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Abstract This paper aims at computing M-lump
solutions for the (3+ 1)-dimensional nonlinear evolu-
tion equation. These solutions in all directions decline
to an identical state obtained by employing the “long
wave” limit with respect to the N-soliton solutions
which are got by using the direct methods. Subse-
quently, we discuss the dynamic properties of the M-
lump solutions which describe the multiple collisions
of lumps. Based on the obtained lump solutions, the
lump–kink solutions are also obtained. In addition, the
periodic interactive solutions are given.

Keywords (3+1)-dimensional nonlinear evolution
equation · Lump solution · Lump–kink solution ·
Interaction

1 Introduction

Lump waves in recent years have captured consider-
able attention in the field of the nonlinear science,
due to the fact that they are identified as the advis-
able prototypes of rogue wave dynamics, especially
in oceanography and nonlinear optics, etc. As a spe-
cial localized wave, lump wave is a rationally decay-

Y. Zhang· Y. Liu (B) · X. Tang
School of Computer Science and Software Engineering,
East China Normal University, Shanghai 200062, China
e-mail: yanzhangee@gmail.com

Y. Liu
e-mail: ypliu@cs.ecnu.edu.cn

ing wave in all directions. Lump wave was first dis-
covered in 1977 by Manakov et al. [1]. More impor-
tantly, the fact that the pattern of phase shifts could
not be induced by the interactions of the lump waves
was proved by Manakov et al. [1]. Inspired by afore-
mentioned results, more general rational solutions of
equations were studied, see [2–4] and the references
therein. The multiple collisions of the lumps from the
corresponding N-soliton solutions of the KP equation
and two-dimensional nonlinear Schrödinger equation
were described by Satsuma and Ablowitz [3]. There-
after, the follow-on results indicate that lump solutions
are also admitted by high-dimensional nonlinear par-
tial differential equations. Typical examples include the
Davey–Stewartson II equation, Ishimori I equation [5],
Sawada–Kotera equation [6], (2+1)-dimensional BSK
equation [7], BKP equation.

Thereupon, different methods have been applied to
construct exact lump solutions of nonlinear evolution
equations, such as taking limit regarding to “longwave”
method [3], the inverse scattering transformation [4],
Darboux transformation [5], Bäklund transformation,
as well as the Hirota bilinear technique [8–11]. Notice
that taking limit of the N-soliton solutions is more
importance in the investigation of the M-lumps. More-
over, the interaction between lump waves and solitons
of the nonlinear partial differential equation has cap-
tured considerable attention from scientists. The inter-
action between kink–soliton, strip–soliton and lump
solution is investigated in Ref. [12,13].
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In this letter, we consider the (3 + 1)-dimensional
nonlinear partial differential equation as follows:

−4uxt + uxxxz + 3αuyy + 4uxuxz + 2uxxuz = 0,

(1)

where u = u(x, y, z, t). When α = 1 Eq. (1) boils
down to the conventional (3+1)-dimensional potential-
YTSF equation. Some intriguing integrable properties
of the potential-YTSF equation have been explicitly
discussed in the literature. Yan [14] studied the auto-
Bäklund transformation and obtained its exact solu-
tions. Multiple-soliton solutions were given in [15],
and several general nontraveling wave solutions were
presented in [16]. The bilinear Bäklund transformation
was investigated in [17]. Hu et al. [18] constructed sev-
eral new kink multi-soliton solutions by using three-
wave method. We will investigate the lump solutions
as well as the different interactive solutions of Eq. (1)
in this paper.

With the aid of transformation u = 2(ln f )x , then
Eq. (1) is converted into the nonlinear differential equa-
tion with respect to function f as below [18]:

(3αD2
y − 4Dx Dt + D3

x Dz) f · f

+ 4 f 2∂−1
x (Dx ((ln f )xz(ln f )xx )) = 0.

(2)

In what follows, we will construct M-lump and the
interactive wave solutions of (1) by solving (2).

The outline of our paper is given by: In Sect. 2, we
construct the M-lump solutions of (1). The dynamic
properties of these obtained solutions describing mul-
tiple collisions of lumps are also demonstrated by some
figures. By assuming f is the combination of positive
quadratic, exponential and trigonometric function in
Sects. 3 and 4, we investigated the lump–kink and peri-
odic interactive solutions of Eq. (1). Finally, Sect. 5 is
the conclusion.

2 M-lump solutions of Eq. (1)

In this part, we will investigate M-lump solutions of
Eq. (1) by taking limit for the corresponding N-soliton
solutions which can be ascertained by applying Hirota
bilinear method. The solution of Eq. (2) can be given
as follows:

f = fN =
∑

μ=0,1

exp

⎛

⎝
N∑

i< j

μiμ j Ai j +
N∑

i=1

μiηi

⎞

⎠ ,

(3)

where

ηi = ki

[
x + pi y + z +

(
k2i
4

+ 3αp2i
4

)
t

]
+ η

(0)
i ,

(4)

and

exp Ai j = (ki − k j )2 − α(pi − p j )
2

(ki + k j )2 − α(pi − p j )2
, (5)

with ki , pi and η
(0)
i are real constants. The notation∑

μ=0,1 shows summation roundly possible combina-
tions of μi = 0, 1, (i = 1, 2, . . . , N ); the summation∑(N )

i< j is roundly possible combinations of the N ele-
ments with condition i < j . For example, the first two
solutions in (3) have the form

f1 =1 + exp η1,

f2 =1 + exp η1 + exp η2 + exp(η1 + η2 + A12),
(6)

In order to construct M-lump solutions of Eq. (1), at
first, we take each exp(η(0)

i ) = −1 in (3). Then fN can
be rewritten as

fN =
∑

μ=0,1

N∏

i=1

(−1)μi exp(μiξi )

N∏

i< j

exp
(
μiμ j Ai j

)
,

(7)

where

ξi = ki

[
x + pi y + z +

(
k2i
4

+ 3αp2i
4

)
t

]
.

Taking a limit of ki → 0 and considering all the ki
to be of the same asymptotic order, we have

fN =
∑

μ=0,1

N∏

i=1

(−1)μi (1 + μi kiθi )

×
(N )∏

i< j

(1 + μiμ j ki k j Bi j ) + O(kN+1).

(8)

Considering the symmetric property of fN with respect
to ki , we find that fN is factorized by

∏N
i=1 ki . By
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virtue of transformation u = 2(ln f )x , we get a ratio-
nal solution of Eq. (1). It is easily verified that u =
2(ln fN∏N

i=1 ki
)x is also a solution of Eq. (1). For simplic-

ity, we omit constant factor
∏N

i=1 ki of fN and still
denote it as fN . The simplified fN is in the form of

fN =
N∏

i=1

θi + 1

2

(N )∑

i, j

Bi j

N∏

l �=i, j

θl

+ 1

2!22
(N )∑

i, j,s,r

Bi j Bsr

N∏

l �=i, j,s,r

θl + . . .

+ 1

M !2M
(N )∑

i, j,...,m,n

M︷ ︸︸ ︷
Bi j Bkl . . . Bmn

×
N∏

p �=i, j,k,l,...,m,n

θp + · · · ,

(9)

where

θi = x + pi y + z + 3αp2i t

4
,

Bi j = 4

α(pi − p j )2
,

∑(N )
i, j,...,m,n means the summation over all possible

combinations of i, j, . . . ,m, n, which are taken from
1, . . . , N and they are all different. From (9) we usu-
ally get a singular solution. However, if we choose
pM+i = p∗

i (i = 1, 2, . . . , M) for N = 2M with
the condition α < 0, we can get a class of nonsingular
rational solutions named as M-lump solutions which
were confirmed by Satsuma and Ablowitz [3].

2.1 1-Lump solution of Eq. (1)

In this part,wewill calculate 1-lump solutions ofEq. (1)
from the corresponding 2-soliton solutions by taking
exp(η(0)

i ) = −1, (i = 1, 2) and have

f2 = 1 − exp ξ1 − exp ξ2 + exp(ξ1 + ξ2 + A12),

(10)

where

ξi = ki

[
x + pi y + z +

(
k2i
4

+ 3αp2i
4

)
t

]
. (11)

Take the “long wave” limit ki → 0 for i = 1, 2 with
k1
k2

= O(1) and p1
p2

= O(1). Then it yields

exp A12 = 1 + 4k1k2
α(p1 − p2)2

+ O(k3), (12)

and

f2 = k1k2(θ1θ2 + 4

α(p1 − p2)2
+ O(k)). (13)

By virtue of the transformation u = 2(ln f2)x , we find
that the factor k1k2 of f2 can be omitted here. Thus we
have

f2 = θ1θ2 + B12, (14)

where

θi = x + pi y + z + 3αp2i t

4
, (i = 1, 2),

B12 = 4

α(p1 − p2)2
.

By taking p2 = p∗
1 and α = −1 in (14), we obtain a

nonsingular solution

f2 = θ1θ
∗
1 − 4

(p1 − p∗
1)

2 > 0. (15)

Substituting (15) into u = 2(ln f2)x and letting p1 =
pR + ipI , we obtain

u = 2
∂

∂x
ln

[
(
x ′ + pR y

′ + z
)2 + p2I y

′2 + 1

p2I

]

= 4
(
x ′ + pR y′ + z

)

(x ′ + pR y′ + z)2 + p2I y
′2 + 1/p2I

,

(16)

where

x ′ = x + 3
(
p2R + p2I

)

4
t, y′ = y − 3pR

2
t.

Rational solution (16) is a permanent lump solu-
tion with the condition α < 0 and this solution decay-
ing as O(1/x2, 1/y2) for |x |, |y| → ∞ and moving

with the velocity vx = − 3(p2R+p2I )
4 and vy = 3pR

2 . In
Fig. 1, the evolution of this solution is drawn for a par-
ticular choice of the parameters pR and pI . From the
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Fig. 1 Evolution graphs of (16) by choosing z = 10, pR = 1, pI = 1 at time a t = −20, b t = 0 and c t = 20

Fig. 2 Evolution graphs of 2-lump solution by choosing z = 10, pR = 1, pI = 1, hR = 1/40 and hI = 1/2 at time a t = −30,
b t = 0 and c t = 30

expression of solution (16), we find that f2 is a positive
quadratic function, which is consistent with the results
in many literature [8–10].

2.2 Multiple-lump solutions of Eq. (1)

In this part, we will get multiple-lump solutions of
Eq. (1). Taking n = 4 and M = 2, then (9) can be
reduced to f4 expressed as:

f4 = θ1θ2θ3θ4 + B12θ3θ4 + B13θ2θ4 + B14θ2θ3

+ B23θ1θ4 + B24θ1θ3 + B34θ1θ2

+ B12B34 + B13B24 + B14B23,

(17)

where

θi = x + pi y + z + 3αp2i t

4
,

Bi j = 4

α(pi − p j )2
, (i, j = 1, 2, 3, 4).

Substituting (17) into the transformation u =
2(ln f4)x , we obtain a nonsingular solution by taking
p3 = p∗

1, p4 = p∗
2 and α = −1. In this case, f4 is

a positive function composed of quartic and quadratic
perfect square functions, and the obtained rational solu-
tion is a permanent 2-lump solution. In Fig. 2, the 2-
lump solution is drawn for a particular choice of the
parameters in p1 = pR + ipI , p2 = hR + ihI , and
the evolution of this solution is illustrated in time.

Similarly, Eq. (9) can be reduced to f6 by taking
n = 6 and M = 3. The expression of f6 contains 76
terms, and it is omitted here due to the limited space.
Substituting f6 into the transformation u = 2(ln f6)x ,
and taking p4 = p∗

1, p5 = p∗
2, p6 = p∗

3 and α =
− 1, we get a nonsingular solution named as 3-lump
solution of Eq. (1). Then we find that f6 is a positive
function composed by the complete of sextic, quartic
and quadratic square functions. In Fig. 3, the solution
is drawn for a particular choice of the parameters in
p1 = pR + ipI , p2 = hR + ihI and p3 = qR + iqI .
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Fig. 3 Evolution graphs of 3-lump solution by choosing z = 0, pR = 1/5, pI = 1, hR = 1, hI = 1, qR = 2 and qI = 1 at time
a t = − 50, b t = 0 and c t = 50

3 Lump–kink solutions of Eq. (1)

Based on the obtained M-lump solutions, we want to
study the interaction between lumps and kink soli-
tons which is very interesting because lumps will be
drowned or swallowed by the kink solitons.

3.1 Interactive solution between lump and 1-kink
soliton of Eq. (1)

In this part, first we assume f as follows:

f = g21 + h21 + b + kek1x+k2 y+k3z+k4t , (18)

where

g1 = a1x + a2y + a3z + a4t + a5,

h1 = a6x + a7y + a8z + a9t + a10,

ai (i = 1, 2, ...10), b, k and k j ( j = 1, 2, 3, 4) are
parameters to be setted later. Substituting (18) into
Eq. (2) and eliminating coefficients of the polynomial
yields a nonlinear algebraic equations which contains
120 equations and we solve it with the help of Maple
and get a group of solution:

{
a3 = a1a8

a6
,

a4 = 3α
(
a1a22 − a1a27 + 2a2a6a7

)

4
(
a21 + a26

) ,

a7 = a21k2 − a1a2k1 + a26k2
k1a6

,

a8 = −α (a1k2 − a2k1)2

a6k41
,

a9 = −3α
(
2a1a2a7 − a22a6 + a6a27

)

4
(
a21 + a26

) ,

b = − a8
(
a21 + a26

)3

αa6 (a1a7 − a2a6)2
,

k3 = −α (a1k2 − a2k1)2

a26k
3
1

,

k4 = − 1

4k1a26

(
α

(
a21k

2
2 − 2a1a2k1k2

+a22k
2
1 − 3a26k

2
2

)) }
, (19)

which should be satisfied by the conditions

a6 �= 0, a1a6 �= 0, k1a6 �= 0, a1a7−a2a6 �= 0. (20)

To ensure the positiveness of f and the localization of
u, the following conditions should be satisfied with

− a8
αa6

> 0, k > 0. (21)

Since we can get the lump–kink solution of (1) via the
transformation u = 2(ln f )x ,

u = 4(a1g1 + a6h1) + 2kk1ek1x+k2 y+k3z+k4t

g21 + h21 + b + kek1x+k2 y+k3z+k4t
. (22)

Through selecting appropriate values for these
parameters, the dynamic graphs of interactive solution
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Fig. 4 Evolution graphs of (23) by choosing α = −1, z = 1, k = 1, k1 = 1, k2 = 1, a1 = 3, a2 = 1, a5 = 1, a6 = 2, a10 = 2 at time
a t = −80, b t = 0, c t = 80

between lump and kink soliton are shown in Fig. 4. This
figure shows that there are a lump and a kink soliton,
with the time running lump solution begins to be swal-
lowed by kink soliton step by step, until it is swallowed
completely, these two kinds of solitons roll into a kink
soliton and continue to spread.

3.2 Interactive solution between lump and 2-kink
soliton

Further, in this part we want to discuss the interactive
solution between lump and 2-kink soliton. We assume
f is the combination of a quadratic function and two
exponential functions showing as follows:

f = m2 + n2 + c + kg2 + k9h2 + k10g2h2, (23)

where

m = a1x + a2y + a3z + a4t + a5,

n = a6x + a7y + a8z + a9t + a10

g2 = ek1x+k2 y+k3z+k4t ,

h2 = ek5x+k6y+k7z+k8t ,

ai (i = 1, 2, . . . 10), c and k j ( j = 1, 2, . . . 11) are
parameters to be decided later. Substituting (23) into
Eq. (2) and eliminating coefficients of the polynomial
yields a nonlinear algebraic equations which contains
324 equations, and we solve it with Maple and obtain
a group of solution as follows:

{
a2 = (a21 + a26)k2 − a6a7k1

a1k1
,

a3 = a1a8
a6

,

a4 = 3α(a1a22 − a1a27 + 2a2a6a7)

4(a21 + a26)
,

a8 = −α(a1k2 − a2k1)2

a6k41
,

a9 = −3α(2a1a2a7 − a22a6 + a6a27)

4(a21 + a26)
,

c = − a8(a21 + a26)
3

αa6(a1a7 − a2a6)2
,

k = k10(a21 + a26)

k25k9
,

k4 = −α((a1k2 − a2k1)2 − 3a26k
2
2)

4k1a26
,

k8 = α(3a21k
2
2 − (a6k2 + a7k5)2)

4a21k5
,

k1 = −k5, k6 = −k2
}
, (24)

which needs to satisfy the following conditions

a1 �= 0, a1a6 �= 0, a1k1 �= 0, a1k5 �= 0,

k5k9 �= 0, a1a7 − a2a6 �= 0.
(25)

To ensure that f is positive, the conditions should be
further satisfied

c > 0, k9 > 0, k10 > 0. (26)

Then we can obtain the lump–kink solution of
Eq. (1) via the transformation u = 2(ln f )x .

Figure 5 gives the dynamic graphs of interaction
between a lump and a 2-kink soliton by selecting appro-
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Fig. 5 Evolution graphs of u by choosing z = 0, k4 = 1, k5 = −1, k6 = 1, k8 = 1, k10 = 1, k11 = 1, a1 = 1, a5 = 1, a6 = −1 and
a10 = 1 at time a t = −50, b t = −30, c t = −20, d t = 0, e t = 10 and f t = 50

Fig. 6 The plots of u by choosing α = −1, q = p = l = 1, a4 = a5 = b4 = b5 = 1, c4 = d1 = 10, d2 = d3 = d4 = 1 with a
x = y = 0, b x = 10, t = 1/50 and c y = 10, t = 1/50

priate values of the parameters. From Fig. 5, we first
find that there has a pair of kink solitons and a lump.
With time evolving, the lump is swallowed step by step
by kink solitons. Finally, these two kinds of waves roll
into a 2-kink soliton and continue to spread.

Similarly,we can further discuss the interactive solu-
tion between 2-lump and 1-kink soliton as well as the
interactive solution between 2-lump and 2-kink soli-
ton, even the interactive solution between M-lump and
N-kink soliton. However, for this equation the obtained
interactive solution between 2-lump and 1-kink soliton
is just a trivial solution, and we omitted it here.

4 Periodic interactive solutions of Eq. (1)

Periodic wave solutions of nonlinear evolution equa-
tion have attracted tremendous attention from scientists
and were investigated in many literature [19–21].

In this part, we will discuss the periodic interactive
solutions of Eq. (1). With regard to (2), we take f as
follows:

f = s2 + r2 + q cos(c1x + c2y + c3z + c4t + c5)

+ ed1x+d2 y+d3z+d4t+d5 + l, (27)
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where

s = a1x + a2y + a3z + a4t + a5,

r = b1x + b2y + b3z + b4t + b5,

and ai , bi , ci , di (i = 1, 2, . . . 5), q and l are param-
eters to be decided later. Substituting (27) into Eq. (2)
and eliminating coefficients of the polynomial yields a
nonlinear algebraic equationswhich contains 279 equa-
tions, and we solve it with Maple and obtain a group of
solution as follows:

{
a2 = 0, b2 = 0, c2 = 0, k2 = 0, a3 = 4a4

d21
,

b3 = 4b4
d21

, c3 = −4c4
d21

, d3 = 4d1d4 − 3αd22
d31

}
,

(28)

with d1 �= 0.
Then a periodic interactive solution of Eq. (1) can be

obtained through the transformation u = 2(ln f )x .
Figure 6 gives the dynamic graphs of periodic inter-

active solutions of Eq. (1) by selecting appropriate val-
ues of the parameters.

5 Conclusion

Lump wave solutions have attracted much attention of
mathematical physicists, for these solutions may well
describe rogue wave dynamics, especially in oceanog-
raphy and nonlinear optics. Many papers [7–11] con-
cerning 1-lump wave solutions have been reported
recently. In this paper, we investigate M-lump solu-
tions, lump–kink solutions as well as periodic inter-
active solutions for a (3 + 1)-dimensional nonlinear
system and further discuss dynamic properties of these
solutions. The method applied in this paper is universal
and can be adapted to other nonlinear evolution equa-
tions. Meanwhile, readers could further construct other
types of interactive wave solutions, such as peak waves
and lump waves. In the near future, we will further
investigate other types of interactive wave solutions of
nonlinear evolution equations.
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