the analytic
expression for the second-order fundamental-soliton of
Eq. (1):

q(x, t)

=
2(η̄1 − η1)

[
G(x, t)e2η̄1x−4i η̄21 t+i θ̄10 + Ḡ(x, t)e2η1x−4iη21 t−iθ10

]

4 cosh2
[
(η1 − η̄1)x − 2i(η21 − η̄21)t − i

2 (θ10 + θ̄10)
] + F(x, t)

,

(29)

where F(x, t) = − (G + 2)(Ḡ + 2), with

G(x, t) = (η̄1 − η1)(2x − 8iη1t + iθ11) − 2, (30)

Ḡ(x, t) = (η1 − η̄1)(2x − 8i η̄1t − i θ̄11) − 2. (31)

This kind of soliton, which combines exponential
functions with algebraic polynomials, has never been
reported before in the nonlocal NLS Equation (1). It
contains six real parameters: η1, η̄1, θ10, θ̄10, θ11, and
θ̄11. The motion trajectory for this solution can be
approximatively described by the following two curves

Σ± : 2(η̄1 − η1)x ± ln |F(x, t)| = 0.

(|F(x, t)| 	= 0) (32)

In this case, two solitonsmove along the center trajecto-
ries Σ+ and Σ−. When |x | → ±∞, the amplitude |q|
of the solution decays exponentially to zero. However,
with the development of time, a simple asymptotic anal-
ysis with estimation on the leading-order terms shows
that: when soliton (29) is moving on Σ+ or Σ−, its
amplitudes |q| can approximately vary as

|q(x, t)| ∼ 2|η1 − η̄1|e(η1+η̄1)z(x,t)

|e±2iγ t−iτ0±i(θ10+θ̄10) + 1| , t ∼ ±∞,

(33)

where z(x, t) = ln |F(x,t)|
± 2(η1−η̄1)

, γ = 2(η̄21 − η21), τ0 =
Arg [F(x, t)] + 2kπ, (k ∈ Z), the positive and nega-
tive sign in (33), respectively, corresponds to Σ+ and
Σ−. (It shouldbenoted that estimation (33) is valid only
when |t | � max{|θ11|, |θ̄11|}. Before this, the ampli-
tudes |q| of solution are unequal when soliton moves
on each curve, depending on the value of parameter θ11
and θ̄11.)

In the case, when η1 = −η̄1, solution (29) will be
nonsingular or collapsing at certain locations, depend-
ing on the values of these parameters. Specifically, this
contains two kinds of situations.
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Fig. 1 Left panel is the second-order one-soliton (29) with parameters (36). Right panel is the corresponding density plot

1. If θ11 = θ̄11, as long as θ10 + θ̄10 	= (2k + 1)π for
any integer k, this soliton is nonsingular.

2. If θ11 	= θ̄11, we first define three different multi-

variate functions: c0 ≡ sin(θ10+θ̄10)

η1(θ11−θ̄11)
,

Δ1 ≡ (θ11−θ̄11)
2

4 − 1+cos(θ10−θ̄10)

2η21
and Δ2 ≡ −4x2c +

(θ11−θ̄11)
2

4 − 1+cosh(4η1xc) cos(θ10−θ̄10)

2η21
, which contain all

the parameters. Then, solution (29) will not blow up
only when functions c0, Δ1, and Δ2 satisfy one of the
following two critical conditions:

(a) For any θ10 + θ̄10 	= (2k + 1)π, c0 /∈ (0, 1),

and Δ1 < 0. (34)

(b) c0 ∈ (0, 1), and Δ1,Δ2 < 0. (35)

Otherwise, when Δ1 ≥ 0 in condition (a), there will
be two (or one) singular points locating at x = 0, t =
±√

Δ1
8η1

+ t0, where t0 = θ11−θ̄11
16η1

. Or, when Δ2 ≥ 0
with c0 ∈ (0, 1) in (b), there would also have two (or
one) singular points locating at x = xc, t = ±√

Δ2
8η1

+
t0. Here, xc admits a special transcendental equation

4η1xc
sinh(4η1xc)

= c0, which can be solved numerically for
this given c0.

Moreover, for all the nonsingular solution, |q(x, t)|
reaches its peak amplitude at x = 0, t = t0 with

the value attained as

∣∣∣∣
8η1

[
η1(θ11−θ̄11) sin(φ0)−2 cos(φ0)

]
4 cos2(φ0)−η21(θ11−θ̄11)2

∣∣∣∣,
where φ0 = θ10+θ̄10

2 . When t → ±∞, according to
a logarithmic law for large values of |t |, two solitons
move along Σ+ and Σ− with almost equal velocities

and amplitudes, and peak amplitude does not exceed∣∣∣ 4η1
1+ei(θ1+θ̄1)

∣∣∣.
To demonstrate, we choose the following parame-

ters:

η1 = 0.5, θ10 = π/4,

θ̄10 = π/6, θ11 = 0.25, θ̄11 = 0.5. (36)

Propagation of this high-order soliton is displayed in
Fig. 1. It is shown that two solitons are slowlymoving in
the spatial orientation. This is quite different from the
dynamics of fundamental soliton in Ref. [19], where
the soliton cannot move in space. The peak amplitude
of |q(x, t)| reaches about 2.65834 at the location (0,
0.09375). Moreover, with the evolution of time, they
keep almost identical value of maximum amplitudes,
which is no larger than about 1.26047.

In a more general case, where η1 	= −η̄1, an
important feature for this high-order soliton is repeat-
edly collapsing along two trajectories. This can be
clarified from the large time estimation (33). In fact,
when |t | → ∞, a direct calculation shows that
lim|t |→∞ Arg [F(x, t)] = π . Thus, one can repeatedly
choose large time point tc s.t. cos(2γ tc ∓ τ0 + (θ10 +
θ̄10)) = − 1. This implies the existence of singularities
for the solution at large time.

However, due to the impact of algebraic polynomial
terms, the collapsing interval for this high-order soliton
is nomore a fixed value. Instead, this so-called “period”
is slightly varying over time. Besides, amplitudes of
solution |q| are unequal when soliton moves on each
path, depending on the sign of η1 + η̄1. To illustrate,
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Fig. 2 Left panel is the second-order one-soliton (29) in Eq. (1) with parameters (37). Right panel is the corresponding density plot
(here, the bright spots shown on the density plot represent the location of singularity)

we choose parameters as

η1 = 0.50, η̄1 = − 0.55,

θ10 = θ̄10 = 0, θ11 = θ̄11 = 0. (37)

Graphs of corresponding second-order fundamental-
soliton are shown in Fig. 2. Through simple numerical
calculation and approximate estimation, the first singu-
larities quartet for this soliton is obtained,which locates
approximately at (± xc,± tc) with xc ≈ 3.9999, tc ≈
15.0169, and the first time interval between two suc-
cessive singularities ± tc is 30.0338. Afterward, the
second singularities quartet approximately appears at
(± x̃c,± t̃c) with x̃c ≈ 5.0369, t̃c ≈ 44.9041. So the
second time interval between t̃c and tc is about 29.9232.
(Here, we illustrate that both Figs. 1 and 2 as well as the
following figures are drawn via the Mathematica soft-
ware. By suitably choosing parameters in the analytic
expressions of solitons, and making use of the plotting
function inMathematica, we can derive either 3D plot
or density plot for these solutions.)

Generally, the N -th order fundamental-soliton solu-
tion can be obtained in the same way by choosing
n1 = n̄1 = N in formula (16), and the dynamics of
N -wave motion on N different asymptote trajectories
can be expected.

4.2 High-order multi-solitons

Now, let us consider the high-order multi-solitons for
the PT -symmetric NLS equation. From the symme-

tries of scattering data, the eigenvalues in the upper
and lower halves of the complex plane are completely
independent. This allows for novel eigenvalue configu-
rations,which gives rise to new types of high-order soli-
tons with interesting dynamical patterns. Those results
can be divided into the following two cases in principle:

4.2.1 The normal pattern: square-matrix blocks

In the most normal pattern, each block(
M [k,l]

i, j

)0≤k≤n̄i−1

0≤l≤n j−1,
of

(
Mi, j

)1≤i≤s
1≤ j≤r in formula(16) is an

square matrix. In this case, one has to take the same
index s = r = m with nk = n̄k = n (k = 1, 2, . . . ,m)

and N = n × m in (16). This yields the normal N -th
order m-solitons.

For example, we consider the second-order two-
soliton. Especially, choosing a pair of non-purely-
imaginary eigenvalues: ζ1, ζ2 ∈ {C+ \ iR+}with ζ2 =
−ζ ∗

1 , which belongs to the second type two-solitons
for Eq. (1) discussed in [19]. Thus, from above results
(23)–(24), their perturbed eigenvalues and eigenvectors
are related as

ζ2(ε) = − ζ ∗
1 (ε),

v20(ε) = σ1v
∗
10(ε), v10(ε) = [1, eb10+b11ε ]T,

where b10, b11 are complex constants.
Similarly, for a pair of non-purely-imaginary eigen-

values ζ̄1, ζ̄2 ∈ {C− \ iR−}, with ζ̄2 = − ζ̄ ∗
1 , their

perturbed eigenvalues and eigenfunctions are related
as
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Fig. 3 a The second-order
two-solitons with
parameters (38)–(39). b The
second-order two-solitons
with parameters (40)–(41).

ζ̄2(ε̄) = − ζ̄ ∗
1 (ε̄),

v̄20(ε̄) = σ1v̄
∗
10(ε̄), v̄10(ε) = [1, eb̄10+b̄11ε ]T,

where b̄10, b̄11 are complex constants. Substituting
these data into (16) with N = 4, n1 = n2 = 2 and
n̄1 = n̄2 = 2. Then, it is found that the corresponding
solution can be nonsingular or repeatedly collapse in
pairs at spatial locations. In addition, they can move
in four opposite directions and exhibit more complex
wave-front structures. To demonstrate their dynamics,
we choose two sets of parameters:

ζ1 = − ζ ∗
2 = 0.3 + 0.8i,

ζ̄1 = − ζ̄ ∗
2 = 0.3 − 0.8i, (38)

eb10 = 1 + 0.2i, eb̄10 = 1 − 0.1i.

eb11 = 0.2, eb̄11 = 0.25. (39)

ζ1 = − ζ ∗
2 = 0.3 + i, ζ̄1 = − ζ̄ ∗

2 = 0.3 − 1.2i, (40)

eb10 = 1 + i, eb̄10 = 1 − i, eb11 = 1,

eb̄11 = 1. (41)

Parameters (38)–(39) generate a nonsingular solution
which is plotted in the left panel of Fig. 3, while the
right panel in Fig. 3 exhibits the blowing-up solution
derived from parameter set (40)–(41). Especially, if
the real parts of eigenvalues ζk and ζ̄k are not equal,
the amplitudes of moving waves decrease or increase
exponentially with time.

4.2.2 The hybrid pattern: combination of different
block types

Secondly, we consider a more general case, where the
blocks (sub-matrices) are not required to be square
matrices. Instead, different types of blocks can be

combined together through formula (16). Specifically,
defining two index sets I1 and I2 for the block matrix:

I1 = {n1, . . . , nr }, I2 = {n̄1, . . . , n̄s}.
From above discussion we know that I1 and I2 are
mutually independent. By virtue of this fact, novel solu-
tion patterns can be achieved by taking different index
values in the sets. These interesting hybrid solitons have
not been reported before. They can describe the nonlin-
ear interactions between several one- or multi-solitons
with unequal orders.

Taking N = 2 in formula (16), then index sets have
three kinds of combinations (Regardless of other equiv-
alent cases): (a) I1 = I2 = {1, 1}; (b) I1 = I2 = {2};
(c) I1 = {1, 1}, I2 = {2}. The first two combinations
are the normal case, which corresponding to the two-
soliton and second-order fundamental-soliton. For the
last combination, there are two simple zeros in C+,
which locate symmetric about the imaginary axis, and
one zero (multiplicity two) locates inC−. This interest-
ing configuration of eigenvalues corresponds to a spe-
cial “two-soliton” solution. Such an example is shown
in Fig. 4 with parameters:

ζ1 = −ζ ∗
2 = 0.1 + 0.5i,

ζ̄1 = −0.25i, b10 = 0, θ̄10 = 0, θ̄11 = 0.2. (42)

This soliton describes two waves travel in opposite
directions as they repeatedly collapsing over time.
Remarkably, their motion trajectory is no longer on
the straight line but certain curves. This is quite differ-
ent from the normal two-soliton. In addition, the ampli-
tudes |q| of two travelingwaves are growing or decreas-
ing exponentially with time, just along the directions
of motion.
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Fig. 4 Left panel is a hybrid solution with parameters (42).
Right panel is the corresponding density plot (here, the collaps-
ing points are shown by the white bright spots, when they are

amplifying or shrinking along the line, it means the solutions’
amplitudes are increasing or decreasing correspondingly)

Fig. 5 Left panel is a hybrid solution with parameters (45). Right panel shows a hybrid solution with parameters (43)–(44)

Next, when N = 3, the corresponding block sets
have six combinations: (a). I1 = I2 = {1, 1, 1}; (b).
I1 = {1, 1, 1}, I2 = {1, 2}; (c). I1 = {1, 1, 1}, I2 =
{3}; (d). I1 = {1, 2}, I2 = {1, 2}; (e). I1 = {1, 2}, I2 =
{3}; (f). I1 = I2 = {3}. These sets can feature the
interactions of several types of one- or multi-solitons
with certain orders, except for the normal case (a) and
(f).

Specifically, if we consider combination (b), there
will be three simple poles in the upper half plane and
one double pole with one simple pole in the lower half
plane. This eigenvalue configuration can also bring new

hybrid patterns, which features nonlinear superposi-
tion between a special “two-soliton” and a fundamental
one-soliton. Using parameter values

ζ1 = − ζ ∗
2 = 0.1 + 0.6i, ζ3 = 0.5i,

ζ̄1 = − 0.7i, ζ̄2 = − 0.25i, (43)

b10 = 0,

θ30 = θ̄10 = θ̄20 = θ̄21 = 0. (44)

The associated solution is plotted in Fig. 5. This soliton
features two waves travel in two opposite curves, plus
another stationarywave (fundamental soliton) at x = 0,
while they both repeatedly collapse along the direc-
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tions. Moreover, the amplitudes of the moving waves
are changing with time as well.

Considering combination (d) as another example. In
this case, there is one simple pole with one double pole
in the upper half plane as well as the lower half plane.
This eigenvalue configuration could create a new type
of hybrid soliton which differs from other patterns. To
illustrate its dynamics, we choose parameters

ζ1 = ζ̄ ∗
1 = 0.25i, ζ2 = ζ̄ ∗

2 = 0.5i,

θ10 = − θ̄20 = −π/6, (45)

θ̄10 = − θ20 = π/4, θ21 = 1, θ̄21 = 0.5. (46)

Corresponding graph for this solution is presented in
Fig. 5,which features the nonlinear interaction between
the second-order one-soliton anda fundamental-soliton.

This soliton does not collapse and the interesting
periodic phenomenon can be seen. For the rest of the
combinations, we can still utilize formula (16) to gen-
erate solitons in other hybrid patterns.

Therefore, as we could see, solitons with hybrid pat-
terns exhibit rich and novel solution dynamics which
have not been observed before. Similarly, the higher-
order hybrid solutions can be also investigated in this
way and the additional novel phenomenon can be
expected.

5 Dynamics of high-order solitons in the
reverse-time NLS equation

To derive N -th order solitons for the reverse-time NLS
Equation (2), we need to impose corresponding sym-
metry relations of “perturbed” discrete scattering data
in the general soliton formula (16). Normally, for a
pair of discrete eigenvalues (ζk, ζ̄k), where ζk ∈ C+
and ζ̄k = − ζk ∈ C−. From Eq. (27) in Sect. 3, we get
the corresponding “perturbed” eigenvectors:

vk0(ε) = [1, e
∑N−1

j=0 bk, j ε j ]T,

v̄k0 = vk0(− ε̄), bkj ∈ C. (47)

Hence, the N -th order m-solitons have m(N + 1) free
complex constants: {ζk, bk, j , 1 ≤ k ≤ m, 0 ≤ j ≤
N − 1}.

The second-order fundamental-soliton is obtained
when we set N = 2,m = 1 with n1 = n̄1 = 2 in (16),
and the analytical expression is:

q(x, t) = 8ζ1e4iζ
2
1 t

[
e−2iζ1x−ln b10 f1(x, t) + e2iζ1x+ln b10 f̄1(x, t)

]

4 cosh2 (2iζ1x + ln b10) + f0(x, t)
.

(48)

where f0(x, t) = 4( f1(x, t) + i)( f̄1(x, t) + i), and

f1(x, t) = ζ1(2x + 8ζ1t − ib11b
−1
10 ) − i,

f̄1(x, t) = ζ1(−2x + 8ζ1t + ib11b
−1
10 ) − i.

The fundamental soliton in Eq. (2) is found to be sta-
tionary [19].However, for this second-order fundamen-
tal-soliton, two solitons move along the path

Σ± : 2Im(ζ1)x ± 1

2
ln | f0(x, t)| − ln |b1| = 0 (49)

with almost the same velocity. As t → ±∞, the ampli-
tudes |q| change as

|q(x, t)| ∼ 8|ζ1|e−4Im(η21)t

|e±2iγ x−iτ0±2i arg(b10) + 1| , (50)

where γ = 2Re(ζ1), τ0 = Arg [ f0(x, t)] + 2kπ, (k ∈
Z).

This soliton would also collapse at certain locations,
but not repeatedly collapse with time. Under a suitable
choice of parameters, this high-order soliton can be
non-collapsing. The amplitudes of two moving waves
grows or decays exponentially when ζ1 ∈ {C+ \ iR+},
and it would decay/grow when ζ1 is in the first/second
quadrant of the complex plane. As concrete examples,
graphs of these solitons are illustrated in Fig. 6 with
two sets of parameters.

Normally, the N -th order fundamental-soliton could
exhibit analogical features with the second-order
fundamental-soliton. There will be N different asymp-
tote trajectories with N waves moving along them in
the nearly same velocities. For instance, a decaying
third-order one-soliton is displayed in Fig. 7. More-
over, the high-order multi-solitons could exhibit quite
different dynamics. For example, the second-order two-
solitons move in four opposite directions when ζ1, ζ2
are not both purely imaginary, and the repeated col-
lapsing with “four-way” motion can be observed. Such
an high-order two-soliton solution is shown in Fig. 7,
which cannot be seen as a simple nonlinear superposi-
tion between two second-order fundamental-solitons.

6 Dynamics of high-order solitons in the
reverse-space-time NLS equation

To derive the N -th order solitons in the reverse-space-
timeNLSEq. (3),we impose symmetry relations of dis-
crete scattering data (28) in the general soliton formula
(16). In this case, the normal N -th order m-solitons
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Fig. 6 The second-order one-soliton (48) with parameters: (left panel) ζ1 = 0.1 + i, eb10 = 1 + 0.1i, eb11 = 1. (Right panel)
ζ1 = − 0.1 + i, eb10 = eb11 = 1

Fig. 7 (Left panel) Density
plot for the third-order
soliton with parameters:
ζ1 = 0.05 + i, eb10 =
1, eb11 = 0.1 + 0.1i. (Right
panel) Density plot for the
second-order two-solitons
with parameters:
ζ1 = 0.2 + i, ζ2 = − 0.1 +
1.2i, eb10 = 1+0.5i, eb20 =
1, eb11 = eb21 = 1

have 2m free complex constants: {ζk, ζ̄k, 1 ≤ k ≤ m},
where ζk ∈ C+, and ζ̄k ∈ C−.

For the second-order fundamental-soliton,wechoose
m = 1 with N = n1 = n̄1 = 2. So the analytic expres-
sion for this solution is

q(x, t) =
4ω̄1

(
ζ1 − ζ̄1

) [
ω1ω̄1e−2i

(
ζ̄1x−2ζ̄ 21 t

)
f1(x, t) + e−2i

(
ζ1x−2ζ 21 t

)
f̄1(x, t)

]

e2i(ζ̄1−ζ1)x+4i
(
ζ 21 −ζ̄ 21

)
t + e−2i(ζ̄1−ζ1)x−4i

(
ζ 21 −ζ̄ 21

)
t + ω1ω̄1 f0(x, t)

, (51)

where f0(x, t) = 4( f1 + i)( f̄1 + i) + 2, and

f1(x, t) = (
ζ̄1 − ζ1

)
(x − 4ζ1t) − i,

f̄1(x, t) = (
ζ1 − ζ̄1

)
(x − 4ζ̄1t) − i.

It is found that the above high-order fundamental-
soliton (51) has two gradually paralleled center trajec-
tories, which approximatively locate on following two
curves in the (x, t) plane:

Σ± : Im
(
ζ̄1 − ζ1

)
x

−2Im
(
ζ̄ 2
1 − ζ 2

1

)
t ± 1

2
ln [| f0 − 2|] = 0. (52)

Moreover, regardless of the effect brought by the log-
arithmic part when t → ±∞, two solitons separately

move along each curve in a nearly same velocity, which
is approximate to

V ≈ Vc := 2Im
(
ζ̄ 2
1 − ζ 2

1

)
/Im

(
ζ̄1 − ζ1

)
,

and the solution’s amplitudes |q| would approximately
change as

|q(t)| ∼ 2|ζ1 − ζ̄1| eβt±δ0∣∣e±2iγ t−iτ0 + ω1ω̄1
∣∣ , t ∼ ±∞,

(53)
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Fig. 8 Two second-order
one-solitons (51) in the
reverse-space-time NLS
Equation (3). The
parameters for the density
plot (a) (b) are given by
Eqs. (54) and (55),
respectively

where

β = − 2VcIm
(
ζ̄1

) − 4Im
(
ζ̄ 2
1

)
,

γ = VcRe
(
ζ1 − ζ̄1

) − 2Re
(
ζ 2
1 − ζ̄ 2

1

)
.

δ0 = − Im
(
ζ1 + ζ̄1

)
ln

√| f0 − 2|/Im (
ζ̄1 − ζ1

)
,

and τ0 = Arg [ f0(x, t) − 2] + 2kπ, (k ∈ Z).
From this estimation, the soliton’s amplitude is

growing or decaying exponentially along the path Σ±
at the rate of eβt±δ0 , which depends mainly on the
value of β (except for the case when Re(ζ1) = Re(ζ̄1),
where β = 0). There are also some differences in the
amplitudes when q(x, t) moves on different trajecto-
ries, depending on the sign of δ0. Especially, if δ0 = 0,
both of them will keep the same amplitude.

Another interesting feature for this high-order
fundamental-soliton is the repeatedly collapsing phe-
nomenon. And the blowing-up interval Tc for this solu-
tion admits a “perturbative” varying period, which can
be roughly estimated as: Tc = π/|γ | + Δ(t), where
Δ(t) is a time-dependent small error term. Regard-
less of minor changes in the arguments τ0(t), the
approximately value of Δ(t) is attained as Δ(t) ≈[
τ̄0(tc + π/|γ |) − τ0(tc)

]
/2γ , where tc is the time

coordinate for an initial singularity. Examples are given
for two sets of parameters:

ζ1 = − 0.3 + 0.9i, ζ̄1 = − 0.28 − 0.6i,

ω1 = ω̄1 = 1, (54)

ζ1 = 0.35 + 0.9i, ζ̄1 = 0.325 − 0.6i,

ω1 = − ω̄1 = 1. (55)

Graphs of the two fundamental solitons are displayed,
respectively, in Fig. 8. Apparently, both of these two

solitons collapse repeatedly with time. In the former
solution, the soliton moves at velocity about Vc ≈

− 1.168 (to the left). The amplitude |q| exponentially
increases along the curve Σ± at the rate of eβt with
β ≈ 0.0576. In the latter solution, the soliton moves at
velocity Vc ≈ 1.36 (to the right), while |q| decreases
exponentially along Σ± at the rate of eβt with β ≈

−0.072.
For the high-ordermulti-solitons, because the eigen-

values ζk ∈ C+ and ζ̄k ∈ C− are totally indepen-
dent, they can be arranged in several different con-
figurations, this will give rise to new types of soli-
tons for the reverse-space-time NLS Equation (3). For
instance, with symmetry (28) on the eigenvectors, if
we take N = 2 with I1 = {1, 1} and I2 = {2} in
formula (16), certain choice of parameters can pro-
duce a high-order “two-soliton.” Choosing N = 4
with I1 = I2 = {2, 2}, we can derive a nonlinear
superposition between two different second-order one-
soliton solutions. (This solution can be also regarded as
a second-order two-soliton.) Graphs of these solitons
are very similar to those displayed in Figs. 3 and 4, so
their novel dynamic behaviors can be expected.

7 Summary and discussion

In summary, we have derived general high-order soli-
tons in the PT -symmetric, reverse-time, and reverse-
space-time nonlocal NLS Eqs. (1)–(3) by using a
Riemann–Hilbert treatment. Through the symmetry
relations on the “perturbed” scattering data for each
equation, we have shown that the high-order solitons
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can be separately reduced from the same Riemann–
Hilbert solutions of the AKNS hierarchy. At the same
time, novel solution behaviors in these nonlocal equa-
tions have been further discussed. We have found that
the high-order fundamental-soliton is always moving
on several trajectories in nearly equal velocities, while
the high-order multi-solitons could have more compli-
cated wave and trajectory structures. In all these non-
local equations, a generic character in their high-order
solitons is repeated collapsing. Moreover, new types
of high-order hybrid-pattern solitons are discovered,
which can describe a nonlinear superposition between
several types of solitons. Our findings reveal the novel
and rich structures for high-order solitons in the non-
local NLS Equations (1)–(3), and they could intrigue
further investigations on solitons in the other nonlocal
integrable equations.

In addition, it should be noted that by utilizing new
symmetry properties of scattering data in these non-
local equations, some open questions left over in the
previous Riemann–Hilbert derivations of solitons have
been resolved [19]. Specifically, Ref. [19] pointed out
that: when the numbers of eigenvalues (or, known as
zeros of theRiemann–Hilbert problem) in the upper and
lower complex planes, counting multiplicity, are not
equal to each other, it would produce solutions which
are unbounded in space (thus never solitons). There-
fore, in order to illustrate the validity for this conclusion
in the case of multiple zeros, we consider the second-
order fundamental-soliton in the PT -symmetric NLS
equation by choosing a single pair of eigenvalues
(ζ1, ζ̄1) ∈ iR+ in expression (29), then it produces
a high-order “fundamental-soliton.” Although it still
satisfies Eq. (1), this solution is not localized in space
and grows exponentially in the positive x directions.
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