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Abstract This paper presents an adaptive dynamic
surface neural network control for a class of nonstrict-
feedback uncertain nonlinear systems subjected to
input saturation, dead zone and output constraint. The
problem of input saturation is solved by designing
an anti-windup compensator, and the issue of output
constraint is addressed by introducing tan-type Bar-
rier Lyapunov function. Furthermore, based on adap-
tive backstepping technique, a series of novel stabi-
lizing functions are derived. First-order sliding mode
differentiator is introduced into backstepping design to
obtain the first-order derivative of virtual control. The
real control input is obtained using dead-zone inverse
method. It is proved that the proposed control scheme
can achieve finite time convergence of the output track-
ing error into a small neighbor of the origin and guaran-
tee all the closed-loop signals are bounded. Simulation
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results demonstrate the effectiveness of the proposed
control scheme.
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1 Introduction

Recently, the control problem of uncertain nonlin-
ear system has received great attention since many
practical systems possess uncertain and nonlinear
characteristics. Since many types of neural networks
have been proved to have excellent function approx-
imation ability, such as, radial basis function neu-
ral network(RBFNN)[1], self-recurrent wavelet neu-
ral network [2], recurrent wavelet Elman neural net-
work [3], a series of neural network-based control
schemes have been proposed to tackle system uncer-
tainty. In [4], an adaptive neural network tracking con-
trol scheme was presented for remotely operated vehi-
cles with unknown dynamic model. In [5], an event-
triggered controller using sampled-data neural network
was presented for a class of continuous-time nonlin-
ear systems. In [6], an adaptive projection neural net-
work was designed to control redundant manipulators
with unknown parameters. In [7], a neural network
proportional-derivative control strategy was developed
for a teleoperation system. In [8], an adaptive neural
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network backstepping control method was proposed
for nonlower triangular nonlinear systemswith unmod-
eled dynamics. Among these control schemes, adap-
tive neural network control via backstepping design is
particularly attractive and intensive efforts have been
devoted to adaptive neural network control via back-
stepping design. In [9], neural network control was
combinedwith backsteppingmethod to develop a com-
posite controller for a class of strict-feedback uncer-
tain nonlinear systems. In [10], an adaptive neural net-
work control was proposed for uncertain multi-input–
multi-output (MIMO) nonlinear systems with block-
triangular form. In [11], an observer-based adaptive
neural network control was presented for single-input
single-output (SISO) stochastic nonlinear systemswith
unknown time delay. In [12], robust stabilization of
nonaffine pure-feedback uncertain nonlinear systems
was investigated via adaptive neural network control.
In [13], an adaptive neural network backstepping track-
ing control was designed for an n-link robotic manip-
ulator. In [14], an adaptive backstepping wavelet neu-
ral network control was developed for induction motor
(IM) drive. In [15], adaptive backstepping-based neu-
ral network output feedback control was proposed for
uncertain switched stochastic nonlinear systems.

Though adaptive neural network control via back-
stepping design has become one of the most popular
methods to address the control problem of uncertain
nonlinear system, an obvious deficiency of traditional
backstepping design is the problem of “explosion of
complexity” caused by repeated differentiation of vir-
tual control. In particular, when RBFNN is utilized
to approximate system uncertainties, we need to take
derivative of these radial basis functions, which fur-
ther increases computation burden. To overcome the
“explosion of complexity”, adaptive dynamic surface
neural network control was presented [16], where first-
order filter was introduced to obtain the derivative of
virtual control at each step of conventional backstep-
ping. In [17], an adaptive dynamic surface neural net-
work control was developed to achieve fault-tolerant
tracking for a class of uncertain nonlinear systems. In
[18], dynamic surface control was incorporated into
adaptive neural network control to develop a control
strategy for a class of uncertain nonlinear systems with
pure-feedback form. In [19], an adaptive dynamic sur-
face neural network control with output feedback form
was presented for a class of stochastic nonlinear sys-
tems. Adaptive dynamic surface neural network con-

trol has been applied into many practical systems, such
as, underactuated autonomous surface vehicles [20],
hypersonic flight vehicles [21–23], flexible joint robots
[2], power system [24] and permanent magnet syn-
chronous motor [25]. However, these results fail to
consider output constraints and input nonlinearities. In
fact, output constraints and input nonlinearities exist in
various practical applications.

Output constraint can be found in many practical
systems due to physical barrier in the surroundings,
safety requirement and system performance specifi-
cation. If output constraint is ignored in the control
design, system performance will be degraded and sys-
tem damage may occur. Therefore, output constraint
plays a very important role in control design. For con-
strained linear system, reference governor method [26]
and convex optimization approach [27] were presented
to address output constraint problem. However, these
approaches rely on computationally intensive algo-
rithms. To prevent output constraint violation, system
transformation techniques were proposed in [28,29]
to transform the constrained system into an equiv-
alent unconstrained system. Recently, Barrier Lya-
punov function-based design has received great atten-
tion since Barrier Lyapunov function tends to infin-
ity when the output approaches some constraints. In
[30,31], a logarithm-type Barrier Lyapunov function
was presented to handle the issue of output constraint.
In [32], a tan-type Barrier Lyapunov function was pro-
posed to avoid output constraint violation. In [33], a
cot-type Barrier Lyapunov function was incorporated
into Lyapunov function design to deal with constrained
state. In [34], an integral Barrier Lyapunov function
was designed to prevent the violation of boundary out-
put constraint. In [35,36], an asymmetric time-varying
Barrier Lyapunov function was constructed to ensure
time-varying output constraint satisfaction. In [37],
a time-varying Barrier Lyapunov function was pro-
posed to tackle time-varying output constraint. How-
ever, these results fail to consider input nonlinearities.
Due to physical constraints in actuator, input nonlin-
earities can be found in many control systems.

Dead zone and input saturation are common input
nonlinearities, which may degrade system perfor-
mance, reduce control accuracy and even lead to system
instability. The existence of dead zone keeps the output
of an actuator at zero until the control input exceeds
a certain value and the existence of input saturation
forces the actuator to give constant output if the control
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input exceeds a certain value. Therefore, the existence
of dead zone and input saturation severely affects the
function of control input and makes the control prob-
lems complicated and challenging. In order to deal with
dead zone, several studies [38–43] modeled the dead
zone as a disturbance term and compensated it using
disturbance observer or adaptive approach. In [44,45],
dead-zone inverse method was adopted to tackle dead-
zone problem. In [46,47], neural network and fuzzy
logic approximation were employed to compensate the
dead zone. To handle the issue of input saturation, some
results [48–50] introduced auxiliary systemandused its
state to develop a constrained control. In [51–53], input
saturation was approximated by smooth functions and
the approximation error was treated as a disturbance-
like term in their control design. In [54], an adaptive
scheme was developed to tackle input saturation and
achieve output consensus ofmultiple nonlinear systems
subjected to input saturation. In [55], an anti-windup
compensator was employed to solve the problem of
input saturation. It should be emphasized that the afore-
mentioned control schemes are designed only for the
systems that have strict-feedback form or can be trans-
formed into strict-feedback structure, which prohibits
broad applications of these methods.

From a mathematical viewpoint, nonstrict-feedback
system with the whole system state in each subsystem
function is a more general system form. Many practi-
cal systems, such as stirred tank reactor process system
[56], mass and spring damper system [57], Brussela-
tor [58], electromechanical system [59], have nonstrict-
feedback structure. To control nonstrict-feedback sys-
tem, virtual control should contain the whole sys-
tem state to deal with the nonlinear function in each
subsystem, which will result in algebraic loop prob-
lem. This makes the controller design very difficult
and challenging. By utilizing monotonous increasing
function, variable separation method was developed in
[59–62] to design adaptive fuzzy or neural network
control for nonstrict-feedback system. However, the
above results require that the nonlinear function sat-
isfy the monotonously increasing property. In [63],
adaptive neural network tracking problem was consid-
ered for nonstrict-feedback switched nonlinear system.
In [64], adaptive neural network stabilization problem
was investigated for nonlinear system with nonstrict-
feedback form. However, these results cannot deal
with output constraint and input saturation simultane-
ously. To the best of our knowledge, there is no studies

about nonstrict-feedback nonlinear systems subjected
to input saturation, dead zone and output constraint.

Motivated by aforementioned discussion, an adap-
tive neural network dynamic surface control is pro-
posed for a class of nonstrict-feedback systems sub-
jected to input saturation, dead zone and output con-
straint. Tan-type Lyapunov function is incorporated
into Lyapunov function design to ensure output con-
straint satisfaction and an anti-windup compensator
is introduced to deal with input saturation. Based on
backstepping method, a series of novel stabilizing vir-
tual control functions are derived. First-order sliding
mode differentiator is presented to obtain the first-order
derivative of virtual control andovercome the explosion
of complexity problem. Dead-zone inverse approach is
adopted to obtain the control input. With the aid of
finite time stability theory, the finite time convergence
of the output tracking error into a small set around the
origin is proved. The main contributions of this paper
can be summarized as follows: (1) Based on adaptive
neural network dynamic surface control, input satura-
tion, dead zone and output constraint are considered
into controller design to address tracking problem for
uncertain nonstrict-feedback nonlinear system. To the
best of our knowledge, this is the first time to report
results about adaptive tracking control for nonstrict-
feedback nonlinear system subjected to input satura-
tion, dead zone and output constraint. (2) The proposed
control scheme not only overcomes the difficulty of
applying backstepping control into nonstrict-feedback
system, but also removes the restrictive assumption that
the nonlinear function should be monotonous increas-
ing. (3) The finite time tracking problem for uncertain
nonstrict-feedback nonlinear system is studied using a
series of novel virtual control functions. (4) Different
from conventional dynamic surface control, first-order
sliding mode differentiator is combined with backstep-
ping design to overcome the explosion of complexity
problem, which has finite time convergence property
and satisfies separation principle, thereby having supe-
rior performance.

2 Preliminary

2.1 Problem formulation

Consider the followinguncertain nonlinear systemwith
nonstrict-feedback form:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋi = fi (x) + gi (x̄i )xi+1

. . .

ẋn = fn(x) + gn(x̄n)u

y = x1

(1)

where x̄i = [x1, . . . , xi ]T, x ∈ Rn denotes state vari-
ables. System output y ∈ R is constrained in open set
|y| < kc with kc being a positive real number denot-
ing output constraint, fi (x) and gi (x̄i ) are unknown
smooth nonlinear functions. u ∈ R is control input
subjected to dead zone and input saturation, which can
be described as follows:

u =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

umax if v > vmax

mr (v − br ) if br < v ≤ vmax

0 if bl ≤ v ≤ br

ml(v − bl) if vmin ≤ v < bl

umin if v < vmin

(2)

where v is the desired control input, ml and mr are
general slopes of dead-zone input, bl and br are left and
right breakpoints of dead-zone input, umax and umin are
the upper and lower bound of u(t). Control input (2)
can be rewritten as follows:

u = sat (ud) =

⎧
⎪⎨

⎪⎩

umax, if v > vmax

ud , if vmin ≤ v ≤ vmax

umin, if v < vmin

where

ud = KT(t)Φ(t)v(t) + �

K (t) = [Kr (v(t)), Kl(v(t))]T

Kr (v(t)) =
{
mr , if v ≥ bl

0, else

Kl(v(t)) =
{
ml , if v ≤ br

0, else

Φ(t) = [ϕr (t), ϕl(t)]T

ϕr (t) =
{
1, if v ≥ bl

0, else

ϕl(t) =
{
0, if v > br

1, else

� =

⎧
⎪⎨

⎪⎩

− mlbl , if v < bl

− (ml + mr )v, if bl ≤ v ≤ br

− mrbr , if v > br

The error between u and ud is defined as �u =
u − ud .

Remark 1 In system (1), if fi (x) = fi (x̄i ) with x̄i =
[x1, . . . , xi ]T, the system (1) becomes strict-feedback
nonlinear system. If fi (x) = fi (x̄i , 0) and gi (x) =
∂ fi (x̄i , x0i+1)/∂xi+1 with x0i+1 being a number between
0 and xi+1, the system (1) becomes pure-feedback non-
linear system. Therefore, nonstrict-feedback nonlinear
system is a general system form which includes strict-
feedback nonlinear system and pure-feedback nonlin-
ear system as its special form [65]. Nonstrict-feedback
system can be used to describe many practical systems,
such as, stirred tank reactor process system [56], mass
and spring damper system [57], Brusselator [58], elec-
tromechanical system [59]. Therefore, it is necessary to
study control problem for nonstrict-feedback nonlinear
system with constraints.

Remark 2 For strict-feedback nonlinear system and
pure-feedback nonlinear system, the existing adaptive
backstepping control schemes view xi+1 as a control
input for the first i-th subsystem and a virtual control
input αi is designed to stabilize the first i-th subsys-
tem. To ensure the existence and the uniqueness of
the virtual control, αi should be a function of partial
state x j , j ≤ i . Otherwise, algebraic loop problem
will occur. However, the nonlinear function fi (x) in
nonstrict-feedback system contains state x j , j > i .
Therefore, the existing adaptive backstepping control
schemes for strict-feedback system and pure-feedback
system cannot be applied to nonstrict-feedback system.
In addition, as shown in [62], it is difficult to tackle
the function of xi descended from previous step to the
current design step. Therefore, controlling nonstrict-
feedback nonlinear system with constraints is a very
difficult and challenging problem.

The studied problem can be formulated as designing
an adaptive backstepping control scheme for nonstrict-
feedback system (1) such that the system output y can
track the reference output yr within finite time while
output constraint is not violated and all the closed-
loop signals remain bounded. To this end, the following
assumptions are imposed on control parameters, con-
trol gain and reference output signal.
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Assumption 1 The upper and lower bound of the
dead-zone slopes and break points are known: 0 <

m ≤ ml ≤ m̄, 0 < m ≤ mr ≤ m̄, 0 < b ≤ |bl | ≤ b̄,
0 < b ≤ br ≤ b̄.

Assumption 2 The signs of gi (x̄i ) are knownand there
exist positive constants g

i
and ḡn ≥ g

n
such that g

i
≤

|gi (x̄i )| and g
n

≤ |gn(x̄i )| ≤ ḡn .

Assumption 3 There exist positive constants Bi such
that the reference output signal yr satisfies |y(i)

r | ≤ Bi .

Remark 3 According to Assumption 1, there exist pos-
itive constants m0 and �̄ such that KT(t)Φ(t) ≥ m0,
� ≤ �̄.

2.2 Neural network approximation

As we all know, RBFNN can approximate any contin-
uous unknown nonlinear function due to its excellent
approximation capability. Here, RBFNN is utilized to
approximate a continuous unknown nonlinear function
h(Z) as follows:

h(Z) = WTS(Z) (3)

where Z ∈ Ωz ⊂ Rq is RBFNN input vector,
W = [W1, . . . ,Wl ]T ∈ Rl is RBFNN weight vec-
tor, l denotes the number of neurons in hidden layer,
S(Z) = [S1(Z), . . . , Sl(Z)]T is radial basis function
vector with Si (Z) = exp(−(Z −ci )T(Z −ci )/b2i )(i =
1, . . . , l), where ci = [ci1, . . . , ciq ]T and bi represent
the center and the width of radial basis function. The
ideal weight vector W ∗ is selected as the value of W
that minimizes the approximation error.

W ∗ = arg min
W∈Rl

{

sup
Z∈ΩZ

|h(Z) − WTS(Z)|
}

(4)

Using optimal weight vector W ∗, the continuous
unknownnonlinear function h(Z) can be approximated
as follows:

h(Z) = W ∗T S(Z) + ε (5)

where ε is approximation error which is bounded, i.e.,
‖ε‖ ≤ ε̄ with ε̄ being an unknown positive constant.

2.3 Mathematical lemmas

In this section, some useful Lemmas that play an impor-
tant role in controller design are introduced.

Lemma 1 [66] For any positive constant γ and any
variable z ∈ R, the following inequality holds:

0 ≤ |z| − z2
√
z2 + γ 2

< γ (6)

Lemma 2 [67] For any a ∈ R+, b ∈ R+ and p ∈
R+, q ∈ R+ satisfying 1/p + 1/q = 1, the following
inequality holds:

ab ≤ a p

p
+ bq

q
(7)

Lemma 3 [68] For xi ∈ R and 0 < b < 1, we have:

(
n∑

i=1

|xi |
)b

≤
n∑

i=1

|xi |b (8)

Lemma 4 [68] For any real numbers x1, . . . , xn and
0 < p < 1, one has:

n∑

i=1

|xi |1+p ≤
(

n∑

i=1

|xi |2
)(1+p)/2

(9)

Lemma 5 [69] For any positive real numbers α, β and
0 < γ < 1, if a Lyapunov function V satisfies V̇+αV+
βV γ ≤ 0, then the Lyapunov function V can converge

to zero within finite time T0 ≤ 1
α(1−γ )

ln αV 1−γ (x0)+β
β

.

Lemma 6 [70] For any ε > 0 and x ∈ R, the inequal-
ity |x | − x tanh(x/ε) ≤ �ε holds, where � = 0.2785.

3 Main results

In this section, a systematic design and stability analy-
sis procedure for the proposed control scheme will be
given.

Step 1Define the error variables as z1 = x1− yr and
the dynamics of the error variables can be expressed as
follows:

ż1 = ẋ1 − ẏr = g1(x1)x2 + f1(x) − ẏr (10)
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Since the nonlinear function f1(x) is unknown,
RBFNN is used to approximate it.

f1(x) = W ∗T
1 S1(x) + ε1 (11)

whereW ∗
1 = blockdiag[W ∗T

1k ](k = 1, . . . ,m) is ideal
weight vector, S1(x) is radial basis function vector and
ε1 is approximation error. The approximation error is
bounded, i.e., |ε1| ≤ ε̄1.

Substituting (11) into (10), one has:

ż1 = g1(x1)x2 + W ∗T
1 S1(x) + ε1 − ẏr (12)

For notational simplicity, set Mz1 = z1/ cos2(
π z21
2k2b

)

and the updating law for neural network weight is
designed as follows:

˙̂W1 = Γ1(Mz1 S1(x) − σ1Ŵ1) (13)

where Γ1 and σ1 are positive real numbers.
The adaptation law for the upper bound of approxi-

mation error ε̄1 is chosen as follows:

˙̂ε1 = Λ1

⎛

⎝
M2

z1√

M2
z1 + γ 2

1

− κ1ε̂1

⎞

⎠ (14)

where Λ1, γ1 and κ1 are positive real numbers.
To facilitate virtual control design, define an auxil-

iary function as follows:

ᾱ1 = k1
k2b
π

sin

(
π z21
2k2b

)

cos

(
π z21
2k2b

)

z1

+ η1

(
k2b
π

) 3
4 cos2

(
π z21
2k2b

)

A

z1

+ ε̂1
Mz1√

M2
z1 + γ 2

1

− ẏr + ŴT
1 S1(x)

(15)

where k1 and η1 are positive real numbers and A can
be designed as follows:

A =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

tan3/4
(

π z21
2k2b

)

, if |z1| ≥ υ

tan− 1
4

(
πυ2

2k2b

)

tan

(
π z21
2k2b

)

, else

(16)

where kb = kc − B0, υ is a positive real number.
With the aid of auxiliary function (15), the virtual

control can be designed as follows:

α1 = − 1

g
1

Mz1 ᾱ
2
1√

M2
z1 ᾱ

2
1 + γ 2

1

(17)

Remark 4 The design of (16) is to ensure

lim
z1→0

cos2(
π z21
2k2b

)A

z1
= 0. In addition, using L’Hospital’s

rule, we have lim
z1→0

1
z1

sin(
π z21
2k2b

) cos(
π z21
2k2b

) = 0. There-

fore, (15) does not contain singularity term. Besides, it
is worth noting that (16) is continuous, thereby avoid-
ing chattering problem.

From system output constraint and reference output
constraint, we have |z1| < kb with kb+B0 = kc. Select
the Barrier Lyapunov function (BLF) as follows:

Vb = k2b
π

tan

(
π z21
2k2b

)

(18)

Remark 5 Tan-type Barrier Lyapunov function has the
following properties:

(1) When z1 approaches kb, Vb grows to infinity.

(2) limkb→∞
k2b
π
tan(

π z21
2k2b

) = 1
2 z

2
1

The first property means that tan-type Lyapunov
function is a good Barrier Lyapunov function candi-
date. The second property shows that when there is no
constraint, the tan-type Lyapunov function degrades to
the commonly used quadratic form.Therefore, tan-type
Lyapunov function can deal with both constrained sys-
tems and unconstrained systems.

Take BLF (18) into account and the Lyapunov func-
tion in the first step can be constructed as follows:

V1 = Vb + 1

2Λ1
ε̃21 + 1

2Γ1
W̃T

1 W̃1 (19)

where ε̃1 = ε̄1 − ε̂1, W̃1 = W ∗
1 − Ŵ1.
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Define the error variable z2 = x2 − α1 and the time
derivative of V1 along (12–14) is:

V̇1 = Mz1 ż1 − 1

Λ1
ε̃1 ˙̂ε1 − 1

Γ1
W̃T

1
˙̂W1

= Mz1

(
g1(x1) (z2 + α1) + W ∗T

1 S1(x) + ε1 − ẏr
)

− ε̃1

⎛

⎝
M2

z1√

M2
z1 + γ 2

1

− κ1ε̂1

⎞

⎠ − W̃T
1

(
Mz1 S1(x)

−σ1Ŵ1

⎞

⎠

= Mz1g1(x1)z2 + Mz1g1(x1)α1 − Mz1 ẏr

+ ŴT
1 Mz1 S1(x) + Mz1ε1 − ε̃1

M2
z1√

M2
z1 + γ 2

1

+ κ1ε̃1ε̂1 + σ1W̃
T
1 Ŵ1

(20)

It follows immediately from Lemma 1 that

Mz1ε1 ≤ |Mz1 |ε̄1 < ε̄1γ1 + ε̄1
M2

z1√

M2
z1 + γ 2

1

(21)

Using Lemma 1 and Assumption 2, we have:

Mz1g1(x1)α1 ≤ − M2
z1 ᾱ

2
1

√

M2
z1 ᾱ

2
1 + γ 2

1

≤ γ1 − Mz1 ᾱ1 (22)

Substituting (15), (17), (21) and (22) into (20) results
in

V̇1 ≤ − k1
k2b
π

tan

(
π z21
2k2b

)

− η1

(
k2b
π

) 3
4

tan
3
4

(
π z21
2k2b

)

+ γ1

+ ε̄1γ1 + Mz1g1(x1)z2 + κ1ε̂1ε̃1 + σ1W̃
T
1 Ŵ1

(23)

Step 2 Taking time derivative of error variable z2
and using RBFNN to approximate unknown nonlinear
function f2(x), we have:

ż2 = g2(x̄2)x3 + f2(x) − α̇1

= g2(x̄2)x3 + W ∗T
2 S2(x) + ε2 − α̇1

(24)

whereW ∗
2 = blockdiag[W ∗T

2k ](k = 1, . . . ,m) is ideal
weight vector, S2(x) is radial basis function vector and

ε2 is approximation error. The approximation error is
bounded, i.e., |ε2| ≤ ε̄2.

In (24), differentiation of virtual control input α1

leads to the explosion of complexity. In order to over-
come the explosion of complexity, first-order sliding
mode differentiator is employed to obtain the deriva-
tive of the virtual control input.

{
ν̇11 = −λ0|ν11 − α1|1/2sign(ν11 − α1) + ν12

ν̇12 = −λ1sign(ν11 − α1)
(25)

where ν11 and ν12 are state variables of the differentia-
tor, λ0 and λ1 are positive real numbers. According to
[71,72], ν12 can approximate the first-order derivative
of virtual control α1 to arbitrary accuracy if the initial
deviation |ν11(t0) − α1(t0)| and |ν12(t0) − α̇1(t0)| are
bounded. Therefore, we have |ν12 − α̇1| ≤ δ1 with δ1
being an unknown positive constant.

Remark 6 Conventional dynamic surface control emp-
loys first-order filter to obtain the first-order derivative
of virtual control. Different from conventional dynamic
surface control, in this paper, first-order sliding mode
differentiator is utilized to overcome the explosion of
complexity and the poor precision of first-order filter.

The weight updating law for RBFNN is selected as
follows:

˙̂W2 = Γ2

(
z2S2(x) − σ2Ŵ2

)
(26)

where Γ2 and σ2 are positive real numbers.
The adaptation law for parameters ε̄2 and δ1 can be

expressed as follows:

˙̂ε2 = Λ2

⎛

⎝
z22√

z22 + γ 2
2

− κ2ε̂2

⎞

⎠ (27)

˙̂
δ1 = Π1

(
z2 tanh(z2/ε) − μ2δ̂1

)
(28)

whereΛ2,Π1,μ2, γ2 and κ2 are positive real numbers.
In order to obtain virtual control, an auxiliary func-

tion is designed as follows:

ᾱ2 = k2z2 + η2z
1/2
2 + ε̂2

z2
√

z22 + γ 2
2

− ν12 + ŴT
2 S2(x)

+ δ̂1 tanh(z2/ε) + ḡ1
M2

z1 z2√

M2
z1 z

2
2 + γ 2

2

(29)
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where k2 and η2 are positive real numbers.
Using auxiliary function (29), the virtual control law

is derived as follows:

α2 = − 1

g
2

z2ᾱ2
2√

z22ᾱ
2
2 + γ 2

2

(30)

The Lyapunov function can be chosen as follows:

V2 = V1+ 1

2
z22+ 1

2Λ2
ε̃22 + 1

2Π1
δ̃21 + 1

2Γ2
W̃T

2 W̃2 (31)

where ε̃2 = ε̄2 − ε̂2, δ̃1 = δ1 − δ̂1, W̃2 = W ∗
2 − Ŵ2.

Defining z3 = x3 −α2 and taking time derivative of
V2 along (24), (26–28), we have:

V̇2 = V̇1 + z2 ż2 − 1

Λ2
ε̃2 ˙̂ε2 − 1

Π1
δ̃1

˙̂
δ1 − 1

Γ2
W̃T

2
˙̂W2

= V̇1 + z2 (g2(x̄2)(z3 + α2)

+W ∗T
2 S2(x) + ε2 − α̇1

)

− δ̃1

(
z2 tanh(z2/ε) − μ2δ̂1

)

− ε̃2

⎛

⎝
z22√

z22 + γ 2
2

− κ2ε̂2

⎞

⎠

− W̃T
2 (z2S2(x) − σ2Ŵ2)

= V̇1 + z2g2(x̄2)z3 + z2g2(x̄2)α2 + ŴT
2 z2S2(x)

+ z2ε2 − ε̃2
z22√

z22 + γ 2
2

+ κ2ε̃2ε̂2 − z2α̇1

− δ̃1z2 tanh(z2/ε) + μ2δ̃1δ̂1 + σ2W̃
T
2 Ŵ2

(32)

Based on Lemma 1, the following inequality holds:

z2ε2 ≤ |z2|ε̄2 < ε̄2γ2 + ε̄2
z22√

z22 + γ 2
2

(33)

From Lemma 1 and Assumption 2, we have:

Mz1g1(x1)z2 ≤ ḡ1|Mz1 ||z2| < ḡ1γ2

+ḡ1
M2

z1 z
2
2

√

M2
z1 z

2
2 + γ 2

2

(34)

z2g2(x̄2)α2 ≤ − z22ᾱ
2
2√

z22ᾱ
2
2 + γ 2

2

≤ γ2 − z2ᾱ2 (35)

Substitute (29), (30) and (33), (35) into (32) and the
time derivative of V2 can be calculated as follows:

V̇2 ≤V̇1 − k2z
2
2 − η2z

3/2
2 + z2 (ν12 − α̇1)

− z2δ1 tanh(z2/ε) + κ2ε̂2ε̃2 + μ2δ̂1δ̃1

+ σ2W̃
T
2 Ŵ2 − ḡ1

M2
z1 z

2
2

√

M2
z1 z

2
2 + γ 2

2

+ γ2 + z2g2(x̄2)z3 + ε̄2γ2

(36)

Considering |ν12−α̇1| ≤ δ1 and Lemma 6, we have:

z2(ν12 − α̇1) − z2δ1 tanh(z2/ε) ≤ |z2|δ1
−z2δ1 tanh(z2/ε)

≤ δ1�ε (37)

Taking (23) togetherwith (34) and (37) into account,
(36) becomes:

V̇2 ≤ − k1
k2b
π

tan

(
π z21
2k2b

)

− η1

(
k2b
π

) 3
4

tan
3
4

(
π z21
2k2b

)

− k2z
2
2

− η2z
3/2
2 +

2∑

i=1

(
κi ε̂i ε̃i + σi W̃

T
i Ŵi

)
+ μ2δ̂1δ̃1

+ z2g2(x̄2)z3 + ḡ1γ2 +
2∑

i=1

(γi + ε̄iγi ) + δ1�ε

(38)

Step i Similar to step 2, the unknown nonlinear func-
tion fi (x) can be approximated using RBFNN and the
dynamics of error variables zi is

żi = gi (x̄i )xi+1 + fi (x) − α̇i−1

= gi (x̄i )xi+1 + W ∗T
i Si (x) + εi − α̇i−1

(39)

whereW ∗
i = blockdiag[W ∗T

ik ](k = 1, . . . ,m) is ideal
weight vector, Si (x) is radial basis function vector and
εi is approximation error. The approximation error is
bounded, i.e., |εi | ≤ ε̄i .

Similar to step 2, the following first-order sliding
mode differentiator is utilized to obtain the derivative
of virtual control input:
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⎧
⎪⎨

⎪⎩

ν̇(i−1)1 = −λ0|ν(i−1)1 − αi−1|1/2sign(ν(i−1)1 − αi−1)

+ ν(i−1)2

ν̇(i−1)2 = −λ1sign(ν(i−1)1 − αi−1)

(40)

where ν(i−1)1 and ν(i−1)2 are state variables of the
differentiator, λ0 and λ1 are positive real numbers.
According to [71,72], ν(i−1)2 can approximate the first-
order derivative of virtual control αi−1 to arbitrary
accuracy if the initial deviation |ν(i−1)1(t0)−αi−1(t0)|
and |ν(i−1)2(t0) − α̇i−1(t0)| are bounded. Therefore,
we have |ν(i−1)2 − α̇i−1| ≤ δi−1 with δi−1 being an
unknown positive constant.

The weight updating law for RBFNN is given as
follows:

˙̂Wi = Γi (zi Si (x) − σi Ŵi ) (41)

where Γi and σi are positive real numbers.
The adaptive law for parameters ε̄i and δi−1 can be

described as follows:

˙̂εi = Λi

⎛

⎝
z2i√

z2i + γ 2
i

− κi ε̂i

⎞

⎠ (42)

˙̂
δi−1 = Πi−1

(
zi tanh(zi/ε) − μi δ̂i−1

)
(43)

whereΛi ,Πi−1, γi ,μi and κi are positive real numbers.
The virtual control can be designed as follows:

αi = − 1

g
i

zi ᾱ2
i√

z2i ᾱ
2
i + γ 2

i

(44)

with

ᾱi = ki zi + ηi z
1/2
i + ε̂i

zi
√

z2i + γ 2
i

− ν(i−1)2 + ŴT
i Si (x)

+ δ̂i−1 tanh(zi/ε) + ḡi−1
z2i−1zi

√

z2i−1z
2
i + γ 2

i

(45)

where ki , ηi are positive real numbers.
Consider the following Lyapunov function:

Vi = Vi−1+ 1

2
z2i + 1

2Λi
ε̃2i + 1

2Πi−1
δ̃2i−1+ 1

2Γi
W̃T

i W̃i

(46)

where ε̃i = ε̄i−ε̂i , δ̃i−1 = δi−1−δ̂i−1, W̃i = W ∗
i −Ŵi .

Define zi+1 = xi+1 − αi and the time derivative of
Vi along (39), (41–43) is

V̇i = V̇i−1 + zi żi − 1

Λi
ε̃i ˙̂εi − 1

Πi−1
δ̃i−1

˙̂
δi−1

− 1

Γi
W̃T

i
˙̂Wi

= V̇i−1 + zi (gi (x̄i )(zi+1 + αi )

+ W ∗T
i Si (x) + εi − α̇i−1)

− δ̃i−1

(
zi tanh(zi/ε) − μi δ̂i−1

)

− ε̃i

⎛

⎝
z2i√

z2i + γ 2
i

− κi ε̂i

⎞

⎠ − W̃T
i

(
zi Si (x) − σi Ŵi

)

= V̇i−1 + zi gi (x̄i )zi+1 + zi gi (x̄i )αi + ŴT
i zi Si (x)

+ ziεi − ε̃i
z2i√

z2i + γ 2
i

+ κi ε̃i ε̂i − zi α̇i−1

− δ̃i−1zi tanh(zi/ε) + μi δ̃i−1δ̂i−1 + σi W̃
T
i Ŵi

(47)

ByLemma1, the following inequality is established:

ziεi ≤ |zi |ε̄i < ε̄iγi + ε̄i
z2i√

z2i + γ 2
i

(48)

According to Lemma 1 and Assumption 2, we have:

zi−1gi−1(x̄i−1)zi ≤ ḡi−1|zi−1||zi |
< ḡi−1γi + ḡi−1

z2i−1z
2
i

√

z2i−1z
2
i + γ 2

i

(49)

zi gi (x̄i )αi ≤ − z2i ᾱ
2
i√

z2i ᾱ
2
i + γ 2

i

≤ γi − zi ᾱi (50)

Substituting (44), (45), (48) and (50) into (47) yields:

V̇i ≤V̇i−1 − ki z
2
i − ηi z

3/2
i + κi ε̂i ε̃i + μi δ̂i−1δ̃i−1

+ zi (ν(i−1)2 − α̇i−1) − ziδi−1 tanh(zi/ε)

+ σi W̃
T
i Ŵi − ḡi−1

z2i−1z
2
i

√

z2i−1z
2
i + γ 2

i

+ γi

+ zi gi (x̄i )zi+1 + ε̄iγi

(51)
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Similar to step 2, one has:

zi (ν(i−1)2 − α̇i−1) − ziδi−1 tanh(zi/ε)

≤ |zi |δi−1 − ziδi−1 tanh(zi/ε) ≤ δi−1�ε
(52)

Substituting (52) and (49) into (51) produces:

V̇i ≤ − k1
k2b
π

tan

(
π z21
2k2b

)

− η1

(
k2b
π

) 3
4

tan
3
4

(
π z21
2k2b

)

−
i∑

j=2

(
k j z

2
j

+η j z
3/2
j

)
+

i∑

j=1

(
κ j ε̂ j ε̃ j + σ j W̃

T
j Ŵ j

)

+
i∑

j=2

(
μ j δ̂ j−1δ̃ j−1 + ḡ j−1γ j + δ j−1�ε

)

+ zi gi (x̄i )zi+1 +
i∑

j=1

(
γ j + ε̄ jγ j

)

(53)

Step n In the final design step, the actual control
input will be derived. Following the same line used in
(24), the dynamics of error variable zn can be described
as follows:

żn = gn(x̄n)u(v) + fn(x) − α̇n−1

= gn(x̄n)u(v) + W ∗T
n Sn(x) + εn − α̇n−1

= gn(x̄n)(ud + �u) + W ∗T
n Sn(x) + εn − α̇n−1

(54)

whereW ∗
n = blockdiag[W ∗T

nk ](k = 1, . . . ,m) is ideal
weight vector, Sn(x) is radial basis function vector and
εn is approximation error. The approximation error is
bounded, i.e., |εn| ≤ ε̄n .

Similar to step 2, the following first-order sliding
mode differentiator is utilized to obtain the derivative
of virtual control input:

⎧
⎪⎨

⎪⎩

ν̇(n−1)1 = −λ0|ν(n−1)1 − αn−1|1/2sign(ν(n−1)1

− αn−1) + ν(n−1)2

ν̇(n−1)2 = −λ1sign(ν(n−1)1 − αn−1)

(55)

where ν(n−1)1 and ν(n−1)2 are state variables of the
differentiator, λ0 and λ1 are positive real numbers.
According to [71,72], ν(n−1)2 can approximate thefirst-
order derivative of virtual control αn−1 to arbitrary
accuracy if the initial deviation |ν(n−1)1(t0)−αn−1(t0)|
and |ν(n−1)2(t0) − α̇n−1(t0)| are bounded. Therefore,
we have |ν(n−1)2 − α̇n−1| ≤ δn−1 with δn−1 being an
unknown positive constant.

By repeating the same way used in step 1, step 2
and step i , we can give the weight updating law for
RBFNN, the adaptive law for parameters ε̄n and δn−1

as follows:

˙̂Wn = Γn(zn Sn(x) − σnŴn) (56)

˙̂εn = Λn

(
z2n√

z2n + γ 2
n

− κn ε̂n

)

(57)

˙̂
δn−1 = Πn−1

(
zn tanh(zn/ε) − μn δ̂n−1

)
(58)

where Γn , σn , γn , Λn , κn , Πn−1 and μn are positive
real numbers.

To deal with input saturation, the following anti-
windup compensator is introduced:

ẇ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− kw − ξsig1/2w −
ḡn

z2n�u2
√

z2n�u2+γ 2
n

+ 1
3 (�u)3

w

+ �u, if |w| ≥ τ

0, if |w| < τ

(59)

where w is the state of auxiliary design system, k and
ξ are positive real numbers to be designed, τ is a small
positive constant, sigα(·) = | · |αsign(·).

Remark 7 |w| < τ means that there is no input satura-
tion and the anti-windup compensator does not work,
while |w| ≥ τ means that there exists input saturation
and the anti-windup compensator activates to compen-
sate the control input error �u caused by input satura-
tion.

Considering input saturation and dead zone, the
actual control input can be designed as follows:

v = − 1

g
n
m0

zn v̄2
√
z2n v̄

2 + γ 2
n

(60)
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with

v̄ = knzn + ηnz
1/2
n + ε̂n

zn
√
z2n + γ 2

n

− ν(n−1)2 + ŴT
n Sn(x)

+ δ̂n−1 tanh(zn/ε) + ḡn−1
z2n−1zn

√

z2n−1z
2
n + γ 2

n

(61)

where kn , ηn are positive real numbers.
Let us consider the first case where input saturation

exists, i.e., |w| ≥ τ . Define the following Lyapunov
function:

Vn = Vn−1 + 1

2
z2n + 1

2Λn
ε̃2n + 1

2Πn−1
δ̃2n−1 + 1

2
w2

+ 1

2Γn
W̃T

n W̃n (62)

where ε̃n = ε̄n − ε̂n , δ̃n−1 = δn−1 − δ̂n−1, W̃n =
W ∗

n − Ŵn .
Noting that ud = KT(t)Φ(t)v(t) + � and taking

time derivative of Vn along (54), (56–59) obtain:

V̇n = V̇n−1 + zn żn − 1

Λn
ε̃n ˙̂εn

− 1

Πn−1
δ̃n−1

˙̂
δn−1 + wẇ − 1

Γn
W̃T

n
˙̂Wn

= V̇n−1 + zn(gn(x̄n)(ud + �u)

+W ∗T
n Sn(x) + εn − α̇n−1)

−δ̃n−1

(
zn tanh(zn/ε) − μn δ̂n−1

)

−ε̃n

(
z2n√

z2n + γ 2
n

− κn ε̂n

)

−W̃T
n

(
zn Sn(x) − σnŴn

)

+w(−kw − ξsig1/2w

−
ḡn

z2n�u2√
z2n�u2+γ 2

n
+ 1

3 (�u)3

w
+ �u)

= V̇n−1 + zngn(x̄n)
(
KT(t)Φ(t)v(t) + �

)

+zngn(x̄n)�u + ŴT
n zn Sn(x) + znεn

−ε̃n
z2n√

z2n + γ 2
n

− znα̇n−1 − δ̃n−1zn tanh(zn/ε)

+ κn ε̃n ε̂n + μn δ̃n−1δ̂n−1 + σnW̃
T
n Ŵn − kw2

− ξ |w|3/2 − ḡn
z2n�u2

√
z2n�u2 + γ 2

n

−1

3
(�u)3 + w�u (63)

Following the same line as step 1, step 2 and step i , we
obtain the following inequalities:

znεn ≤ zn ε̄n < ε̄nγn + ε̄n
z2n√

z2n + γ 2
n

(64)

zngn(x̄n)�u ≤ ḡn|zn||�u| < ḡnγn + ḡn
z2n�u2

√
z2n�u2 + γ 2

n

(65)

zn−1gn−1(x̄n−1)zn ≤ ḡn−1|zn−1||zn|
< ḡn−1γn + ḡn−1

z2n−1z
2
n

√

z2n−1z
2
n + γ 2

n

(66)

zngn(x̄n)K
TΦv ≤ − z2n v̄

2
√
z2n v̄

2 + γ 2
n

≤ γn − zn v̄ (67)

Invoking Lemma 2, Assumption 2 and Remark 3,
we have:

w�u ≤ 2

3
|w|3/2 + 1

3
|�u|3 (68)

zngn� ≤ ḡn|zn|�̄ ≤ ḡn
2

(
z2n + �̄2

)
(69)

Substituting (60), (61), (64), (65), (67), (68) and (69)
into (63) leads to

V̇n ≤ V̇n−1 −
(

kn − ḡn
2

)

z2n − ηnz
3/2
n

+zn
(
ν(n−1)2 − α̇n−1

) − znδn−1 tanh(zn/ε)

+γn + ε̄nγn + ḡnγn + κn ε̃n ε̂n + μn δ̃n−1δ̂n−1 − kw2

−
(

ξ − 2

3

)

|w|3/2 + σnW̃
T
n Ŵn + ḡn

2
�̄2

−ḡn−1
z2n−1z

2
n

√

z2n−1z
2
n + γ 2

n

(70)

Similar to step 2 and step i , the following inequality
holds:

zn(ν(n−1)2 − α̇n−1) − znδn−1 tanh(zn/ε)

≤ |zn|δn−1 − znδn−1 tanh(zn/ε) ≤ δn−1�ε
(71)

Substituting (71) into (70), we have:

V̇n ≤ −k1
k2b
π

tan

(
π z21
2k2b

)

− η1

(
k2b
π

) 3
4

tan
3
4

(
π z21
2k2b

)
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−
n−1∑

i=2

(
ki z

2
i + ηi z

3/2
i

)

−
(

kn − ḡn
2

)

z2n − ηnz
3/2
n +

n∑

i=1

(
κi ε̂i ε̃i

+ σi W̃
T
i Ŵi

)
+

n∑

i=2

μi δ̂i−1δ̃i−1 − kw2

−
(

ξ − 2

3

)

|w|3/2

+
n∑

i=2

(ḡi−1γi + δi−1�ε) + ḡnγn

+
n∑

i=1

(γi + ε̄iγi ) + ḡn
2

�̄2 (72)

Using Lemma 2, we have:

ε̃i ε̂i ≤ − ε̃2i

2
+ ε2i

2

= − ε̃2i

4
− 1

4

(
|ε̃i | − √|ε̃i |

)2

+ 1

4
|ε̃i | − 1

2
|ε̃i |3/2 + ε2i

2

≤ − ε̃2i

4
+ 1

8
|ε̃i |2 + 1

8
− 1

2
|ε̃i |3/2 + ε2i

2

≤ − ε̃2i

8
+ 1

8
− 1

2
|ε̃i |3/2 + ε2i

2

(73)

By repeating the same way used in (73), the follow-
ing inequalities can be obtained:

δ̃i−1δ̂i−1 ≤ − δ̃2i−1

8
+ 1

8
− 1

2
|δ̃i−1|3/2 + δ2i−1

2
(74)

W̃T
i Ŵi ≤ −‖W̃i‖2

8
+ 1

8
− 1

2
‖W̃i‖3/2 + ‖Wi‖2

2
(75)

Substituting (73–75) into (72), one has:

V̇n ≤ −k1
k2b
π

tan

(
π z21
2k2b

)

−η1

(
k2b
π

) 3
4

tan
3
4

(
π z21
2k2b

)

−
n−1∑

i=2

(
ki z

2
i

+ηi z
3/2
i

)
−

(

kn − ḡn
2

)

z2n

−ηnz
3/2
n +

n∑

i=1

(

−κi ε̃
2
i

8
− κi

2
|ε̃|3/2 − σi‖W̃i‖2

8

−σi

2
‖W̃i‖3/2

)
−

n∑

i=2

(
μi δ̃

2
i−1

8
+ μi

2
|δ̃i−1|3/2

)

−kw2 −
(

ξ − 2

3

)

|w|3/2

+
n∑

i=2

(

ḡi−1γi + μi

8
+ μiδ

2
i−1

2
+ δi−1�ε

)

+ ḡnγn

+
n∑

i=1

(

γi + ε̄iγi + κi

8
+ κi

ε2

2
+ σi

8
+ σi‖Wi‖2

2

)

+ ḡn
2

�̄2 (76)

By Lemma 3 and Lemma 4, (76) can be written as
follows:

V̇n ≤ −k1
k2b
π

tan

(
π z21
2k2b

)

−
n−1∑

i=2

ki z
2
i −

(

kn − ḡn
2

)

z2n

−
n∑

i=1

κi ε̃
2
i

8
−

n∑

i=1

σi‖W̃i‖2
8

−
n∑

i=2

μi δ̃
2
i−1

8
− kw2

−η1

(
k2b
π

) 3
4

tan
3
4

(
π z21
2k2b

)

−
n∑

i=2

ηi z
3/2
i −

n∑

i=1

κi |ε̃i |3/2
2

−
n∑

i=1

σi‖W̃i‖3/2
2

−
n∑

i=2

μi |δ̃i−1|3/2
2

−
(

ξ − 2

3

)

|w|3/2

+
n∑

i=2

(

ḡi−1γi + μi

8
+ μiδ

2
i−1

2
+ δi−1�ε

)

+ ḡnγn

+
n∑

i=1

(

γi + ε̄iγi + κi

8
+ κi

ε2

2
+ σi

8
+ σi‖Wi‖2

2

)

+ ḡn
2

�̄2

≤ −β1

(
k2b
π

tan

(
π z21
2k2b

)

+ 1

2

n∑

i=2

z2i +
n∑

i=1

1

2Λi
ε̃2i

+
n∑

i=1

1

2Γi
W̃T

i W̃i +
n∑

i=2

1

2Πi−1
δ̃2i + 1

2
w2

)

−β2

(
k2b
π

tan

(
π z21
2k2b

)

+ 1

2

n∑

i=2

z2i +
n∑

i=1

1

2Λi
ε̃2i

+
n∑

i=1

1

2Γi
W̃T

i W̃i
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+
n∑

i=2

1

2Πi−1
δ̃2i + 1

2
w2

)3/4

+ C

= −β1Vn − β2V
3/4
n + C (77)

where

β1 = min

{

k1, 2ki , κiΛi/4, σiΓi/4, μiΠi−1/4, 2

(

kn − ḡn
2

)

,

2k}
β2 = min

{

η1, 2
3
4 ηi , 2

− 1
4 κiΛ

3
4
i , 2− 1

4 σiΓ
3
4
i , 2− 1

4 μiΠ
3
4
i−1,

2
3
4

(

ξ − 2

3

)

, 2
3
4 ηn

}

C =
n∑

i=2

(

ḡi−1γi + μi

8
+ μi δ

2
i−1

2
+ δi−1�ε

)

+ ḡnγn

+
n∑

i=1

(

γi + ε̄iγi + κi

8
+ κi

ε2

2
+ σi

8
+ σi‖Wi‖2

2

)

+ ḡn
2

�̄2

If input saturation does not exist, i.e. |w| < τ , the
anti-windup compensator does not work and the state
of anti-windup compensator keeps zero. In this case,
the considered Lyapunov function can be written as
follows:

Vn = Vn−1+ 1

2
z2n+ 1

2Λn
ε̃2n+ 1

2Πn−1
δ̃2n−1+

1

2Γn
W̃T

n W̃n

(78)

By following the same line as the case where input
saturation exists, the time derivative of Lyapunov func-
tion (78) can be obtained as follows:

V̇n ≤ −β1Vn − β2V
3/4
n + C (79)

where

β1 = min

{

k1, 2ki , κiΛi/4, σiΓi/4, μiΠi−1/4, 2

(

kn − ḡn
2

)}

β2 = min

{

η1, 2
3
4 ηi , 2

− 1
4 κiΛ

3
4
i , 2− 1

4 σiΓ
3
4
i , 2− 1

4 μiΠ
3
4
i−1, 2

3
4 ηn

}

C =
n∑

i=2

(

ḡi−1γi + μi

8
+ μi δ

2
i−1

2
+ δi−1�ε

)

+
n∑

i=1

(γi + ε̄iγi

+κi

8
+ κi

ε2

2
+ σi

8
+ σi W 2

i

2

)

+ ḡn
2

�̄2

The above controller design and stability analysis
can be summarized as follows.

Theorem 1 Consider uncertain nonstrict-feedback
nonlinear system (1) with input saturation, dead zone
and output constraint. Suppose that Assumptions 1-
3 hold. The neural network weight updating law is
selected as (13), (26), (41) and (56). The adaptive law
for unknown parameters is chosen as (14), (27), (28),
(42), (43), (57) and (58). The virtual control laws are
designed as (17), (30), (44) and (60). Then, the follow-
ing properties can be guaranteed: (1) All the closed-
loop signals are bounded. (2) The system output con-
straint will not be violated; (3) System output track-
ing error will converge to a compact set {z1 : |z1| <

max{υ,

√

tan−1( Cπ

β1�k2b
)
2k2b
π

}} within finite time, which

can be designed arbitrarily small.

Proof From (77) and (79), we have:

V̇n < −β1Vn + C (80)

Integrating both side of (80) over [0, t], we obtain:

Vn <

(

Vn(0) − C

β1

)

e−β1t + C

β1
(81)

The boundedness of Lyapunov function Vn means
that Barrier Lyapunov function Vb, the error variables
zi , ε̃i , W̃i , δ̃i and anti-windup state w are bounded.
Since ε̄i and δi are constants, we have that ε̂i and δ̂i
are bounded. Given the fact that z1 and yr are bounded,
we have that x1 is bounded. Due to the boundedness of
radial basis function Si (x) and the error variables zi ,
from (13), (26), (41) and (56), we have that the neu-
ral network weight estimation Ŵi is bounded. From
Assumption 3, we have that ẏr is bounded. Since z1,
ε̂1, ẏr , S1(x) and Ŵ1 are bounded and g

1
is a con-

stant, from (15) and (17), we can see that ᾱ1 and α1

are bounded. Due to the boundedness of z2 and α1, we

have that x2 is bounded. Since ∂α1
∂ε̂1

˙̂ε1, ∂α1
∂ ẏr

ÿr ,
∂α1

∂Ŵ1

˙̂W1

and ∂α1
∂z1

ż1 are all continuous functions with bounded
arguments and δ1 is a constant, it can be concluded
that α̇1 and ν12 are bounded. Further, from (25), we
have that ν11 is bounded. Given the fact that z1, z2, ε̂2,
δ̂1, ν12 and Ŵ2 are bounded and ḡ1, g2 are constants,
we have that ᾱ2 and α2 are bounded. Since α2 and z3
are bounded, we have that x3 is bounded. Following
the similar analysis procedure, we have that αi , xi , νi1,
νi2 and v are bounded. This follows that the output

123



178 J. Ni et al.

constraint will not be violated and all the closed-loop
signals are bounded.

In order to prove finite time convergence, note that
when C ≤ β1�Vn , we have:

V̇n ≤ −β1(1 − �)Vn − β2V
3/4
n (82)

Using Lemma 5,we can deduce that Lyapunov func-
tion Vn will converge into a compact set {Vn : Vn <
C

β1�
} within finite time and the convergence time can

be estimated as

T ≤ 4

β1(1 − �)
ln

β1(1 − �)Vn(0)1/4 + β2

β2
(83)

If Vn converges to the set {Vn : Vn < C
β1�

}, we
have

k2b
π
tan(

π z21
2k2b

) ≤ Vn < C
β1�

, which means that the

output tracking error will converge to a compact set

{z1 : |z1| < max{υ,

√

tan−1( Cπ

β1�k2b
)
2k2b
π

}} within finite

time T . ��
Remark 8 In stability analysis, we only consider the
casewhere |z1| ≥ υ holds in (16) andTheorem1 shows
that the ultimate bound of tracking error z1 is deter-

mined by max{υ,

√

tan−1( Cπ

β1�k2b
)
2k2b
π

}. If υ is selected

sufficiently small such that υ ≤
√

tan−1( Cπ

β1�k2b
)
2k2b
π
,

the ultimate bound of z1 is independent of υ.

Remark 9 Theorem 1 provides a guideline for the
designer to select appropriate design parameters such
that the ultimate boundof tracking error can be reduced.
The ultimate bound of tracking error can be made as
small as possible if we choose small C and large β1.
To ensure C as small as possible and β1 as large as
possible, we needs to select small γi and large ki , Λi ,
Γi , Πi−1, k.

Remark 10 The approach presented in this paper is
partly motivated by the work in [32]. However, the
results in [32] can only be used for strict-feedback sys-
tem with output constraint. In this paper, we address
tracking problem for nonstrict-feedback system with
input saturation, dead zone and output constraint. To
the best of our knowledge, this is the first time to report
results about adaptive tracking control for nonstrict-
feedback nonlinear system subjected to input satura-
tion, dead zone and output constraint. In addition, the

results in [32] are based on backstepping technique
which has the problem of explosion of complexity.
In this paper, first-order sliding mode differentiator is
employed to obtain the first derivative of virtual control,
which overcomes explosion of complexity.

4 Comparison with existing results

To highlight the novelty of the obtained results, we
make a comparison with the existing results in this sec-
tion.

(1) The previous studies [9,11,12,16–19,29,31–33,
35–38,44–46,48–50,52–54] present adaptive back-
stepping neural network control schemes for strict-
feedback system or pure-feedback system. How-
ever, these results cannot be extended to nonstrict-
feedback system. As shown in Remark 2, it is
very difficult and challenging to apply backstep-
ping design into nonstrict-feedback system. This
paper overcomes the difficulty of applying back-
stepping control into nonstrict-feedback system
andproposes a novel adaptive dynamic surface neu-
ral network control scheme for nonstrict-feedback
system. Since nonstrict-feedback system includes
strict-feedback system and pure-
feedback system as its special form, the results
obtained in this paper are more general and can
be applied to address adaptive neural network con-
trol problem for strict-feedback system or pure-
feedback system.

(2) The previous studies [59–62] employ variable sep-
aration technique to overcome the design difficulty
arising from nonstrict-feedback structure. How-
ever, these results require that the nonlinear func-
tion fi (x) in system (1) satisfies the monotonously
increasing property. The results obtained in this
paper remove this restrictive assumption and can be
applied into more general nonstrict-feedback sys-
tem.

(3) The previous studies [56–63] can only achieve
asymptotical tracking for uncertain
nonstrict-feedback nonlinear system. The results
obtained in this paper achieve finite time tracking
for uncertain nonstrict-feedback nonlinear system.

(4) The previous studies [57–63] present adaptive
backstepping neural network control for uncer-
tain nonstrict-feedbacknonlinear system.However,
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these results suffer from the problem of “explosion
of complexity”. In order to overcome the “explo-
sion of complexity’, adaptive dynamic surface neu-
ral network control was developed in [56]. How-
ever, it employs commandfilter to obtain the deriva-
tive of virtual control, which has asymptotical con-
vergence property. Different from previous work,
in this paper, first-order sliding mode differentia-
tor is combined with backstepping design to over-
come the explosion of complexity problem, which
has finite time convergence property and satisfies
separation principle, thereby having superior per-
formance.

(5) To the best of our knowledge, there are no results
about adaptive tracking control for nonstrict-feedback
nonlinear systemsubjected to input saturation, dead
zone and output constraint. This paper proposes an
adaptive neural network dynamic surface control to
address this problem.

5 Simulation results

In this section, two examples are carried out to demon-
strate the effectiveness of the proposed control scheme.

Example 1 Consider the following second-order
nonstrict-feedback nonlinear system:

⎧
⎪⎨

⎪⎩

ẋ1 = f1(x) + g1(x1)x2

ẋ2 = f2(x) + g2(x̄2)u

y = x1

(84)

where f1(x) = x1x2 + x21 sin(x2), g1(x1) = 1.5 +
0.5 sin(x1), f2(x) = x1x2ex2 , g2(x̄2) = 1.5 +
sin(x1x2). Here, it is assumed that f1(x), g1(x1), f2(x)
and g2(x̄2) are unknown. Reference output is given as
yr = sin(t) and the output constraint is selected as
|y| < π/2. It can be easily verified that there exist
g
1

= 1, ḡ1 = 2, g
2

= 0.5, ḡ2 = 2.5 such that Assump-
tion 2 holds. Dead zone and input saturation parame-
ters are taken to be mr = 1, br = 0.1, ml = 1.05,
bl = − 0.15, umax = 5, umin = − 4. The design
parameters in virtual control, parameter adaptive law
and first-order sliding mode differentiator are chosen
as k1 = k2 = 3, η1 = η2 = 2.5, Λ1 = Λ2 = 2,
κ1 = κ2 = 5, Γ1 = Γ2 = 0.4, σ1 = σ2 = 10,
Π1 = 10, μ2 = 4.12, k = 10, ξ = 5, τ = 0.1,
γ1 = γ2 = 0.1, λ0 = 1.5, λ1 = 1.1. The results are

0 5 10 15
t/s

-3

-2

-1

0

1

2

3

y

y
yr

π/2

-π/2

Fig. 1 Time response of system output y and its reference yr
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Fig. 2 Time response of tracking error

shown in Figs. 1, 2, 3, 4, 5 and 6. As shown in Fig. 1
that the system output follows the trajectory of refer-
ence signal closely without violation of output con-
straint. As shown in Fig. 2, the tracking error reaches
a small neighbor of the origin within finite time and
remains in it thereafter. Figure 3 shows the curve of
control input u. The estimations of parameters ε̄i and
δ and the time response of anti-windup compensator
state w are depicted in Figs. 4, 5 and 6. It is clear that
all the parameter estimations and the anti-windup com-
pensator state are bounded. All the results show that the
proposed control scheme can guarantee all the closed-
loop signals are bounded and tracking error converges
to a small neighbor of the origin within finite time,
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Fig. 4 Time response of RBFNN approximation error estima-
tion ε̄i

which verifies the effectiveness of the proposed control
scheme.

Example 2 Consider the following system which des-
cribes the dynamics of a one-link manipulator driven
by a brush dc motor [73,74]:

⎧
⎪⎨

⎪⎩

M̄q̈ + N̄ sin(q) + B̄q̇ = I + �I

L İ = −RI − KBq̇ + V

y = q

(85)

where q, q̇ and q̈ are angular position, angular velocity
and angular acceleration, I is motor armature current,
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Fig. 5 Time response of estimation error for first-order differ-
entiation error δ
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Fig. 6 Time response of anti-windup compensator state w

�I is current disturbance, V is input control voltage
and the physical meaning of other parameters can be
found in [73]. Let x1 = q, x2 = q̇ , x3 = I , u = V and
the system (85) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = − N̄

M̄
sin(x1) − B̄

M̄
x2 + 1

M̄
x3 + �I

M̄

ẋ3 = − R

L
x3 − KB

L
x2 + u

L
y = x1

(86)

The parameters in system (86) can be selected as N̄ =
10, B̄ = 1, M̄ = 1, L = 0.05, KB = 0.5, R = 0.5
and the current disturbance is assumed to be �I =
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Fig. 7 Time response of system output q and its reference qr
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Fig. 8 Time response of the motor armature current I

0.1x1 sin(x2x3). Since the disturbance contains all the
state variables, system (86) is a nonstrict-feedback sys-
tem. The reference output is yr = π/2 sin(t)(1 −
e−0.1t2) and the output constraint is selected as |y| <

π/2. In this example, g
1

= ḡ1 = g
2

= ḡ2 = 1,
g
3

= ḡ3 = 20. Dead zone and input saturation param-
eters are selected to be the same as Example 1. The
design parameters for virtual control, parameter adap-
tive law and first-order sliding mode differentiator are
chosen as k1 = k2 = k3 = 5, η1 = η2 = η3 = 3,
Λ1 = Λ2 = Λ3 = 2.5, κ1 = κ2 = 5, Γ1 = Γ2 =
Γ3 = 0.8, σ1 = σ2 = σ3 = 10, γ1 = γ2 = γ3 = 0.1,
Π1 = Π2 = 10, μ1 = μ2 = 4.5, k = 10, ξ = 5,
τ = 0.1, λ0 = 1.5, λ1 = 1.1. The results are shown
in Figs. 7, 8 and 9. Figures 7 and 8 show the time
response of states q and I , and Fig. 9 depicts the curve
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Fig. 9 Curve of control voltage u

of control voltage u. It can be seen from these figures
that the system output track the trajectory of reference
output within finite time while the violation of output
constraint is avoided and desired control performance
is obtained.

6 Conclusion

In this paper, an adaptive neural network dynamic
surface control is presented for a class of nonstrict-
feedback uncertain nonlinear systems subjected to
input saturation, dead zone and output constraint. By
designing anti-windup compensator, the input satu-
ration problem is solved. Tan-type Barrier Lyapunov
function is introduced to prevent output constraint vio-
lation. Furthermore, using adaptive backstepping tech-
nique, a series of novel stabilizing virtual control func-
tions are derived. In order to overcome the explosion
of complexity, first-order sliding mode differentiator
is employed to obtain the derivative of virtual control.
Using dead zone inverse method, the real control input
is obtained. With the aid of finite time stability the-
ory, it is proved that the proposed control scheme can
drive the output tracking error into a small neighbor of
the origin within finite time and keep all the closed-
loop signals bounded. Simulation results demonstrate
the effectiveness of the proposed control scheme. In the
future, there are many researches to be done, for exam-
ple, how to develop a control scheme to take hysteresis
effects into account, how to extend the proposed control
scheme to time delay system, switched system, multi-
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input and multi-output system and stochastic system,
how to extend the proposed control scheme to address
fault-tolerant control problem, how to utilize fuzzy sys-
tem to approximate the studied system and design con-
troller and observer with the aid of the existing results
[75–78], how to extend the proposed control scheme
to study consensus problem of nonlinear multi-agent
system using the idea of the existing result [79]. In
addition, the control of bifurcation has received great
attention and many control schemes have been pro-
posed, such as PD control [80], state feedback control
[81] and sliding mode control [82]. Recently, adaptive
neural network backstepping control scheme [83] was
presented to control bifurcation. Therefore, the exten-
sion of the proposed control scheme to bifurcation con-
trol is another future research direction.
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