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Abstract This paper investigates the parameter and
state estimation problems for a class of fractional-order
nonlinear systems subject to the perturbation on the
observer gain. The fractional-order nonlinear systems
are linear in the unknown parameters and nonlinear
in the states. Based on the equivalent integer-order
differential equations, a fractional-order non-fragile
observer and two kinds of fractional-order adaptive law
are derived by applying the direct Lyapunov approach.
The results are systematically obtained in terms of lin-
ear matrix inequalities and solved by YALMIP Matlab
Toolbox. Two numerical examples with comparative
result of two proposed adaptive laws are provided to
illustrate the efficiency and validity of the proposed
method.

Keywords Adaptive law · Fractional-order nonlinear
systems · Linear matrix inequalities · Non-fragile
observer · Unknown parameter

1 Introduction

Fractional calculus has a long history over 300 years,
and it is a branch of mathematical analysis that deals
with the possibility of taking real number or com-
plex number powers of differentiation and integration
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operators. Fractional differential equations (FDEs),
which are based on the fractional-order derivative and
integration, outperform the ordinary differential equa-
tions (ODEs) owing to the ability of revealing inherit
memory and hereditary properties of various material
and processes in real physical world. Fractional-order
dynamic systems, i.e., dynamic systems described by
the FDEs, have attractedmore andmore attentions both
in the scientific and engineering community in recent
decades. Previous studies have demonstrated thatmany
physical systems, such as heat diffusion process [1],
viscoelastic systems [2], electrochemical systems [3],
possess thememory and hereditary properties, and thus
can be elegantly described with the FDEs.

Most recently, the tuning methods of fractional-
order P I λ Dμ controller have become one of the most
active fields in control engineering community [4–7].
The stabilization of first-order plus time delay systems
with fractional-order P I λ controller was studied in [6]
based on the frequency domain specifications and flat
phase constraint. A stochastic multi-parameters diver-
gencemethod for online auto-tuning of fractional-order
P I λ controller was investigated in [7], and its advan-
tage reflected in the robustness to the parameter fluc-
tuations and model uncertainties of real physical sys-
tems.However, the studiesmentioned above aremainly
investigated in the frequency domain, and can hardly
handle the nonlinearities, such as actuator saturation,
parameter uncertainties, and so on. For integer-order
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nonlinear systems, the stability and stabilization prob-
lems are mainly investigated in the time domain.

In the time domain synthesis fields, the stability
and stabilization problems of fractional-order state
space models also attract great attentions. The suffi-
cient and necessary conditions on the robust stability
of fractional-order linear time invariant interval sys-
tems were proposed in [8,9] for the 0 < α < 1 and
1 < α < 2 case, respectively. Inspired by the theo-
retical results of [8,9], robust stabilization strategies
of the fractional-order linear systems have been pro-
posed in [10–12]. However, the eigenvalues location
condition or the equivalent LMI conditions proposed
in above-mentioned literatures are not enough to guar-
antee the stability of the closed-loop systems if nonlin-
earities are considered in the fractional-order systems.
Motivited by the idea that the decay rate of fractional-
order systems do not obey the exponential law, the
Mittag–Leffler stability of fractional-order nonlinear
systems was proposed for the commensurate case [13]
and incommensurate case [14], respectively. The frac-
tional derivative of Lyapunov function with quadratic
form is an infinite series, which makes Mittag–Leffler
stability theory not effective for the controller syn-
thesis of fractional-order nonlinear systems. By the
equivalent transformation between FDEs and infinite
dimensional integer-order differential equations, the
direct Lyapunov approach was adopted to investigate
the stability of fractional-order nonlinear systems [15].
Based on the decay rate of Mittag–Leffler functions
and Gronwall–Bellman inequality, the global asymp-
totic stability and stabilization of fractional-order non-
linear systems for the 0 < α < 2 case were stud-
ied in [16,17]. Another idea to investigate the stabil-
ity of fractional-order systems is utilizing the integer-
order Lyapunov approach and designing fractional-
order sliding manifolds. Various sliding surfaces were
proposed to deal with the robust stability and stabiliza-
tion of fractional-order nonlinear systems according to
the sliding mode theory [18,19]. More recently, some
researchers demonstrated that the fractional-order non-
linear systems can be represented by the continuous
frequency distributed model by constructing an appro-
priate initial condition for infinite dimensional states
in [20], which is important for the selection of the
quadratic Lyapunov function for fractional-order non-
linear systems.

In engineering practices, the states of the considered
systems are not always easily obtained due to techni-

cal or economic limitations. Moreover, it was showed
that small perturbations on the controller coefficients
would degrade the performance of closed-loop systems
or fragile with respect to uncertainties [21]. Hence,
it is necessary to investigate the actual states estima-
tion strategy in such case. Currently, there are many
observers have been proposed for fractional-order sys-
tems. Based on the theoretical results for integer-order
systems, a Luenberger-like observer was proposed in
[22]. In [23], a fractional-order observers was proposed
for continuous-time fractional-order linear systemwith
unknown parameters. An adaptive parameter estima-
tion method for fractional-order linear systems was
proposed in [24]. Moreover, by using continuous fre-
quency distribution and indirect Lyapunov approach
method, a series of full order or reduced order observers
for a class of fractional-order nonlinear system were
proposed in [25,26]. In [27], a full order fractional-
order observer for Lipschitz nonlinear fractional-order
systems was designed by the method of linear matrix
inequalities. Despite so many woks have been dedi-
cated to the parameters or states estimation problems
of fractional-order systems, however, the investigation
of state estimation problem for fractional-order non-
linear system by the method of adaptive law is still an
open problem.

To the best of our knowledge, the stability analysis of
fractional-order nonlinear systems using the direct Lya-
punov approach is also an unsolved problem, and only
a few works were dedicated to this topic [28,29]. Here
we consider a class of fractional-order nonlinear sys-
tems which are linear in the unknown parameters and
nonlinear in the states. The nonlinearities are assumed
to be Lipschitz, and the perturbation on the observer
gain is bounded. Our objective is to propose a system-
atic approach to design the non-fragile fractional-order
observer and fractional-order adaptive law, which have
stable observation on the unknown parameters and the
errors between actual states and state estimations. The
physical significance and practical applications of the
present research can be summarized as follows:

1. To make full use of the advantage of the mem-
ory and inherit properties of fractional calculus and
then applied them to get a more accurate descrip-
tion of the states of real physical process.

2. Obtain a better dynamic performance for practical
processes and improve the reliability and availabil-
ity of physical systems.
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The rest of the paper is organized as follows: In
Sect. 2, some necessary preliminaries and the prob-
lem formulation are introduced. The proposed nonlin-
ear non-fragile observer and adaptive law are derived in
Sect. 3. Two numerical examples are given in Sect. 4 to
illustrate the effectiveness and validity of the proposed
methods. Finally, Sect. 5 draws the conclusion.

Notations Rn×m is the set of real n ×m dimensional
matrices, and R

n stands for the set of real n dimen-
sional vectors. The superscript T denotes the transpose
ofmatrix or vector. The symbol∗ in somematrices indi-
cates a symmetric structure. In , 0n×m denotes the n ×n
dimensional identitymatrix andn×m dimensional zero
matrix, respectively. The notation ‖·‖ denotes any con-
venient norm.

2 Preliminaries and problem formulation

2.1 Preliminaries

Definition 1 [30] The α-th (α > 0) order fractional
integral of an integrable and differentiable function
f (t) is defined as

I α f (t) = D−α f (t) = 1

Γ (α)

∫ t

0

f (τ )

(t − τ)1−α
dτ , (1)

where Γ (·) is the Gamma function.

Definition 2 [30] The α-th (α > 0) order Caputo
fractional derivative of an integrable and differentiable
function f (t) is introduced as

Dα f (t) = 1

Γ (m − α)

∫ t

0

f (m)(τ )

(t − τ)α+m−1 dτ , (2)

where m is an integer satisfying m − 1 < α < m.
f (m)(·) is the m-th derivative of function f (·).
Remark 1 Riemann–Liouville’s derivative definition
and Caputo’s derivative definition are two widely used
definitions of fractional calculus. In physical systems,
the Caputo definition of fractional calculus is more
practical and the Laplace transform of Caputo frac-
tional operators is much easier than that of Riemann–
Liouville fractional operators. Hence, the Caputo def-
inition is widely used in the stability analysis of
fractional-order systems. The investigation of initial
condition of fractional calculus is of great significance

in perfecting theory of fractional calculus, and some
important works are dedicated to this problem [31,32].
However, according to the memory character of frac-
tional calculus, the initial point should be t0 = −∞,
which is impracticable. For practical system, we can
only denote a finite time point t0 as the initial point
of the considered systems. Thus, we just need to guar-
antee that the history of the system in different tests
remains the same before t0 by themethod of stay still or
nondestructive preconditioning to reset the initial state
at t0. For this condition, the Caputo definition is still
valid for the stability analysis of fractional-order sys-
tems. Hence, the Caputo definition of fractional-order
systems is considered in this study.

Lemma 1 [33] Assume that f : R f →Rn is piecewise
continuous in t , where R f = {(t, x) : 0≤t≤a and ‖x−
x0‖ ≤ r}, f = [ f1, f2, . . . fn], x ∈ R

n, and let
‖ f (t, x)‖ ≤ Ψ on R f . Then, there exists at least one
solution for the system of FDE’s given by

{
Dαx(t) = f (t, x(t))
x(0) = x0

(3)

on 0 ≤ t ≤ β where β = min(a, (rΓ (α + 1)/Ψ )1/α),
0 < α < 1.

Lemma 2 [33] Consider the initial value problem by
Lemma 1 of fractional-order α, 0 < α < 1. Let

g(v, x∗(v))

= f (t − (tα − vΓ (α + 1))1/α,

x(t − (tα − vΓ (α + 1))1/α))

and assume that conditions of Lemma 1 hold. Then, a
solution of Lemma 1, x(t), is given by

x(t) = x∗(tα/Γ (α + 1)),

where x∗(v) is a solution of the integer-order differen-
tial equation

⎧⎨
⎩

dx∗(v)

dv
= g(v, x∗(v)).

x∗(0) = x0
(4)

Lemma 3 [9] Let x and y be real vectors of the same
dimension, we have

2xTy ≤ εxTx + (1/ε)yTy holds for any ε > 0.
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2.2 Problem formulation

Consider a fractional-order nonlinear system in the fol-
lowing form

⎧⎨
⎩

Dαx(t) = Ax(t) + Φ(x(t), u(t)) + b f (x(t), u(t))θ
y = Cx(t)
x(0) = x0 ,

(5)

where the fractional-order 0 < α < 1. x ∈ R
n ,

u ∈ R
q , y ∈ R

m and θ ∈ R p are the state, input,
output and parameter vector, respectively. A ∈ R

n×n ,
b ∈ R

n×m , C ∈ R
m×n are constant system matrices,

and Φ : [Rn,Rq ] → R
n , f : [Rn,Rq ] → R

m×p

are nonlinear functions which are Lipschitz in x with
Lipschitz constants γ1 and γ2, respectively, i.e.,

‖Φ(x1(t), u(t))−Φ(x2(t), u(t))‖ ≤ γ1‖x1(t)−x2(t)‖
(6)

and

‖ f (x1(t), u(t))− f (x2(t), u(t))‖ ≤ γ2‖x1(t)−x2(t)‖
(7)

for all x1(t),x2(t) ∈ R
n .

We assume that the unknown piecewise constant
parameter vector θ and the distance from nominal
parameter vector θ0 are both bounded

‖θ‖ ≤ γ3, (8)

‖θ − θ0‖ ≤ M. (9)

In this paper, we consider the non-fragile fractional-
order adaptive nonlinear observer of the form

⎧⎪⎪⎨
⎪⎪⎩

Dα x̂(t) = Ax̂(t) + Φ(x̂(t), u(t))
+ b f (x̂(t), u(t))θ̂ + (L + �(t))(y − ŷ(t))

ŷ = Cx̂(t)
x̂(0) = x̂0,

(10)

where x̂(t) and θ̂ are the estimated state and parameter
vector, respectively. L is the gain matrix of observer
and the term �(t) is the additive perturbation on the
gain matrix with the known bound

‖�(t)‖ ≤ γ4. (11)

Let

e(t) = x(t) − x̂(t) (12)

denote the observation error. The observation error
dynamic system is obtained as follows

{
Dαe(t) = F1(t, e(t), θ̂ (t))
e(0) = e0 = x0 − x̂0

, (13)

where

F1(t, e(t), θ̂ (t)) = [A − LC − �(t)C]e(t)
+ [Φ(x(t), u(t)) − Φ(x̂(t), u(t))]
+ [b f (x(t), u(t))θ(t)

− b f (x̂(t), u(t))θ̂(t)].

Remark 2 Consider the fractional differential equation

{
Dαx(t) = f (t, x(t))

x (k)(0) = x (k)
0 , k = 0, 1, . . . , m − 1

, (14)

whereα > 0,m is an integer satisfyingm−1 < α < m.
The fractional-order system can be reformulated as the
following equivalent Abel–Volterra equation

x(t) =
m−1∑
k=0

x (k)
0

tk

k!

+ 1

Γ (α)

∫ t

0
(t − τ)α−1 f (τ, x(τ ))dτ . (15)

For the 1 < α < 2 case, (15) implies that one
needs to specify the initial condition x (k)

0 in order to
obtain a unique solution of Abel–Volterra equation,
which complicates the investigated problem. The sta-
bility condition of fractional-order linear time invariant
systems for the 1 < α < 2 case is stricter than that for
the 0 < α < 1 case. Due to the fact that fractional-
order derivative of product function of polynomial
is an infinite series, the quadratic Lyapunov function
V (x) = xTPx , which is effective for integer-order
case, is invalid for fractional-order systems. Finding
a proper Lyapunov function candidate for fractional-
order nonlinear systems is still an open topic. The
method proposed in [33] provides an equivalent trans-
formation fromFDEs toODEs, and thus, exact analytic
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Robust adaptive fractional-order observer 419

solution can be obtained. It is worth pointing out that
the approach in [33] is only suitable for the 0 < α < 1
case. Hence, only the 0 < α < 1 case is investigated
in this paper.

3 Main results

This paper focuses on the design of the non-fragile
fractional-order nonlinear observer (10). A systematic
approach in terms of LMI and two fractional-order
adaptive laws are proposed in this section to calculate
unknown gain matrix L and to guarantee the nonlinear
observer (10) has a stable observation on the unknown
parameter vector θ and the actual states.

Theorem 1 If there exists a symmetric positive definite
matrix P ∈ R

n×n, together with three real scalars εi >

0, (i = 1, 2, 3), and a vector ST ∈ R
n×m, such that

⎡
⎢⎢⎣

Ω P P P
∗ −ε1 In 0n×n 0n×n

∗ ∗ −ε2 In 0n×n

∗ ∗ ∗ −ε3 In

⎤
⎥⎥⎦ < 0, (16)

bTP = C, (17)

where

Ω = (ATP + P A − CTS − STC)

+ ε1γ
2
1 In + ε2γ

2
4 CTC + ε3γ

2
2 γ 2

3 ‖b‖2 In
(18)

with γ1, γ2, γ3 ,and γ4 satisfying (6), (7), (8), and (11),
then the observer (10) with the gain matrix L =
(S P−1)T stabilizes the observation error dynamic sys-
tem (13) with the following parameter adaptive law

Dαθ̂(t) = f T(x̂(t), u(t))(y(t) − ŷ(t))

ρ
, (19)

where ρ > 0 is a freely chosen design parame-
ter. Moreover, the parameter adaptive law is conver-
gent, [b f (x(t), u(t))θ − b f (x̂(t), u(t))θ̂(t)] → 0 as
t → ∞.

Proof For any x1(t), x2(t) ∈ R
n , we have

‖Ax1(t) + Φ(x1(t), u(t)) + b f (x1(t), u(t))θ

− Ax2(t) − Φ(x2(t), u(t)) − b f (x2(t), u(t))θ‖
≤ (‖A‖ + γ1 + γ2γ3‖b‖)‖x1(t) − x2(t)‖. (20)

Inequality (20) implies that the fractional-order sys-
tem (5) is Lipschitz in x(t). Hence, the solution of
fractional-order system (5) exists and is unique if u(t)
is an absolutely continuous input. For the same reason,
we can easily conclude that the observer (10) also has
a unique solution.

F1(t, e(t), θ̂ (t)) is a continuous function mapping
from R1 = {(t, e) : 0≤t≤a and ‖e − e0‖ ≤ r}
to R

n . There exists a constant Ψ1 > 0 such that
‖F1(t, e(t), θ̂ (t))‖ ≤ Ψ1 on R

n .According toLemmas
1 and 2, on 0≤t≤β1, where β1 = min(a, ( r

Ψ1
Γ (α +

1))1/α), the unique solution of fractional-order error
dynamic system (13) is given by

e(t) = e∗(tα/Γ (α + 1)) (21)

and e∗(v) is the solution of the following integer-order
differential equation

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

de∗(v)

dv
= (A − LC − �(v)C)e∗(v)

+ (Φ(x∗(v), u∗(v)) − Φ(x̂∗(v), u∗(v)))

+ (b f (x∗(v), u∗(v))θ∗(v)

− b f (x̂∗(v), u∗(v))θ̂∗(v))

e∗(0) = e0 = x0 − x̂0
(22)

with

e∗(v) = e(t − (tα − vΓ (α + 1))1/α)

x∗(v) = x(t − (tα − vΓ (α + 1))1/α)

x̂∗(v) = x̂(t − (tα − vΓ (α + 1))1/α)

u∗(v) = u(t − (tα − vΓ (α + 1))1/α)

θ∗(v) = θ(t − (tα − vΓ (α + 1))1/α)

θ̂∗(v) = θ̂ (t − (tα − vΓ (α + 1))1/α)

�∗(v) = �(t − (tα − vΓ (α + 1))1/α).

Define the Lyapunov function candidate V (v) with
a quadratic formweighted by a symmetric positive def-
inite matrix P and a scalar constant ρ > 0

V (v) = eT∗ (v)Pe∗(v) + ρθ̃T∗ (v)θ̃∗(v), (23)

where θ̃∗(v) = θ∗(v) − θ̂∗(v) is the parameter estima-
tion error.

Taking the derivative of (23), it causes

dV (v)

dv
= deT∗ (v)

dv
Pe∗(v) + eT∗ (v)P

de∗(v)

dv
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+ 2ρθ̃T∗ (v)
˙̃
θ∗(v)

= eT∗ (v)
{
[A − LC − �∗(v)C]TP

+P[A − LC − �∗(v)C]} e∗(v)

+ 2[Φ(x∗(v), u∗(v))

− Φ(x̂∗(v), u∗(v))]TPe∗(v)

+ 2[b f (x∗(v), u∗(v))θ∗(v)

− b f (x̂∗(v), u∗(v))θ̂∗(v)]TPe∗(v)

+ 2ρθ̃T∗ (v)
˙̃
θ∗(v). (24)

Since Φ(x∗(v), u∗(v)) is Lipschitz, then applying
Lemma 3 to the second term of inequality (24) with
real constant scalar ε1 > 0, it yields

2[Φ(x∗(v), u∗(v)) − Φ(x̂∗(v), u∗(v))]TPe∗(v)

≤ ε1‖Φ(x∗(v), u∗(v)) − Φ(x̂∗(v), u∗(v))‖2
+ ε−1

1 eT∗ (v)P Pe∗(v)

≤ εγ 2
1 ‖x∗(v) − x̂∗(v)‖2 + ε−1

1 eT∗ (v)P Pe∗(v)

≤ εγ 2
1 ‖e∗(v)‖2 + ε−1

1 eT∗ (v)P Pe∗(v).

(25)

�	

Remark 3 Considering e∗(v) is a n − by − 1 matrix,
hence, the eigenvalue of eT∗ (v)∗ e∗(v) is a positive real
number. Thus

‖e∗(v)‖2 = eT∗ (v) ∗ e∗(v).

As a result, Eq. (24) can be reconstructed as

dV (v)

dv
≤ eT∗ (v)[(A − LC)TP + P(A − LC)]e∗(v)

+ 2[−�∗(v)Ce∗(v)]TPe∗(v)

+ eT∗ (v)(ε1γ
2
1 + ε−1

1 P P)e∗(v)

+ 2[b f (x∗(v), u∗(v))θ∗(v)

− b f (x̂∗(v), u∗(v))θ̂∗(v)]TPe∗(v)

+ 2ρθ̃T∗ (v)
˙̃
θ∗(v).

(26)

Substituting θ̃∗(v) = θ∗(v) − θ̂∗(v) into the fourth
term of inequality (26) results in

dV (v)

dv
≤ eT∗ (v)[(A − LC)TP + P(A − LC)]e∗(v)

+ 2[−�∗(v)Ce∗(v)]TPe∗(v)

+ eT∗ (v)(ε1γ
2
1 + ε−1

1 P P)e∗(v)

+ 2[b f (x∗(v), u∗(v))θ∗(v)

− b f (x̂∗(v), u∗(v))θ∗(v)]TPe∗(v)

+ 2[b f (x̂∗(v), u∗(v))θ̃∗(v)]TPe∗(v)

+ 2ρθ̃T∗ (v)
˙̃
θ∗(v).

(27)

Applying Lemma 3 on the second and the fourth
terms of inequality (27)with real constant scalar ε2 > 0
and ε3 > 0, respectively. Then, we can obtain

dV (v)

dv
≤ eT∗ (v)[(A − LC)TP + P(A − LC)]e∗(v)

+ eT∗ (v)(ε2CT�T∗ (v)�∗(v)C

+ ε−1
2 P P)e∗(v)

+ eT∗ (v)(ε1γ
2
1 + ε−1

1 P P)e∗(v)

+ ε3θ
T∗ (v)[ f (x∗(v), u∗(v))

− f (x̂∗(v), u∗(v))]TbT

× b( f (x∗(v), u∗(v))

− f (x̂∗(v), u∗(v)))θ∗(v)

+ ε−1
3 eT∗ (v)P Pe∗(v)

+ 2[b f (x̂∗(v), u∗(v))θ̃∗(v)]TPe∗(v)

+ 2ρθ̃T∗ (v)
˙̃
θ∗(v).

(28)

It is noted that ‖θ(t)‖ ≤ γ3 and ‖�(t)‖ ≤ γ4, which
implies that ‖θ∗(v)‖ ≤ γ3 and ‖�∗(v)‖ ≤ γ4.

According to the boundedness of �∗(v), θ∗(v), and
applying (7) to inequality (28), we can obtain

dV (v)

dv
≤ eT∗ (v)[Ω + ε−1

1 P P + ε−1
2 P P

+ ε−1
3 P P]e∗(v)

+ 2[b f (x̂∗(v), u∗(v))θ̃∗(v)]TPe∗(v)

+ 2ρθ̃T∗ (v)
˙̃
θ∗(v), (29)
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in which Ω satisfies (18) and S = LTP .
Now, we determine the adaptive law of estimated

parameter vector θ(t) from inequality (29) by setting

2[b f (x̂∗(v), u∗(v))θ̃∗(v)]TPe∗(v)

+ 2ρθ̃T∗ (v)
˙̃
θ∗(v) = 0. (30)

In order to satisfy Eq. (30) without knowing the real
value of θ̃∗(v), we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dθ̃∗(v)

dv
= − F2(v, e∗(v))

= − f T(x̂∗(v), u∗(v))bTPe∗(v)

ρ

θ̃∗(0) = θ̃0

. (31)

F2(v, e∗(v)) is a continuous function defined on
0≤v≤tα/Γ (α+1). Since f (x̂∗(v), u∗(v)) is Lipschitz
in x̂∗(v), f (x̂∗(v), u∗(v)) is bounded and there exists
a constant Ψ2 > 0, such that ‖ f (x̂∗(v), u∗(v))‖ < Ψ2.

According to Lemmas 1 and 2, on 0≤v≤β2, where
β2 = min( tα

Γ (α+1) , (
r
Ψ2

Γ (α + 1))(1/α)), the unique
solution of integer-order system (31) is equivalent to
the solution of the following fractional-order system

⎧⎨
⎩

Dαθ̃(t) = − f T(x̂(t), u(t))bTPe(t)

ρ
θ̃(0) = θ̃0

, (32)

where θ̃ (t) = θ − θ̂ (t). Note that θ is a piecewise
constant, then we have Dαθ = 0. Hence, we can
obtain that Dαθ̃(t) = − Dαθ̂(t). In spite that the actual
state x(t) cannot be measured, the restrictive condition
bTP = C guarantees that the adaptive law can be con-
structed through the measured output y(t) and ŷ(t).
Therefore, (32) yields the adaptive law (19) to estimate
the unknown parameter vector θ .

With the proposed adaptive law (19), inequality (29)
reduces to

dV (v)

dv
≤ eT∗ (v)[Ω + ε−1

1 P P + ε−1
2 P P

+ε−1
3 P P]e∗(v). (33)

According to the direct Lyapunov approach of
integer-order systems, the stability conditions of the
considered observation error dynamic system (13) are

V (v) > 0 and
dV (v)

dv
< 0. Equations (23) and (33)

imply that V (v) is positive and
dV (v)

dv
is negative if

(Ω + ε−1
1 P P + ε−1

2 P P + ε−1
3 P P) < 0. (34)

According to Schur complement, inequality (34) can
be transformed to LMI (16).

Let ζ be a positive scalar constant, inequality (34)
implies

(Ω + ε−1
1 P P + ε−1

2 P P + ε−1
3 P P) ≤ −ζ In, (35)

then, we have

dV (v)

dv
≤ −ζeT∗ (v)e∗(v). (36)

Integrating both side of (36), it follows that

V (v) ≤ V (0) − ζ

∫ v

0
eT∗ (v)e∗(v)dv. (37)

SinceV (v) ∈ L∞ andV (0) is finite, this implies that
e∗(v) ∈ L2. From the definition of Lyapunov function
candidate (23), it follows that e∗(v) ∈ L∞ and θ̃∗(v) ∈
L∞. Also, since both Φ(x(t), u(t)) and f (x(t), u(t))

are Lipschitz, (22) yields
de∗(v)

dv
∈ L∞. Thus, e∗(v) ∈

L∞, e∗(v) ∈ L2 and
de∗(v)

dv
∈ L∞. Therefore, by

Barbalat’s lemma [34], limv→∞ e∗(v) = 0.
Moreover,

∫ ∞

0

de∗(v)

dv
dv = lim

v→∞ e∗(v)− e∗(0) = −e∗(0). (38)

Remark 4 According to Eq. (38), it is not hard to find
that there must be v → ∞. From Lemma 1 and the
former analysis, one can obtain that the calculations
are limited on a finite interval t ∈ [0, β] with β =
min(a, (rΓ (α + 1)/Ψ )1/α), 0 < α < 1, which seems
like a contradiction. However, there is no limitation of
a and γ , which means these variables could be infinite.
We hypothesize that a and γ are fairly big numbers. As
a result, one can obtain that β → ∞. Thus, we can get
v → ∞.

According to (38) and Lipschitz continuity of Φ,
de∗(v)

dv
is uniformly continuous. Consequently, it can
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be concluded that limv→∞
de∗(v)

dv
= 0 by Barbalat’s

lemma [34].
Therefore, considering (22), we have

lim
v→∞(b f (x∗(v), u∗(v))θ∗(v)

−b f (x̂∗(v), u∗(v))θ̂∗(v)) = 0. (39)

Since limv→∞ x̂∗(v) = x∗(v), we then obtain

lim
v→∞ b f (x∗(v), u∗(v))(θ∗(v) − θ̂∗(v)) = 0. (40)

limv→∞ e∗(v) = 0 causes

lim
t→∞ e∗(tα/Γ (α + 1)) = lim

v→∞ e∗(v) = 0

since 0 ≤ v ≤ tα/Γ (α+1). (see the proof of Theorem
5 in [33]).

Therefore, according to the equivalent transforma-
tion from (31) to (32), we have [b f (x(t), u(t))θ −
b f (x̂(t),
u(t))θ̂(t)] → 0 as t → ∞. This ends the proof. �	
Remark 5 If the fractional-order α = 1 and �(t) = 0,
then the proposed stability condition (16), (17), and
the adaptive law (19) are the same as the integer-order
case [35]. The equality constraint bTP = C can be
eliminated to make the LMI (16) strict by finding a set
of matrices {Pi } to form a basis of matrix P such that
bTPC⊥ = 0, where C⊥ is the orthogonal complement
ofC . However, theYALMIPToolbox is an efficient tool
to deal with the LMIs with equality constraint and non-
convex optimization problems. Alternative method is
to adopt YALMIP Toolbox as parser and Matlab LMI
Toolbox as solver to solve the LMI (16) combined with
the restrictive condition (17).

Theorem 2 If there exists a symmetric positive defi-
nite matrix P ∈ R

n×n, together with three real scalars
εi > 0, (i = 1, 2, 3), and a vector ST ∈ R

n×m, such
that (16) and (17) hold. Then, the observer (10) with
the gain matrix L = (S P−1)T stabilizes the obser-
vation error dynamic system (13) with the following
parameter adaptive law

Dαθ̂(t) = F3(t, e(t), θ̂ (t))

= Q−1 f T(x̂(t), u(t))(y(t) − ŷ(t))

− σ Q−1(θ̂(t) − θ0), (41)

where the positive definite matrix Q ∈ R
p×p is an

arbitrary constant matrix. The design parameter σ is
selected as

σ =

⎧⎪⎪⎨
⎪⎪⎩

0, If ‖θ̂ (t) − θ0‖ < M

σ0(
‖θ̂ (t) − θ0‖

M
− 1), If M ≤ ‖θ̂ (t) − θ0‖ ≤ 2M

σ0, If ‖θ̂ (t) − θ0‖ > 2M

(42)

with positive constant scalars M and σ0. Moreover, the
parameter adaptive law is convergent, (b f (x(t), u(t))θ
− b f (x̂(t), u(t))θ̂) → 0 as t → ∞.

Proof According to the equivalent integer-order obser-
vation error dynamic system (22), we define the Lya-
punov candidatewith a quadratic formweighted by two
symmetric positive definite matrices P > 0, and Q >

0

V (v) = eT∗ (v)Pe∗(v) + θ̃T∗ (v)Qθ̃∗(v). (43)

Taking the derivative of (43) and dealing with the
terms with uncertainties similar to Proof of Theorem
1, we can obtain

dV (v)

dv
≤ eT∗ (v)[Ω + ε−1

1 P P + ε−1
2 P P

+ ε−1
3 P P]e∗(v)

+ 2[b f (x̂∗(v), u∗(v))θ̃∗(v)]TPe∗(v)

+ θ̃T∗ (v)Q ˙̃
θ∗(v). (44)

F3(t, e(t), θ̂ (t)) is a continuous function mapping
from R3 = {(t, e) : 0≤t≤a and ‖e − e0 ≤ r‖}
to R

p. There exists a constant Ψ3 > 0 such that
‖F3(t, e(t), θ̂ (t))‖ ≤ Ψ3 on Rp. According to Lem-
mas 1 and 2, on 0≤t≤β3, where β3 = min(a, ( r

Ψ3
Γ (α

+ 1))1/α), the unique solution of fractional-order sys-
tem (41) is given by

dθ̂∗(v)

dv
= Q−1 f T(x̂∗(v), u∗(v))bTPe∗(v)

− σ Q−1(θ̂∗(v) − θ0).

(45)

Since θ is a piecewise constant, thus,
dθ̂∗(v)

dv
=

−dθ̃∗(v)

dv
. Using this fact, and substituting (45) in (44)

yields

dV (v)

dv
= eT∗ (v)[Ω + ε−1

1 P P + ε−1
2 P P

+ ε−1
3 P P]e∗(v)

+ 2σ θ̃T∗ (v)(θ̂∗(v) − θ0).

(46)
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Considering theboundedness properties of unknown
parameter vector θ , it follows from (46) that

2σ θ̃T∗ (v)(θ̂∗(v) − θ0)

= 2σ(θ∗(v) − θ̂∗(v))T(θ̂∗(v) − θ0)

= 2σ(θ∗(v) − θ0)
T(θ̂∗(v) − θ0)

− 2σ(θ̂∗(v) − θ0)
T(θ̂∗(v) − θ0)

≤ 2σ‖θ̂∗(v) − θ0‖(M − ‖θ̂∗(v) − θ0‖)
= N0. (47)

For ‖θ̂∗(v)−θ0‖ < M , we have σ = 0 and N0 = 0.
For M ≤ ‖θ̂∗(v) − θ0‖ ≤ 2M , we have

N0 = − 2
σ0

M
‖θ̂∗(v) − θ0‖(M − ‖θ̂∗(v) − θ0‖)2 ≤ 0.

For ‖θ̂∗(v) − θ0‖ > 2M , we have N0 ≤ − 2σ0M
‖θ̂∗(v)− θ0‖ ≤ 0. Therefore, according to the selection
of σ , N0 is non-positive, which implies that

2σ θ̃T∗ (v)(θ̂∗(v) − θ0) ≤ 0. (48)

Substituting inequality (48) in (46) yields inequal-
ity (33). Similar to Proof of Theorem 1, we can con-
clude that the observation error dynamic system (13)
is asymptotically stable, and the proposed fractional-
order adaptive law (41) is convergent if (16) and (17)
hold. This ends the proof. �	
Remark 6 Different from (30) in Proof of Theorem 1,
the second term in the adaptive law (41) is added as
modificationwhich guarantee the derivative of the Lya-
punov function candidate remains negative. In Sect. 4,
both numerical examples show the proposed adaptive
law (41) provides better estimation performance than
adaptive law (19).

Moreover, according to (40), the convergence
limv→∞ x̂∗(v) = x∗(v) guarantees limv→∞ b f (x∗(v),

u∗(v))θ̃∗(v) = 0. Therefore, with the proposed adap-
tive law (19) and (41), the estimated parameter θ̂ (t)
converges to the true value of unknown parameter θ , if
the following persistent excitation condition holds

ς1 In ≤
∫ t0+δ

t0
b f (x, u) f T(x, u)bTdt ≤ ς2 In,∀t0,

(49)

where ς1, ς2, δ > 0.

4 Numerical example

4.1 Example A

In this section, we consider the following fractional-
order nonlinear system with an absolutely continuous
input as u(t) = 3 cos(t) to illustrate the effectiveness
of the developed methods

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D0.9x(t) =
⎡
⎣−4 5 1

−5 −3.5 −5
−1 5 −5

⎤
⎦ x(t)

+
⎡
⎣u + 0.5 cos(x1)

2u
u

⎤
⎦ +

⎡
⎣1
0
0

⎤
⎦ (1.5 cos(x3))θ

y(t) = [
1 0 0

]
x(t)

. (50)

The true value of unknown parameter θ = 2. More-
over, an additive perturbation on observer gain L from

time t = 5s as �(t) = [
sin(5t) cos(5t) 2 cos(t)

]T
is

also considered. It is easy to compute that parameters
can be chosen as γ1 = 0.5, γ2 = 1.5, γ3 = 2, and
‖�(t)‖ ≤ γ4 = 2.5 is considered as an additive uncer-
tainty in the output feedback channel.

Using YALMIP Toolbox as parser [36] and Matlab
LMI Toolbox as solver, a feasible solution of inequality
(16) with equality constrain (17) can be obtained as
follows

P =
⎡
⎣1 0 0
0 0.7196 −0.1146
0 −0.1146 0.7238

⎤
⎦ ,

S = [
5.1426 7.9161 0.0012

]
,

ε1 = 2.6321, ε2 = 1.2870, ε3 = 0.2713.

Hence, the observer gain is obtained as L =
(S P−1)T = [

5.1426 11.2857 1.7885
]T
. Then, we can

use the obtained gain L to design the followingobserver

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D0.9 x̂(t) =
⎡
⎣−4 5 1

−5 −3.5 −5
−1 5 −5

⎤
⎦ x̂(t)

+
⎡
⎣u + 0.5 cos(x̂1)

2u
u

⎤
⎦ +

⎡
⎣1
0
0

⎤
⎦ (1.5 cos(x̂3))θ̂

+ (L + �(t))(y(t) − ŷ(t))

ŷ(t) = [
1 0 0

]
x̂(t)

. (51)

According toTheorems1 and2, two fractional-order
adaptive laws can be obtained as follows
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Fig. 1 Actual and estimated values of the state variables

Dαθ̂(t) = 1.5 cos(x̂3(t))(y(t) − ŷ(t))/ρ (52)

and

Dαθ̂(t) = Q−11.5 cos(x̂3(t))(y(t) − ŷ(t))

− σ Q−1(θ̂(t) − θ0) (53)

with σ satisfying (42), in which the design parameters
are selected as ρ = Q = 0.05, θ0 = 1, σ0 = 5, M=1.

The initial condition of the fractional-order system

(50) and observer (51) are chosen as x0 = [−3 3 −2
]T

and x̂0 = [
0 0 0

]T
, and the initial parameter estima-

tion is θ̂ (0) = 0.5. Assume that the value of unknown
parameter θ abruptly changes to θ = 1 from t = 10 s.

In Fig. 1, the solid lines and dash lines represent the
actual states and estimated states, respectively. Figure 1
shows that the proposed observer works well and the
state variables of observer (51) are convergent to the
state variables of system (50). The observation errors
are illustrated in Fig. 2, which shows that the observa-
tion error dynamic system is asymptotically stable and
the observation errors are convergent to zeros. In Figs. 3
and 4, the value of the estimated parameter θ̂ (t) con-
verges to the actual values despite the abrupt changes
on unknown parameter θ at t = 10s, which shows
that the proposed two fractional-order adaptive laws
are effective and validate. The dashed lines in Figs. 3
and 4 illustrate that the adaptive law (53) provides bet-
ter estimated performance on the unknown parameter
θ than the adaptive law (52) with smaller estimation
error and faster estimation time.

Fig. 2 Observation errors on the actual states

Fig. 3 Estimation on the unknown parameter θ with t ∈ [0, 5]

Fig. 4 Estimation on the unknown parameter θ with t ∈ [10, 20]
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4.2 Example B

In this section, we consider the following fractional-
order nonlinear system with 2 unknown parameters to
illustrate the effectiveness of the developed methods

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D0.95x(t) =
[
0 1

−5 −6

]
x(t) +

[
0

−0.3 sin(x2) + 4u

]

+
[
1
0.5

] [
1.2 cos(x1) + u sin(x2)

] [
θ1
θ2

]

y(t) = [
1 0

]
x(t).

(54)

The absolutely continuous input is selected as
u(t) = sin(0.5t)

2 and the unknown parameter θ =[
θ1
θ2

]
=

[
2
1

]
. Denote the additive perturbation on

observer gain L from time t = 5s is �(t) =
[sin(5t) 2 cos(t)]. The design parameters are chosen
as γ1 = 0.3, γ2 = 1.2, γ3 = 1.1180, γ4 = 1.38.

Using YALMIP Toolbox as parser and Matlab LMI
Toolbox as solver, a feasible solution of inequality (16)
is obtained as following under the equality constrain
bTP = C ,

P =
[

1.2008 − 0.4016
− 0.4016 0.8033

]
, S

= [8.7299 − 0.6222],
ε1 = 33.5594, ε2 = 2.5533, ε3 = 5.7479.

Thus, the observer gain is obtained as L = (S P−1)T

= [8.4188 3.4348]T.
According to Theorems 1 and 2, we can use the

obtained gain L to design the nonlinear observer in the
form of Eq. (10) with the following fractional-order
adaption law

Dαθ̂(t) =
[
1.2 cos(x̂1)
sin(x̂2)

]
(y(t) − ŷ(t))/ρ (55)

and

Dαθ̂(t) = Q−1
[
1.2 cos(x̂1)
sin(x̂2)

]
(y(t) − ŷ(t))

−σ Q−1(θ̂(t) − θ0), (56)

where σ is satisfied constrain (42). The design parame-
ters are selected as ρ = Q = 0.05; θ0 = [θ10 θ20]T =
[1 0.5]T, σ0 = 8, M = 1.2207.

The initial conditions of the fractional-order system
(54) are chosen as x0 = [−3 3]T and x̂0 = [0 0]T.

Fig. 5 Actual and estimated values of the state variables

Fig. 6 Estimation on the unknown parameters θ1 and θ2

The initial parameter estimation is θ̂0 = [ ˆθ10 ˆθ20]T =
[1.2 0.3]T. Assume that the value of unknown param-
eter θ abruptly changes to θ = [θ1 θ2]T = [1 1.5]T
from t = 10s.

In Fig. 5, the solid lines represent the actual states
and the dash lines stand for the estimated states. Fig-
ure 5 illustrates the satisfactory state tracing perfor-
mance of the proposed method. Figure 6 shows the
estimated parameters θ1 and θ2 utilizing the different
methods (55) and (56), respectively. From t = 10s,
the value of unknown parameters θ1, θ2 changed from
[θ1 θ2] = [2 1]T to [θ1 θ2] = [1 1.5]T. The values
of the estimated parameters θ̂1 and θ̂2 converge to the
actual values despite the abrupt changes, which also
show the effectiveness of the proposed method.
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5 Conclusion

In this paper, we have investigated the fractional-
order adaptive observer design problem for a class
of fractional-order Lipschitz nonlinear systems con-
taining unknown parameters. According to the solu-
tion equivalent property between the fractional differ-
ential equations and ordinary differential equations,
the integer-order Lyapunov approach was adopted to
study the asymptotical stability of fractional-order non-
linear systems. The sufficient conditions in terms of
LMI to guarantee the convergence property of the error
dynamic systems were then presented. The adaptive
states observer along with two types of adaptive law
was proposed to estimate the actual states and unknown
parameters simultaneously. Two numerical examples
finally illustrated the effectiveness of the proposed
approach. Our future research includes the fractional
order-dependent sufficient conditions on the asymp-
totic stability and fractional-order 1 < α < 2 case.
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