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Abstract In the present study, we have applied
similarity transformation method via Lie symmetry
approach on the Konopelchenko–Dubrovsky (KD)
equation. We have generated infinite-dimensional Lie
algebra and commutation relations of the KD equation.
The KD equation reduced into a system of ordinary
differential equations (ODEs) by employing similarity
reductions. Ultimately, the exact solutions of such sys-
tem of ODEs provided various families of new group-
invariant solutions of the KD equation. Furthermore,
we have discussed the dynamics of each solution such
as multisoliton, doubly solitons, periodic multisoli-
ton,multiplewavefront, solitons interactions, parabolic
and stationary wave through their evolution profiles.
Numerical simulations have been performed by taking
appropriate choices of arbitrary functions and constants
involved in the solutions.
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1 Introduction

Most of the biological, chemical and physical phenom-
ena are governed by nonlinear partial differential equa-
tions (NLPDEs). The research on NLPDEs becomes
increasingly important with the development of nonlin-
ear dynamics. Exact solutions of NLPDEs are of great
importance to investigate the dynamics of such equa-
tions. These solutions are more relevant in the fields of
applied mathematics, mathematical physics and engi-
neering sciences. The exact solutions play a significant
role to understand the various complex dynamicalmod-
els. The results are also capable of improving the accu-
racy and efficiency of the relevant dynamical systems.

The aimof this research is to obtain somenewgroup-
invariant solutions ofKonopelchenko–Dubrovsky (KD)
equation. Hence, we consider the following (2 + 1)-
dimensional KD equation:

2ut − 12b u ux + 3a2 u2 ux − 6vy + 6a uxv

− 2uxxx = 0, uy = vx . (1)

where u = u(x, y, t) and v = v(x, y, t);a and b are the
real parameters. Subscripts stand for the partial deriva-
tives with respect to the subscript variables throughout
the article.

Konopelchenko and Dubrovsky [1] derived the
KD equation in 1984 during the study of integrable
nonlinear evolution equations (NLEEs) through the
inverse scattering transform (IST) method. The equa-
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tion reduces into the Gardner equation for uy = 0, and
it also converts into the Kadomtsev–Petviashvili equa-
tion for a = 0. Moreover, it turns into the modified
Kadomtsev–Petviashvili equation for b = 0, which is
useful in soliton theory.

The KD system has been studied in detail by a
diverse group of researchers [1–14] across the globe
and presented some effectivemethods for its exact solu-
tions. Lin et al. [2] derived multisoliton solutions of the
KD equations by applying Bäcklund transformation.
Wang et al. [3] derived exact solutions of the equa-
tions in terms of Jacobi elliptic functions through an
improved form of the extended F-expansion method,
while Zhang et al. [4] presented some wave solutions
of the KD equation by using generalized F-expansion
method with Mathematica. Furthermore, Wazwaz [5]
attained exact solutions of the equation with solitons,
kink and periodic wave nature. Song et al. [6] obtained
exact solutions of the equation by applying extended
Riccati equation rational expansion method.

On the other hand, He [7] constructed bounded trav-
eling wave solutions by using the bifurcation theory
method of planar dynamical system. Hongyan [8] stud-
ied Lie point symmetry of the KD equations through
the classical Lie group method. Ultimately, he derived
soliton solutions by applying the tanh functionmethod.
Feng et al. [9] obtained exact solutions by applying
the improved mapping approach and variable separa-
tion method. Hongyan [10] found that the KD equation
and its Lax pair admits the same symmetry transfor-
mations of the independent variables. Zhang [11] used
Riccati equation and its generalized solitary wave solu-
tions constructed through the Exp-functionmethod and
derived exact solutions. Ren et al. [12] derived nonlocal
symmetries by applying the truncated Painlevé method
and the conformal invariant form. Furthermore, they
obtained finite symmetry by solving the initial value
problem of the prolonged systems and studied symme-
try reductions through Lie point symmetry. Ultimately,
they obtained multisolitary wave solutions of the KD
equation. Moreover, Kumar et al. [13,14] derived var-
ious invariant solutions by employing the group theo-
retical method.

Motivated by the rich treasure of the KD equation
available in the literature [1–14] specially from Kumar
et al. [13,14] derivedmany exact solutions through sim-
ilarity transformation method (STM) with particular
choices of the functions of t . In this research , we have
obtain exact solutions of the KD equation by using the

similarity transformation method with arbitrary choice
of function. The methodology and applications of sim-
ilarity transformation method have been given in the
literature [15–32].

This research paper is organized as follows: A brief
introduction of the KD equation is presented in Sect. 1;
Sect. 2 furnishes with infinite-dimensional Lie alge-
bra and commutation relations of the KD equation;
Sect. 3 deals with derived group-invariant solutions of
the equation; Sect. 4 depicts analysis and discussions of
the exact solutions; finally, some concluding remarks
are drawn in Sect. 5.

2 Lie symmetry analysis for the KD equation

Let us consider a one-parameter Lie group of transfor-
mation

x∗ = x + ε ξ(x, y, t, u, v) + O(ε2),

y∗ = y + ε η(x, y, t, u, v) + O(ε2),

t∗ = t + ε τ(x, y, t, u, v) + O(ε2),

u∗ = u + ε φ(x, y, t, u, v) + O(ε2),

v∗ = v + ε ψ(x, y, t, u, v) + O(ε2).

The vector field associated with the above group of
transformations can be written as:

V = ξ
∂

∂x
+ η

∂

∂y
+ τ

∂

∂t
+ φ

∂

∂u
+ ψ

∂

∂v
. (2)

Lie invariance condition for KD equation with respect
to vector field Eq. (2) read as [15,16]:

pr(3)V[2ut − 12b u ux + 3a2 u2 ux − 6vy

+ 6a ux v − 2uxxx ] = 0, pr(1)V[uy − vx ] = 0. (3)

The symbol pr(n)V is the usual nth-order prolongation
operator; therefore,

pr(1)V = V + φy ∂

∂uy
+ ψ x ∂

∂vx
,

pr(3)V = V+φt ∂

∂ut
+φx ∂

∂ux
+ψ y ∂

∂vy
+φxxx ∂

∂uxxx
,
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where φt , φx , φy , φxxx ,ψ x andψ y are the coefficients
in pr(1)V and pr(3)V defined as

φt = Dtφ − ux Dtξ − uy Dtη − ut Dtτ,

φx = Dx φ − ux Dxξ − uy Dxη − ut Dxτ,

φy = Dyφ − ux Dyξ − uy Dyη − ut Dyτ,

ψ x = Dx ψ − vx Dxξ − vy Dxη − vt Dxτ,

ψ y = Dy ψ − vx Dyξ − vy Dyη − vt Dyτ,

· · · · · · · · · · · · · · · · · ·,

and Dt , Dx and Dy stand for the total derivative oper-
ators, for example,

Dt = ∂

∂t
+ ut

∂

∂u
+ vt

∂

∂v
+ utx

∂

∂ux
+ vt x

∂

∂vx

+ utt
∂

∂ut
+ vt t

∂

∂vt
+ · · ·.

Applying the prolongations pr(1)V and pr(3)V to Eq.
(3), we have derived following system of the equations:

τx = 0, τy = 0, τu = 0, τv = 0,

τt t = 0, ξu = 0,

ξv = 0, ξx = 1

3
τt , ξy = 0, ηx = 0,

ηu = 0, ηv = 0,

ηy = 2

3
τt , ηt t = 0, φ = 1

3

(
2b

a2
− u

)
τt + 1

3a
ηt ,

ψ = 2

3

(
2b2

a3
− v

)
τt + 1

3

(
2b

a2
− u

)
ηt − 1

3a
ξt .

Solving above system of the equations, we get

ξ = 18x f̄1 + 3y2 ¯̄f1 + 3y f̄2 + 3 f3,

η = 36y f̄1 + 18 f2 + 1,

τ = 54 f1,

φ = 6y

a
¯̄f1 + 18

(
2b

a2
− u

)
f̄1 + 3

a
f̄2,

ψ = y2

a
¯̄̄
f1 + 6

(
x

a
− uy + 2by

a2

)
¯̄f1

+ 36

(
2b2

a3
− v

)
f̄1

+ y

a
¯̄f2 + 3

(
2b

a2
− u

)
f̄2 + f̄3

a
,

Table 1 Commutator table of Lie algebra

[Wi Wj ] W1 W2 W3

W1 0 W1
2 0

W2 −W1
2 0 −W3

W3 0 W3 0

where f1, f2 and f3 are arbitrary smooth functions of t
and bar is used for the derivative throughout the article.
The spanned vector field of Eq. (1) can be written as

V = V1( f1) + V2( f2) + V3( f3) + V4,

where

V1( f1) = (18 x f̄1 + 3 y2 ¯̄f1) ∂

∂x
+ 36 y f̄1

∂

∂y
+ 54 f1

∂

∂t

+
(
6y

a
¯̄f1 + 36 b

a2
f̄1 − 18 u f̄1

)
∂

∂u
+

(
y2

a
¯̄̄
f1 + 6

a
x ¯̄f1

+ 12 b y

a2
¯̄f1 − 6 y u ¯̄f1 + 72 b2

a3
f̄1 − 36 v f̄1

)
∂

∂v
,

V2( f2) = 3y f̄2
∂

∂x
+ 18 f2

∂

∂y
+ ¯3 f3

a

∂

∂u

+
(
y

a
¯̄f2 + 6 b

a2
f̄2 − 3 u f̄2

)
∂

∂v
,

V3( f3) = 3 f3
∂

∂x
+ f̄3

a

∂

∂v
, V4 = ∂

∂y
.

The associated Lie algebra between these vector fields
becomes:

[Vi, Vi] = 0, i = 1, 2, 3

[V1, V2] = V2(54 f1 f̄2 − 36 f2 f̄1),

[V1, V3] = V3(54 f1 f̄3 − 18 f3 f̄1),

[V1, V4] = V2(−2 f̄1),

[V2, V3] = 0,

[V2, V4] = V3(− f̄2),

[V3, V4] = 0,

[V1(g1), V1(h1)] = V1(54g1h̄1 − 54h1ḡ1),

[V2(g2), V2(h2)] = V3(18g2h̄2 − 18h2 ḡ2),

[V3(g3), V3(h3)] = 0.

3 Group-invariant solutions of the KD equation

Authors considered a particular choices of the functions

f2 = 2a0 f̄1− 1
18 and f3 = a20

¯̄f1 (a0 is a constant). Con-
sequently, Lie symmetry supplies following Lagrange
system to generate various forms of the invariant solu-
tions (Tables 1, 2).
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Table 2 Adjoint table of Lie algebra

Ad W1 W2 W3

W1 W1 W2 − ε
2W1 W3

W2 e
ε
2 W1 W2 eεW3

W3 W1 W2 − εW3 W3

dx

18x f̄1 + 3(y + a0)2
¯̄f1

= dy

36(y + a0) f̄1
= dt

54 f1
= du

6
a (y + a0)

¯̄f1 + 18
(
2b
a2

− u
)
f̄1

= dv[
(y+a0)2

a
¯̄̄
f1 + 6x

a
¯̄f1 + 6(y + a0)

(
2b
a2

− u
) ¯̄f1 + 36

(
2b2
a3

− v
)
f̄1

] . (4)

The solution of Eq. (4) can be written as

u = (y + a0) f̄1
9a f1

+ 2b

a2
+ U (X,Y )

f
1
3
1

, (5)

v = x f̄1
9a f1

+ (y + a0)2
¯̄f1

54a f1
− (y + a0)2 f̄1

2

54a f 21
+ 2b2

a3

− (y + a0) f̄1U (X,Y )

9 f
4
3
1

+ V (X,Y )

f
2
3
1

. (6)

Obviously, U (X,Y ) and V (X,Y ) are the similarity
functions of the similarity variables X , Y as

X = x

f
1
3
1

− (y + a0)2 f̄1

18 f
4
3
1

, Y = (y + a0)

f
2
3
1

. (7)

The functions U (X,Y ), V (X,Y ) can be calculated
by the following system

2UXXX − 3a2U 2UX+6VY−6aVUX=0,UY=VX .

(8)

Furthermore, the above system provides

ξ̂ = a1 + a2
2
X, η̂ = a3 + a2Y,

φ̂ = −a2
2
U, ψ̂ = −a2V, (9)

where a1, a2 and a3 are arbitrary constants. Hence, the
spanned vector field of Eq. (8) can be written as:

W = a1W1 + a2W2 + a3W3,

where

W1 = ∂

∂X
, W2 = X

2

∂

∂X
+ Y

∂

∂Y
− U

2

∂

∂U
− V

∂

∂V
,

W3 = ∂

∂Y
.

Tocompute the adjoint representation, followingLie
series can be written as:

Ad[exp(ε Wi )]Wj = W j − ε[Wi ,Wj ]
+ 1

2
ε2[Wi , [Wi ,Wj ]] − · · · ,

Further processing of the problem results in the fol-
lowing cases:

Case (I): a2 �= 0, yields

dX

A1 + 1
2 X

= dY

A2 + Y
= dU

− 1
2U

= dV

−V
, (10)

where A1 = a1
a2
, A2 = a3

a2
.

The above Lagrange system further proceeds as

U = U1(X1)

(A2 + Y )
1
2

, V = V1(X1)

A2 + Y

with X1 = (2A1 + X)

(A2 + Y )
1
2

. (11)

The above system is responsible to evaluate the
unknown functionsU1 and V1 from the following equa-
tions

2
¯̄̄
U1 − 3a2U 2

1 Ū1 − 6aV1Ū1 − 3X1V̄1 − 6V1 = 0,

X1Ū1 +U1 + 2V̄1 = 0. (12)

123



On group-invariant solutions of Konopelchenko–Dubrovsky equation 479

Equation (12) is a nonlinear ordinary differential equa-
tion. We could not find its general solution. However,
some particular solutions can be found as:

Case(Ia) : U1 = ± 2

aX1
− X1

a
, V1 = X2

1

2a
± 1

a
.

Ultimately, the solution of KD equation can be read as

u = (y + a0)2 f̄1
9 a f1

− (2A1 + X)

a f
1
3 (A2 + Y )

+ 2b

a2

± 2

a f
1
3 (2A1 + X)

, (13)

v = x f̄1
9a f1

+ (y + a0)2
¯̄f1

54a f1
− (y + a0)2 f̄1

2

54a f 21
+ 2b2

a3

∓ 2(y + a0) f̄1

9 a f
4
3
1 (2A1 + X)

+ (y + a0) f̄1

9 a f
4
3
1

(2A1 + X)

(A2 + Y )

+ (2A1 + X)2

2 a f
2
3
1 (A2 + Y )2

± 1

a f
2
3
1 (A2 + Y )

. (14)

Case(Ib) : U1 = − X1

a
and V1 = X2

1

2a
+ c1.

where c1 is an arbitrary constant. Consequently, the
solution of KD equation can be furnished as

u = (y + a0)2 f̄1
9 a f1

− (2A1 + X)

a f
1
3 (A2 + Y )

+ 2b

a2
, (15)

v = x f̄1
9a f1

+ (y + a0)2
¯̄f1

54a f1
− (y + a0)2 f̄1

2

54a f 21

+ c1

f
2
3
1 (A2 + Y )

+ (y + a0)(2A1 + X) f̄1

9 a f
4
3
1 (A2 + Y )

+ (2A1 + X)2

2 a f
2
3
1 (A2 + Y )2

+ 2b2

a3
. (16)

Case(Ic) : U1 = 2X1

a
and V1 = − X2

1

a
.

Hence, complete solution of the KD equation can be
furnished as

u = (y + a0)2 f̄1
9 a f1

+ 2(2A1 + X)

a f
1
3 (A2 + Y )

+ 2b

a2
, (17)

v = x f̄1
9a f1

+ (y + a0)2
¯̄f1

54a f1
− (y + a0)2 f̄1

2

54a f 21
+ 2b2

a3

− 2(y + a0)(2A1 + X) f̄1

9 a f
4
3
1 (A2 + Y )

− (2A1 + X)2

a f
2
3
1 (A2 + Y )2

.

(18)

Case (II): a2 = 0 and a3 �= 0, then Lagrange system
for (8) is

dX

A3
= dY

1
= dU

0
= dV

0
, where A3 = a1

a3
. (19)

Thus, similarity reduction of Eq. (8) can be obtained as

U = U2(X2) and V = V2(X2), (20)

with similarity variable X2 = X − A3Y .
On inserting the values of U and V from Eq. (20)

into (8), one can get

2
¯̄̄
U2 − 3a2U 2

2 Ū2 − 6aV2Ū2 − 6A3V̄2 = 0,

A3Ū2 + V̄2 = 0. (21)

Equation(21) can be reduced in the following form:

2
¯̄̄
U2 − 3a2U 2

2 Ū2 + 6(A2
3 − ac2 + aA3U2)Ū2 = 0,

(22)

A3U2 + V2 = c2. (23)

Twice integration of Eq. (22) gives

Ū2
2 − a2

4
U 4
2 + aA3U

3
2 + 3(A2

3 − ac2)U
2
2

= c3U2 + c4, (24)

where c2, c3 and c4 are constants of integration.
Equation (24) is a nonlinear ordinary differential.

We could not find its general solution. However, some
particular solutions are found by adjusting the various
constants.

Case (IIa): By setting c2 = a3
6 , c3 = 0, c4 = a6

4
and A3 = 0, the solution of Eq. (24) is given by

U2 = a tan(ac5 ± a2

2
X), V2 = a3

6
. (25)
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Combining Eqs. (5)–(6), (20) and (25), solution of the
KD equation is attained as

u = (y + a0)2 f̄1
9 a f1

+
a tan

(
ac5 ± a2

2 X
)

f
1
3

+ 2b

a2
, (26)

v = x f̄1
9a f1

+ (y + a0)2
¯̄f1

54a f1
− (y + a0)2 f̄1

2

54a f 21
+ 2b2

a3

−
a f̄1 (y + a0) tan

(
a c5 ± a2

2 X
)

9 f
4
3
1

+ a3

6 f
2
3
1

.

(27)

Case (IIb): By assuming c2 = − a3
12 , c3 = 0, c4 = 0

and A3 = 0, the solution of Eq. (24) can be obtained
as

U2 = a sec

(
ac6 ± a2

2
X

)
, V2 = −a3

12
. (28)

Comprising Eqs. (5)–(6), (20) and (28), solution of the
KD equation yields as

u = (y + a0)2 f̄1
9 a f1

+
a sec

(
ac6 ± a2

2 X
)

f
1
3

+ 2b

a2
, (29)

v = x f̄1
9a f1

+ (y + a0)2
¯̄f1

54a f1
− (y + a0)2 f̄1

2

54a f 21
+ 2b2

a3

−
a f̄1 (y + a0) sec

(
a c6 ± a2

2 X
)

9 f
4
3
1

− a3

12 f
2
3
1

.

(30)

Case (IIc): Let c2 = 3a3
2 , c3 = a5, c4 = a6

4 and
A3 = −a2, the solution of Eq. (24) can be derived
as

U2 = −a − 1(
c7 ± a

2 X2
) , V2 = a3

2
− a2(

c7 ± a
2 X2

) .

(31)

Incorporating Eqs. (5)–(6), (20) and (31), solution of
the KD equation is obtained as follows

u = (y + a0)2 f̄1
9 a f1

− a

f
1
3

+ 2b

a2

− 2

f
1
3 {2c7 ± (aX + a3Y )}

, (32)

v = x f̄1
9a f1

+ (y + a0)2
¯̄f1

54a f1
− (y + a0)2 f̄1

2

54a f 21
+ 2b2

a3

+ a(y + a0) f̄1

9 f
4
3
1

+ 2(y + a0) f̄1

9 f
4
3
1

{
2c7 ± a

(
X + a2Y

)}

+ a3

2 f
2
3
1

− 2a2

f
2
3
1

{
2c7 ± a(X + a2Y )

} . (33)

Case (IId): If c2 = −a3
6 , c3 = 0, c4 = a6

4 and A3 = 0,
then solution of Eq. (24) can be obtained as

U2 = a coth

(
ac8 ± a2

2
X

)
, V2 = −a3

6
. (34)

Comprising Eqs. (5)–(6), (20) and (34), we have
explicit solution of the KD equation as

u = (y + a0)2 f̄1
9 a f1

+
a coth

(
ac8 ± a2

2 X
)

f
1
3

+ 2b

a2
,

(35)

v = x f̄1
9a f1

+ (y + a0)2
¯̄f1

54a f1
− (y + a0)2 f̄1

2

54a f 21
+ 2b2

a3

−
a f̄1 (y + a0) coth

(
a c8 ± a2

2 X
)

9 f
4
3
1

− a3

6 f
2
3
1

.

(36)

Case (IIe):When c2 = a3
12 , c3 = 0, c4 = 0 and A3 = 0,

the solution of Eq. (24) can be read as

U2 = a Csch

(
ac9 ± a2

2
X

)
, V2 = a3

12
. (37)

Thus from Eqs. (5)–(6), (20) and (37), we derived solu-
tion of the KD equation as

u = (y + a0)2 f̄1
9 a f1

+
a Csch

(
ac9 ± a2

2 X
)

f
1
3

+ 2b

a2
,

(38)

v = x f̄1
9a f1

+ (y + a0)2
¯̄f1

54a f1
− (y + a0)2 f̄1

2

54a f 21
+ 2b2

a3
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+ a3

12 f
2
3
1

−
a f̄1 (y + a0)Csch

(
a c8 ± a2

2 X
)

9 f
4
3
1

.

(39)

Case (IIf): By considering c2 = a3
3 , c3 = 0, c4 = 0

and A3 = − a2
2 , the solution of Eq. (24) is given as

U2 = a c10 e± a2
2 X2{

1 − c10 e± a2
2 X2

} ,

V2 = a3

3
+ a3 c10 e± a2

2 X2

2

(
1 − c10 e± a2

2 X2

) . (40)

Comprising Eqs. (5)–(6), (20) and (40), we have
explicit solution of the KD equation as

u = (y + a0)2 f̄1
9 a f1

+ 2b

a2

+ a c10 e

{
± a2

2

(
X+ a2

2 Y
)}

f
1
3

[
1 − c10 e

{
± a2

2

(
X+ a2

2 Y
)}] , (41)

v = x f̄1
9a f1

+ (y + a0)2
¯̄f1

54a f1
− (y + a0)2 f̄1

2

54a f 21

− a c10 f̄1 (y + a0) e

{
± a2

2

(
X+ a2

2 Y
)}

9 f
4
3
1

[
1 − c10 e

{
± a2

2

(
X+ a2

2 Y
)}] + 2b2

a3

+ a3 c10 e

{
± a2

2

(
X+ a2

2 Y
)}

2 f
2
3
1

[
1 − c10 e

{
± a2

2

(
X+ a2

2 Y
)}] + a3

3 f
2
3
1

. (42)

Case (IIg): By taking c2 = A2
3
a − a

12 , c3 = 0 and c4 = 0,
the solution of Eq. (24) can be derived as

U2 = a[√
a2 + 4A2

3 sin
{ a
2 (c11 ± X2)

} − 2A3

] ,

V2 = c2 − aA3[√
a2 + 4A2

3 sin
{ a
2 (c11 ± X2)

} − 2A3

] .

(43)

Incorporating Eqs. (5)–(6), (20) and (43), solution
of the KD equation can be attained as

u = a f
− 1

3
1[√

a2 + 4A2
3 sin

{ a
2 (c11 ± (X − A3Y ))

} − 2A3

]

+ (y + a0)2 f̄1
9 a f1

+ 2b

a2
, (44)

v = x f̄1
9a f1

+ (y + a0)2
¯̄f1

54a f1
− (y + a0)2 f̄1

2

54a f 21

− a f
− 4

3
1 f̄1(y + a0)

9

[√
a2 + 4A2

3 sin
{ a
2 (c11 ± (X − A3Y ))

} − 2A3

]

− a f
− 2

3
1 A3[√

a2 + 4A2
3 sin

{ a
2 (c11 ± (X − A3Y ))

} − 2A3

]

+ c2

f
2
3
1

+ 2b2

a3
. (45)

Case (IIh): By setting c2 =
√
c4
3 + c23

3ac4
, A3 = − c3

2
√
c4

and c4 > 0, the solution of Eq. (24) can be read as

U2 = 4c4[
4kc

1
2
4 tan {k (c12 ± X2)} − c3

] ,

V2 = c2 − 4c4A3[
4kc

1
2
4 tan {k (c12 ± X2)} − c3

] , (46)

where k = 1
4

√
(8ac

1
2
4 − c23

c4
) with c23 ≤ 8ac

3
2
4 .

Making use of Eqs. (5)–(6), (20) and (46), solution
of the KD equation can be obtained as

u = (y + a0)2 f̄1
9 a f1

+ 2b

a2

+ 4c4 f
− 1

3
1[

4kc
1
2
4 tan {k (c12 ± (X − A3Y ))} − c3

] , (47)

v = x f̄1
9a f1

+ (y + a0)2
¯̄f1

54a f1
− (y + a0)2 f̄1

2

54a f 21
+ 2b2

a3
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Fig. 1 Multisoliton wave
profiles of u, v via
Eqs. (13)–(14) at time
t = 1.6
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− 4c4 f
− 4

3
1 f̄1(y + a0)

9

[
4kc

1
2
4 tan {k (c12 ± (X − A3Y ))} − c3

] + c2

f
2
3
1

− 4c4A3 f − 2
3[

4kc
1
2
4 tan {k (c12 ± (X − A3Y ))} − c3

] . (48)

where c′
i s (5 ≤ i ≤ 12) are arbitrary constants of inte-

gration and X , Y can be read from Eq. (7).

4 Analysis and discussion

A variety of eleven group-invariant solutions of the KD
equation are followed by Eqs. (13)–(14), (15)–(16),
(17)–(18), (26)–(27), (29)–(30), (32)–(33), (35)–(36),
(38)–(39), (41)–(42), (44)–(45) and (47)–(48). Nature
of each result has been identified through their evolu-
tionary profiles. Consequently, dynamical behavior of
the results such as multisoliton, doubly solitons, peri-
odic multisoliton, multiple wavefront, parabolic, soli-
tons interactions and stationary wave has been found
by their graphical structures.

Solitons theory is very useful to explain the vari-
ous phenomena in nonlinear dynamics such as optical
switching in slab wave guides, optical bistability, prop-
agation of light in fibers, surface waves in nonlinear
dielectrics and many other phenomena in plasma and
fluid dynamics [33,34].

The surface plots of the results have been traced
between the spaces range − 5 ≤ x, y ≤ 5 with
particular choices of arbitrary function f1(t) such as

a4 exp(a5t+a6), (a7t+a8) and (a7t+a8)2. The values
of arbitrary constants have been taken randomly from
numerical simulations to trace physically meaningful
profile. The process has been followed by computa-
tional software MATLAB. The physical nature of the
results is analyzed in the following manner:

Figure 1: The solution of the KD equation rep-
resented by Eqs. (13)–(14) shows multisoliton wave
nature at time t = 1.6. The profiles have been traced
with the function f1(t) = a4 exp(a5t + a6), while
arbitrary constants recorded from MATLAB simula-
tions as: a = 0.8772, b = 0.7849, a0 = 0.4650, a1 =
0.8140, a2 = 0.8984, a3 = 0.4292, a4 = 0.3343,
a5 = 0.5966 and a6 = 0.9020. Furthermore, we have
observed through numerical simulations that multisoli-
ton wave nature of the solution turns into stationary
wave nature after time t = 4.7096.

Figure 2: The evolution profiles of Eqs. (15)–(16)
show multisoliton and doubly soliton wave nature.
These profiles have been traced at t = 0 with arbi-
trary function (a7t + a8)2. The values of constants
taken through numerical simulation as a7 = 0.7021,
a8 = 0.3775, c1 = 0.5777 and remaining kept same as
in Fig. 1.

Figure 3: The profiles of Eqs. (17)–(18) reveal mul-
tisoliton and doubly soliton nature. We have traced
the surface plots at time t = 0 for arbitrary function
f1(t) = (a7t + a8), while values of arbitrary constant
are taken the same as in previous profiles.

Figures 4 and5:The results representedbyEqs. (26)–
(27), (29)–(30) describe periodic multisoliton nature.
Figures are traced for c5 = 0.6987 and c6 = 0.1500,
while other values of constants are used from above
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Fig. 2 Multisoliton and
doubly solitons wave
profiles of u, v via
Eqs. (15)–(16) at time t = 0
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Fig. 3 Multisoliton and
doubly solitons wave
profiles of u, v via
Eqs. (17)–(18) at time t = 0
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Fig. 4 Periodic
multisoliton wave profiles
for Eqs. (26)–(27) treating
at time t = 0.1869
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Fig. 5 Periodic
multisoliton wave profiles
for Eqs. (29)–(30) at time
t = 0.88777
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Fig. 6 Multisoliton wave
profiles for Eqs. (32)–(33)
at time t = 0.0598
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Fig. 7 Multisoliton wave
profiles for Eqs. (35)–(36)
at time t = 0.4820
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profiles. Furthermore, we have used function f1(t) =
(a7t +a8)2 for Fig. 4 and f1(t) = (a7t +a8) for Fig. 5.

Figures 6, 7 and 8: The multisoliton wave profiles
of solutions followed by Eqs. (32)–(33), (35)–(36) and

(38)–(39) are shown in Figs. 6-8. The values of the
arbitrary constants are taken as c7 = 0.1386, c8 =
0.7482, c9 = 0.4453 while remaining constants kept
same as in previous profiles. We have used arbitrary
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Fig. 8 Multisoliton wave
profiles for Eqs. (38)–(39)
at time t = 0.8331
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Fig. 9 Parabolic wave
profiles for Eqs. (41)–(42)
at time t = 0
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Fig. 10 Multiple wavefront
profiles for Eqs. (44)–(45)
at time t = 0.9631
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function a4 exp(a5t +a6) in Figs. 6 and 7, while Fig. 8
is traced for the function (a7t + a8).

Figure 9: Expressions (41)–(42) show parabolic
nature at t = 0. The surface plots are traced by tak-
ing c10 = 0.3037 and function f1(t) = (a7t + a8)2 .
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Fig. 11 Multisoliton wave
interaction profiles of u, v

via Eqs. (47)–(48) at time
t = 0.3008
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The values of other constants are used from previous
figures.

Figure 10: The results given by expressions (44)–
(45) are described graphically in this figure. We have
presented the physical nature at t = 0.9631, which
show multiple wavefront nature. The profiles are plot-
ted by taking the values of constants A3 = 1.8966,
c2 = 4.0276, c11 = 0.5108 for the function (a7t+a8)2,
while other values of the constants kept the same as in
previous figures.

Figure 11: Interactions of solitons can be viewed in
this figure. The surfaces are traced for Eqs. (47)–(48)
for the function (a7t+a8) at t = 0.3008. The values of
constants are taken as a = 3.1980, c2 = 1.7120, c3 =
− 2.4149, c4 = 0.4053, c12 = 0.1048, k = 0.3445,
and remaining are the same as in previous profiles.

5 Conclusions

In this paper, we have obtained some group-invariant
solutions of Konopelchenko–Dubrovsky equation by
using Lie symmetry approach. Furthermore, we have
presented infinite-dimensional Lie algebra and com-
mutation relations for the equation. The solutions fol-
lowed by Eqs. (13)–(14), (15)–(16), (17)–(18), (26)–
(27), (29)–(30), (32)–(33), (35)–(36), (38)–(39), (41)–
(42), (44)–(45) and (47)–(48) are analyzed physi-
cally. Consequently, results show multisoliton, dou-
bly solitons periodic multisoliton, multiple wavefront,
parabolic, solitons interactions and stationary behavior
of the waves. The solutions obtained in this research
are more general and may have richer physical struc-

tures than previous findings [1–14]. These results may
provide a future research scope to validate the various
numerical scheme and their accuracy.
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