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Abstract The effect of the nonlinear terms on bifur-
cation behaviors of limit cycles of a simplified rail-
way wheelset model is investigated. At first, the sta-
ble equilibrium state loses its stability via a Hopf
bifurcation. The bifurcation curve is divided into a
supercritical branch and a subcritical one by a gen-
eralized Hopf point, which plays a key role in deter-
mining the occurrence of flange contact and derail-
ment of high-speed railway vehicles, and the occur-
rence of this critical situation is an important decision-
making criteria for design parameters. Secondly, bifur-
cations of limit cycles are discussed by comparing the
bifurcation behavior of cycles for two different non-
linear parameters. Unlike local Hopf bifurcation anal-
ysis based on a single bifurcation parameter in most
papers, global bifurcation analysis of limit cycles based
on two bifurcation parameters is investigated, simulta-
neously. It is shown that changing nonlinear param-
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eter terms can affect bifurcation types of cycles and
division of parameter domains. In particular, near the
branch points of cycles, two symmetrical limit cycles
are created by a pitchfork bifurcation and then two sym-
metrical cycles both undergo a period-doubling bifur-
cation to form two stable period-two cycles. Around
the resonant points, period orbits can make several
turns, whose number of turns corresponds to the ratio
of resonance. Thirdly, near the Neimark–Sacker bifur-
cation of cycles, a stable torus is created by a super-
critical Neimark–Sacker bifurcation, which shows that
the orbit of the model exhibits modulated oscillations
with two frequencies near the limit cycle. These results
demonstrate that nonlinear parameter terms can pro-
duce very complex global bifurcation phenomena and
make obvious effects on possible huntingmotions even
though a simple railway wheelset model is concerned.

Keywords Wheelset · Hunting motion · Hopf
bifurcation · Period-doubling bifurcation · Neimark–
Sacker bifurcation

1 Introduction

A wheelset is the basic unit of a railway vehicle. The
interaction between wheels and rails involves both
complex geometry of wheel treads and rail heads
and nonconservative forces generated by the relative
motion in the contact area [1], which can control the
wear of wheels and rails, the vehicle ride performance
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and running safety. So developing analytical or numer-
ical models of wheelset motion and describing the
motion of a rolling wheelset incorporated in a vehi-
cle have been receiving increasing attention frommany
researchers in the fields of mechanical manufacturing,
vibration control engineering and applied mathemat-
ics [1–5]. Hunting motion is a common phenomenon
in railway vehicles which is characterized by lateral
oscillations of the wheel flanges banging from one rail
to the other. In general, a railway vehicle is stable at low
speeds andwill undergo a decaying oscillation to return
to the center of the track following a disturbance of
the vehicle [1]. While when the running speed exceeds
some critical value, the oscillations following a distur-
bance grow and eventually lead to a limit cycle oscilla-
tion or a huntingmotion, which can be explained by the
Hopf bifurcationmechanismof the nonlinear dynamics
theory. Hence, more recent studies have utilized bifur-
cation theory to investigate the hunting motion of rail
vehicles.

In [6], the authors studied the Hopf bifurcation for
a motion model with flange contact and nonlinear yaw
dampers and discussed the amplitude and frequency
of the bifurcated limit cycle based on the Bogoliubov
averaging method. Their results indicated that the non-
linearities in the primary suspension and flange contact
contribute significantly to the huntingbehavior. Sedighi
et al. [7] presented an investigation on the Hopf bifur-
cation of railway bogie behavior in the presence of non-
linearities which are yaw damping forces in longitudi-
nal suspension system and the friction creepage model
of the wheel/rail contact including clearance. By using
the Bogoliubov averaging method, a relation between
the limit cycle amplitude and parameters of the sys-
tem was introduced. It was shown that in contrary to
lateral damping, yaw stiffness has a major effect on
hunting velocity and can be regarded as an important
design parameter. The Hopf bifurcation behavior of a
vehicle dynamic model including a semi-carbody and
a bogie was discussed in [8] based on the center mani-
fold theorem and the normal form theory. The influence
of parameter variation on the Hopf normal form coef-
ficient Rec1(0) was studied, and numerical shooting
method was used to verify their theoretical results.

In [9], a lateral mathematical model of a railway
wheelset with two degrees of freedom was discussed.
Therein the Poincaré method and normal forms have
been used to derive the symbolic expression of the first-
order fine focus, which can also be used to determine

the Hopf bifurcation type. In addition, the influence of
different parameters on the critical velocity was also
investigated. It was shown that with the increase in the
yaw damper, secondary longitudinal or lateral stiffness,
the Hopf bifurcation value increases, which is opposite
to the effect of the creep coefficient. In [10], the Hopf
bifurcation behavior of a railway bogie was analyzed,
and the effect of the yaw damper and wheel tread shape
on the Hopf bifurcation type was also discussed. In
[11], a simplified wheelset dynamic model
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d2y

dt2
= −2κy

mv

dy

dt
− kx

m

(

1 − l0
l

)

y + 2κy
m

ψ,

d2ψ

dt2
= −2d20κx

Iv

dψ

dt
− 2d0κxγe

I r0
y − kxd21

I
ψ,

(1)

was discussed by Yabuno et al., where the lateral and
longitudinal creepages were considered and the creep
force in each direction was linearly proportional to the
creepage and the restoring force was implemented by
the longitudinal spring stiffness. y is a lateral displace-
ment, and ψ is a yawing motion variable. The phys-
ical significance and values of the parameters in Eq.
(1) are listed in Table 1 except the forward speed v.
Wherein the authors proposed a stabilization control
method for the hunting motion by reducing the unsym-
metrical effect of the stiffness matrix and showed that
under this control no huntingmotion occurs at anyfinite
speed.

However, as is indicated in some papers [12–
15], the creepage–creep force relationship in realistic
wheelset model is nonlinear and damped according to
the Coulomb friction law and Vermeulen and Johnson
creep theory.When the left and right contact angles dif-
fer or the flange contact occurs, the gravitational stiff-
ness force can not be neglected which arises from the
variation of the normal reaction between wheels and
rails with lateral displacement [13]. According to the
center manifold theory [16,17] and bifurcation theory
of limit cycles, to analyze theHopf bifurcation type and
bifurcation structure of cycles, the third-order terms in
the wheelset model must be considered. In addition,
the factors of kinematics of the contact points and the
mechanical suspension can also estimated by nonlinear
terms.

Based on the above analysis, a nonlinear wheelset
motion model is discussed here, which is obtained by
adding nonlinear cubic terms after the model (1) and
reserving the original linear terms and parameters. Fig-
ure 1a, b shows the mechanical model of wheelset with
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Table 1 The values and
physical meanings of the
parameters in Eq. (1)

Constant Description Value

m Mass of the wheelset 2.13 kg

I Moment of inertia 0.00347 kg·m2

l Length of the spring in the equilibrium state 0.056 m

l0 Natural length of the spring 0.035 m

kx (ky) Longitudinal (lateral) suspension stiffness 180 N/m (variable)

d0 Half of track gauge 0.049 m

r0 Centered wheel rolling radius 0.036 m

γe Wheel tread angle (slope of conical wheel) 0.025

ωy (ωψ ) Natural frequency in lateral (yawing) direction 19.0 rad/s (35.0 rad/s)

κx (κy) Longitudinal (lateral) creep coefficient 180 N (144 N)

d1 Half of spring spacing (lateral) 0.075 m

Fig. 1 a The mechanical model of wheelset with elastic joints. b Configuration of the wheelset and rails. The description and values
of the symbols are listed in Table 1. These two figures are selected from [15]

elastic joints and nomenclature symbols relative to the
wheelset and rails. All parts in Fig. 1 except the springs
are assumed to be stiff and the springs have a linear
characteristic.

By dimensionless transformations y = d0y∗, t =
t∗/ωψ and v = d0ωψv∗ as described in [15], the fol-
lowing model
{
ÿ∗ + d11

v∗ ẏ∗ + (k11 + ka11)y∗ + k12ψ + αyyy y∗3

+αyyψ y∗2ψ + αyψψ y∗ψ2 + αψψψψ3 = 0,

{
ψ̈ + d22

v∗ ψ̇ + k21y∗ + k22ψ + βyyy y∗3

+βyyψ y∗2ψ + βyψψ y∗ψ2 + βψψψψ3 = 0,
(2)

is obtained. The relationship of coefficients of (1) and
(2) is given as following

d11 = 2κy
md0ω2

ψ

, d22 = 2κxd0
Iω2

ψ

,

v∗ = v

d0ωψ

, k11 = kx (1 − l0/ l)

mω2
ψ

,
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ka11 = ky
mω2

ψ

, k22 = kxd21
Iω2

ψ

,

k12 = −2κy
md0ω2

ψ

, k21 = 2d20κxγe
I r0ω2

ψ

.

These cubic terms as described above are the nonlin-
ear effects, including kinematics of the contact points,
creepage–creep force and mechanical suspension. v∗
expresses a dimensionless running speed, and ka11 is
regarded as a dimensionless lateral suspension stiff-
ness.

With the change of variables

y1 = y∗, y2 = ẏ∗, y3 = ψ, y4 = ψ̇,

then (2) turns into

⎛

⎜
⎜
⎝

ẏ1
ẏ2
ẏ3
ẏ4

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

y2
− d11

v∗ y2−(k11 + ka11)y1−k12y3−αyyy y31−αyyψ y21 y3−αyψψ y1y23−αψψψ y33
y4

− d22
v∗ y4 − k21y1 − k22y3 − βyyy y31 − βyyψ y21 y3 − βyψψ y1y23 − βψψψ y33

⎞

⎟
⎟
⎠. (3)

For this model, the authors [15] investigated non-
linear characteristics of the bifurcation at the criti-
cal speed and clarified the effect of the lateral linear
stiffness on the nonlinear stability against disturbance.
However, for this model there are a lot of questions
not to be solved in [15]. For example, these values of
αyyy, . . . , βyψψ , and βψψψ are not stated and the anal-
ysis of Hopf bifurcation is not quiet clear. The effect of
these nonlinear coefficients on bifurcation structure of
equilibria and cycles has not been discussed yet. Bifur-
cation curves of cycles and resonant points are not given
or found. As far as we know, bifurcation structure of
cycles for any wheelset model has not been discussed
yet in present papers. Based on the above analysis, in
this paper we mainly discuss the number and stabil-
ity of equilibria and then indicate that the boundary
of attraction region is a Hopf bifurcation curve, which
is divided into a supercritical branch and a subcritical
one by a generalized Hopf point. Next, bifurcations of
cycles including the generalize Hopf bifurcation, limit
point bifurcation, pitchfork bifurcation and Neimark–
Sacker bifurcation havebeen investigated and exhibited
by numerical simulations. At last, the effect of the non-
linear coefficientαyyy on bifurcation structure of cycles
has been discussed by comparing bifurcation diagrams
for two different values of αyyy .

2 Bifurcations of equilibria

Now we discuss the number and stability of equilibria
for the model (3).

2.1 The number and stability of equilibria

Obviously, an equilibrium Y0 = (y10, y20, y30, y40) of
(3) should satisfy the following equations:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y20 = y40 = 0,

(k11+ka11)y10+k12y30 + αyyy y310 + αyyψ y210y30

+αyψψ y10y230 + αψψψ y330 = 0,

k21y10 + k22y30 + βyyy y310 + βyyψ y210y30

+βyψψ y10y230 + βψψψ y330 = 0.

(4)

The Jacobian matrix of (3) evaluated at Y0 is given by

AY0 =

⎛

⎜
⎜
⎝

0 1 0 0
δ1 − d11

v∗ δ2 0
0 0 0 1
δ3 0 δ4 − d22

v∗

⎞

⎟
⎟
⎠,

where

δ1 = −(k11 + ka11) − 3αyyy y
2
10 − 2αyyψ y10y30

−αyψψ y230,

δ2 = −k12 − αyyψ y210 − 2αyψψ y10y30 − 3αψψψ y230,

δ3 = −k21 − 3βyyy y
2
10 − 2βyyψ y10y30 − βyψψ y230,

δ4 = −k22 − βyyψ y210 − 2βyψψ y10y30 − 3βψψψ y230.

Since there are so many parameters, it will be diffi-
cult to determine the characteristics of equilibria when
all the parameters are changed. Here ka11 is chosen
as a bifurcation parameter and all the other parame-
ters are fixed as listed in Table 2. Obviously, the origin
O(0, 0, 0, 0) is a trivial solution to Eq. (4), while non-
trivial solutions to Eq. (4) about the parameter ka11 is
too complicated to be given analytically. So the char-
acteristics of equilibria are discussed by the method of
numerical simulations. Geometrical demonstrations of
the last two equations of Eq. (4) are exhibited in Fig.
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Table 2 Values of the parameters in Eq. (2)

k11 k12 k21 k22 d11 d22 v∗ αyyy αyyψ αyψψ αψψψ βyyy βyyψ βyψψ βψψψ

0.0258 −2.26 0.141 0.23785 2.26 4.15 4.4328 1.1 0.4 0.5 0.7 0.6 0.4 0.9 0.6

2a–c for the different intervals of ka11. The red sur-
face corresponds to the second equation, and the green
one corresponds to the last. The intersection lines of
two surfaces constitute equilibrium curves of themodel
(3). Wherein it is shown that the number of equilibria
is changing with the parameter ka11.

Now we discuss stability types and bifurcation
behaviors of equilibria. The following numerical simu-
lations are carried out by the software packageMatcont
[18]. Based on the eigenvalues of AY0 , stability types
and bifurcation points of equilibria are displayed in
Fig. 3a. The dash magenta lines denote unstable equi-
libria, and the solid blue line denotes the stable origin
O . The labels BP, H and LP1,2 are the branch point,
the Hopf bifurcation point and limit point bifurcation
points, through which the interval of ka11 is divided
into four parts. In different part, the equilibria have dif-
ferent features. Combining Fig. 2 with Fig. 3a, about
the characteristics of equilibria we get the following
conclusion:

Proposition 1 If ka11 is regarded as a bifurcation
parameter and all the other parameters are fixed as
listed in Table 2, then we have:

(a) when ka11 < −2.899, there only exists an unstable
equilibrium O;

(b) when −2.899 < ka11 < −1.365546, there exist
two pairs of unstable equilibria and an unstable
equilibrium O;

(c) when−1.365546 < ka11 < 0.7, there exists a pair
of unstable equilibria and an unstable equilibrium
O;

(d) when ka11 > 0.7, there exists a pair of unstable
equilibria and a stable equilibrium O.

2.2 Stable parameter domain of the origin O

From the above analysis, it is shown that although there
exist several equilibria, the origin O is the only stable
equilibrium, which can be achieved when the lateral
stiffness parameter ka11 exceeds some critical value. A

stable equilibrium state O for ka11 = 1 is exhibited in
Fig. 3b.

In the following, we will give a stable parameter
domain of the originO based on twobifurcation param-
eters and then discuss what kind of bifurcation will be
encountered when the origin O loses its stability. Here
ka11 and v∗ are chosen as two bifurcation parameters,
and k11, k12, k21, k22, d11 and d22 are chosen as those
in Table 2. By theHartman–Grobman theorem [16] and
bifurcation conditions of equilibria [17], it is shown that
local stability and bifurcation curves of the originO can
not be affected by the values of αyyy, . . . , βyψψ , and
βψψψ , which means that these parameters can be arbi-
trarily selected. In order to conveniently numerically
simulate, αyyy, . . . , βyψψ , and βψψψ are also chosen
as those in Table 2. Now based on the Hurwitz crite-
rion, we can choose appropriate parameter values of
ka11 and v∗ such that the origin O is locally asymptot-
ically stable. A stable parameter domain for the origin
O is exhibited in Fig. 4a.

2.3 Hopf bifurcation of the origin O

In this subsection, we will give the analytic expression
of the boundary in Fig. 4a and discuss what kind of
bifurcation will be encountered when the parameters
cross the boundary. The Jacobian matrix AY0 evaluated
at the origin is given as

A0 =

⎛

⎜
⎜
⎝

0 1 0 0
− k11−ka11 − d11

v∗ − k12 0
0 0 0 1

− k21 0 − k22 − d22
v∗

⎞

⎟
⎟
⎠.

It is well known that if the model (3) undergoes a Hopf
bifurcation at the origin O , the Jacobian matrix A0

will have a simple pair of conjugated purely imagi-
nary eigenvalues λ1,2 and the other two eigenvalues
λ3,4 have no zero real parts. So the Hopf bifurcation
curve CH should satisfy the following relationship
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CH :
{
k12= k∗

12 = − d11d22
[
(k11+ka11)d222+(k11+k22+ka11)d11d22+(k11−k22+ka11)2v∗2+d211k22

]

k21v∗2(d11+d22)2
,

γ � d11k22+d22k11+d22ka11
d11+d22

> 0.
(5)

When (5) holds, a pair of conjugated imaginary eigen-
values λ1,2(k∗

12) = ±iω appears and ω = √
γ . To

determine the nondegeneracy of the Hopf bifurcation
and predict the direction of the bifurcated limit cycle,
we deduce the normal form along the lineCH and com-
pute the first Lyapunov coefficient l1 to decide the sta-
bility of the cycle.

For given k12 = k∗
12, look for complex eigenvectors

q and p, respectively, corresponding to λ1(k∗
12) = iω

and λ2(k∗
12) = −iω such that

A0q = iωq, AT
0 p = −iωp and 〈p, q〉 = 1,

where AT
0 is the transposed matrix of A0 and 〈p, q〉 =

∑4
i=1 piqi is the standard scalar product in C4. It is

easy to verify that the following vectors can do the job,
with

q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

d22(k11−k22+ka11)
k21(d11+d22)

− i d22ω
k21v∗

d22ω2

k21v∗ + i d22ω(k11−k22+ka11)
k21(d11+d22)

1

iω

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

p = 1
τ

⎛

⎜
⎜
⎜
⎜
⎜
⎝

d11
v∗ − iω

1

d11k22
k21v∗ + iωd11

(
d22

k21v∗2 + k11−k22+ka11
k21(d11+d22)

)

− d11(k11−k22+ka11)
k21(d11+d22)

+ i d11ω
k21v∗

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where

τ = 2ω

[
ω(d11 + d22)

k21v∗ + i

(
d11d22
k21v∗2

+ (d11 − d22)(k11 − k22 + ka11)

k21(d11 + d22)

)]

.

Let y = (y1, y2, y3, y4)T and for y we perform the
following coordinate transformation
{
z = 〈p, y〉,
u = y − 〈p, y〉q − 〈 p̄, y〉q̄.

(6)

In the coordinates of (6), then the vector y = zq+ z̄q̄+
u, where z ∈ C1, u ∈ R4, and

zq+ z̄q̄∈Span{Req, Imq},
u ∈ Span{y|A0y=λi y, i =3, 4}.

Substituting y into (3), we get
{
ż = iωz + A21z2 z̄ + · · ·,
u̇ = A0u + · · ·, (7)

where A21 is listed in “Appendix.” The omitted terms
are the rest of third-order polynomials and above about
z, z̄ and y in the complex field, which hardly plays any
role in determining the Hopf bifurcation type, thus they
are omitted here.

In view of no quadratic terms in Eq. (3), the center
manifold has the form u = V (z, z̄) = O(|z|3). There-
fore, the restriction of (7) to the center manifold has the
form

ż = iωz + A21z
2 z̄ + · · ·. (8)

The first Lyapunov coefficient l1 [17] along the lineCH

has the representation

l1(k
∗
12) = 1

ω
Re(A21).

The transversality condition along the line CH has the
form

d1(k
∗
12) = ∂

∂k12
Re

(
λ1(k

∗
12)

)
.

According to the Hopf bifurcation theory in [17], we
get the following result:

Proposition 2 If l1(k∗
12) �= 0 and d1(k∗

12) �= 0, the
model (3) will undergo aHopf bifurcation at k12 = k∗

12.
Moreover, when l1(k∗

12) > 0, the bifurcation is subcrit-
ical and an unstable limit cycle appears for k12 < k∗

12;
when l1(k∗

12) < 0, the bifurcation is supercritical and
a stable limit cycle appears for k12 > k∗

12.

In order to verify this result by numerical simula-
tions, ka11 and v∗ are chosen as free variables and the
other parameters are chosen as those in Table 2. The
curve CH can be specially given as follows

1.61891v∗2k2a11 − 0.68658ka11v
∗2 − 2.18721v∗2

+ 43.0653ka11 + 6.68925 = 0,
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whose geometric shape is coincided with the bound-
ary of the yellow domain in Fig. 4a. When parameters
ka11 and v∗ are chosen on the line CH, the Jacobian
matrix A0 has a pair of conjugate imaginary eigenval-
ues. Thence the origin O loses its stability through a
Hopf bifurcation. In order to judge theHopf bifurcation
supercritical or subcritical, we need to compute the first
Lyapunov coefficient l1 along the line CH. The expres-
sion of l1(ka11, v∗) is given in “Appendix.” By compu-
tation, it is shown that the Hopf bifurcation curve CH

is divided into two branches H+ and H−. The upper
branch H+ corresponds to the positive first Lyapunov
coefficients, and the lower branch H− corresponds to
the negative ones. Thus, for a given ka11 the system (3)
exhibits different bifurcation types when the parameter
v∗ crosses the branches H+ and H−. Since the stabil-
ity of the bifurcated cycles depends on the sign of l1
rather than its magnitude, for the sake of simplifica-
tion, the following Lyapunov coefficients computed by
Matcont are standardized but with the same signs as
the expression of l1(ka11, v∗).

Figure 4b shows a bifurcation diagram for ka11 =
0.7. It is shown that with the increase of v∗, the equi-
librium O loses its stability through a Hopf bifurca-
tion and an unstable limit cycle is bifurcated from
v∗ = 4.432839, which just corresponds to the point P1
in Fig. 4a. The unstability can be verified by the positive
first Lyapunov coefficient l1 = 0.8630817, so the upper
branch H+ is a subcritical Hopf bifurcation curve.

Figure 4c shows that for ka11 = 0.05774, the
equilibrium O also experiences a Hopf bifurcation at
v∗ = 2.032378, and the distinction is that a stable limit
cycle is bifurcated from v∗ = 2.032378, which cor-
responds to the point P2 in Fig. 4a. The negative first
Lyapunov coefficient l1 = −0.1888022 indicates that
the bifurcated limit cycle is stable, so the lower branch
H− is a supercritical Hopf bifurcation curve.

2.4 Generalized Hopf bifurcation of the origin O

The dividing point GH in Fig. 4a is a generalized Hopf
point, atwhich the first Lyapunov coefficient l1 = 0 and
the second Lyapunov coefficient l2 = − 0.7331651 �=
0. So the model will undergo a generalized Hopf bifur-
cation at the point GH, and a parametric portrait is
exhibited in Fig. 4d. Therein two limit cycles with
opposite stability will generate and a nondegenerate
limit point bifurcation curve of cycles T will also
appear, whose expression is given as following

Fig. 2 Equilibrium curves are constituted of the intersection
lines of two surfaces. a One intersecting line for − 5 <

ka11 < −2.899; b five intersecting lines for −2.899 < ka11 <

−1.365546; c three intersecting lines for−1.365546 < ka11 < 2
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Fig. 3 aBifurcations and stability of equilibriawith the variation
of ka11. The solid blue line denotes the stable origin O , and the
dash magenta lines correspond to unstable equilibria. Bifurca-

tion points LP1,2 for ka11 = −2.899, BP for ka11 = −1.365546
and H for ka11 = 0.7. bA phase diagram of a stable equilibrium
O for (ka11, v∗) = (1, 4.4328). (Color figure online)

v∗ = 6.291k3a11 − 7.273k2a11 + 4.238ka11 + 1.88,

on which two limit cycles collide to form a semistable
cycle. Next we will choose different parameter points
in Fig. 4d to exhibit the corresponding four phase dia-
grams in Fig. 5.

1. When a parameter pair (ka11, v∗) = (0.15, 3.1) is
chosen in region 1©, corresponding to the point A
in Fig. 4d, there exists a stable limit cycle and an
unstable equilibrium O , which is shown in Fig. 5a.

2. When a point B for (ka11, v∗) = (0.4, 3.1) is cho-
sen in region 2© in Fig. 4d, there exist two limit
cycles with opposite stability. The outer one (red)
is stable and the inner one (magenta) is unstable,
which is shown in Fig. 5b. Wherein the black and
the green trajectories tending to the red cycle show
that the outer cycle is stable. The blue trajectory
from the position 	� approaching to the equilibrium
O verifies that the inner magenta cycle is unstable.

3. When a point D for (ka11, v∗) = (0.2, 2) is chosen
in region 3©, there is only a stable equilibrium O ,
which is shown in Fig. 5c.

4. When a point C for (ka11, v∗) = (− 0.0951,
1.106685) is chosen on the line T , a semistable
cycle appears and it is stable from the outside and
unstable from the inside, which is verified by two

trajectories with different initial values. From Fig.
5d, we find the outer trajectory approaches the limit
cycle (red) and the inner one is away from it.

By comparing the properties of Fig. 5, it is shown
that the region 2© in Fig. 4d is a bistable domain. When
a perturbance near the equilibrium O is small, then the
wheelset will undergo a decaying oscillation to return
to the center of the track.When the perturbance near the
equilibrium O is large enough to exceed the unstable
cycle shown in Fig. 5b, then the stable hunting motion
takes place in the railway vehicle.

3 Bifurcations of the cycles from the point H1

From the above analysis, it is shown that theHopf bifur-
cation curve of the equilibrium O is independent of
the nonlinear coefficients αyyy, . . . , βyψψ , and βψψψ .
In the following, it is shown that bifurcation curves
of cycles will be affected by them. Now we study the
effect of αyyy on the bifurcation structure of cycles and
the effect of the other parameters is discussed similarly
and omitted here. Here we choose two different values
of αyyy to compare the bifurcation structure of cycles
and the other parameter values remain unchanged. ka11
and v∗ are also regarded as bifurcation parameters.
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Fig. 4 a The shaded area is a stable parameter domain of the
origin O . The generalized Hopf point GH for (ka11, v∗) =
(0.113035, 2.269349) divides the Hopf bifurcation curve into
H+ and H−, corresponding to a Hopf bifurcation with the pos-
itive and the negative first Lyapunov coefficient, respectively.
P1(0.7, 4.432839) and P2(0.05774, 2.032378) are two represen-
tative points on each branch. b When ka11 = 0.7 and v∗ varies
from the bottom up, the origin O is stable (solid red line) at first
and then becomes unstable (dash blue line). A family of unstable
limit cycles bifurcates from the point H1, whose coordinates just

correspond to the point P1 in a. c When ka11 = 0.05774 and v∗
increases, the equilibrium O loses its stability and a family of
stable limit cycles bifurcates from H2 (v∗ = 2.032378), which
corresponds to the point P2 in a. d A larger version of some
neighborhood of the point GH in a, T is a limit point bifurcation
curve of cycles. The domain is divided into three parts 1©, 2©
and 3© by curves H−, H+ and T . C(0.5, 2.965725) is a typi-
cal point on T , and A(0.15, 3.1), B(0.4, 3.1) and D(0.2, 2) are
representative points in each region, respectively. (Color figure
online)

3.1 Bifurcation structure of cycles for αyyy = 1.1

Figure 4b shows that when ka11 = 0.7, a family of
unstable limit cycles is bifurcated from the point H1 by

an subcritical Hopf bifurcation. Next, we will discuss
bifurcation behaviors of the cycles resulted from H1

with the variation of v∗. FromFig. 6a, we find that as v∗
decreases, a family of unstable limit cycles (magenta)
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Fig. 5 Phase diagrams of the model (3) for different param-
eters in Fig. 4d. a For (ka11, v∗) = (0.15, 3.1) in region 1©,
there is only a stable limit cycle. b For (ka11, v∗) = (0.4, 3.1)
in region 2©, there are two limit cycles with opposite stability.
The outer cycle (red) is stable, and the inner one (magenta)
is unstable. The mark 	� is the position for initial values

(− 0.05, 0.055, 0.03, 0.04). c For (ka11, v∗) = (0.2, 2) in region
3©, there is only a stable equilibrium for optional initial values.
d For (ka11, v∗) = (0.5, 2.965725) on the line T , there exists a
semistable cycle, which is stable from the outside and unstable
from the inside. (Color figure online)

bifurcates from H1 and then a cycle limit point labeled
by LPC1 is encountered at v∗ = 3.267744, which
means that the limit cycle manifold has a fold here.
When v∗ begins to increase, a series of stable limit
cycles (blue) exists till a Neimark–Sacker bifurcation
point labeled by NS1 is encountered at v∗ = 14.10666.
The negative normal form coefficient −0.0041129

indicates that a stable torus bifurcates from the limit
cycle NS1.

Figure 6a shows a bifurcation diagram of cycles for
ka11 = 0.7. It is well known that bifurcation values of
v∗ will be changed with the variation of ka11. So the
Neimark–Sacker bifurcation curve and the limit point
bifurcation curve of cycles are shown in Fig. 6b. The
points Q1 and Q2 on the bifurcation curves just corre-
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Fig. 6 a Bifurcation structure of the cycles bifurcated from
H1, the magenta lines denote unstable limit cycles and the blue
ones indicate stable cycles. The red line LPC1 and the green
line NS1 are a cycle limit point and a Neimark–Sacker bifur-
cation point, respectively. b The green line NSc is a Neimark–
Sacker bifurcation curve of cycles, and the red line T is a limit
point bifurcation curve of cycles. Q1 and Q2 are two typical
points on the two lines, which just correspond to the bifurca-

tion points in a. The explanation of H± and GH is the same
as that in Fig. 4d. R3 for (ka11, v∗) = (0.5134421, 11.87089)
and R4 for (ka11, v∗) = (0.1134707, 8.931515) are a 1:3 reso-
nance and a 1:4 resonance point, respectively. cA stable torus for
(ka11, v∗) = (0.13, 10) above the line NSc in b. dAperiod-three
cycle for the point R3. e A period-four cycle for the point R4.
f A period-six cycle for (ka11, v∗) = (0.25, 19). (Color figure
online)
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spond to the bifurcation points in Fig. 6a. By compar-
ing Fig. 6b with Fig. 4d, it is shown that the curve T
in Fig. 4d is the limit point bifurcation curve of cycles,
and the Neimark–Sacker bifurcation curve of cycles
NSc is above the Hopf bifurcation curve H±. Figure
4d shows that when parameters are chosen in region 1©,
there exists a stable limit cycle. Figure 6b shows that
with the increase of v∗ the stable limit cycle loses its
stability through a Neimark–Sacker bifurcation and a
two dimensional torus will arise for parameters above
the line NSc. Negative normal form coefficients along
the line NSc indicate that the Neimark–Sacker bifur-
cation is supercritical and the torus is stable. A phase
diagram of a stable torus for (ka11, v∗) = (0.13, 10) is
shown in Fig. 6c.

In Fig. 6b, on the line NSc there exist two resonant
points. One is 1:3 resonance point R3, at which the

cycle has a pair of Floquet multipliers μ1,2 = e± 2π
3 i .

When parameters (ka11, v∗) are chosen near the 1:3 res-
onance point, a period-three cycle appears which can
make three turns before closure. A typical phase dia-
gram for the point R3 is displayed in Fig. 6d. The other
is 1:4 resonance point R4, at which the cycle has a pair
of Floquet multipliers μ1,2 = e± π

2 i . When parame-
ters (ka11, v∗) are chosen near the 1:4 resonance point,
there exists a period-four cycle and a typical phase dia-
gram for the point R4 is displayed in Fig. 6e. From the
above analysis, we find that when parameters are cho-
sen near the line NSc, a stable torus or a period-three
or period-four cycle is created. While when parame-
ters are chosen a little far from the line NSc, some new
bifurcation phenomena arise, which is irrelevant to the
Neimark–Sacker bifurcation of cycles. For example, a
period-six cycle appears for (ka11, v∗) = (0.25, 19),
which is exhibited in Fig. 6f.

3.2 Bifurcation structure of cycles for αyyy = 0.4

For αyyy = 0.4, we also discuss bifurcations of the
cycles resulted from the point H1. From Fig. 7a, we
find that with the decrease in v∗, a cycle limit point
arises at v∗ = 2.42781 labeled by LPC2, through
which the unstable limit cycles (magenta) turn into sta-
ble ones (blue). When v∗ increases, the stable limit
cycles undergo a pitchfork bifurcation at a cycle branch
point v∗ = 6.671552 labeled by BPC1 and then
becomeunstable ones shown inmagenta lines.Apair of
symmetrical stable limit cycles bifurcates from BPC1

and continues until another point BPC2 is encoun-
tered. As v∗ further increases, the magenta unstable
limit cycles become stable ones (blue). Then the sta-
ble limit cycles lose their stabilities again through a
Neimark–Sacker bifurcation at v∗ = 19.68055 labeled
by NS2, at which a positive normal form coefficient
0.00086345 indicates that an unstable torus is cre-
ated. A stereoscopic bifurcation diagram in three-
dimensional space for v∗ ∈ [2, 12] is displayed in
Fig. 7b.

Bifurcation curves of cycles for αyyy = 0.4 are
exhibited in Fig. 7c, which is contrasted with Fig. 6b
for αyyy = 1.1. By comparing Fig. 7c with Fig. 6b,
it is shown that the Hopf bifurcation curve H± can-
not be affected by the value of αyyy , while bifurca-
tion curves of cycles can be affected by it. In Fig. 6b,
when parameters are chosen between H± and NSc,
there exists a stable limit cycle, which loses its sta-
bility through a supercritical Neimark–Sacker bifur-
cation when parameters cross the line NSc from bot-
tom to up. While the bifurcation structure in Fig. 7c
is more complicated compared with Fig. 6b. Figure 7c
shows that besides a 1:4 resonance point R4′, there
also exists a 1:1 resonance point R1, at which the limit
cycle has a pair of Floquet multipliers μ1,2 = 1 and
fromwhich a branch point curve of cycles BPC± bifur-
cates. In addition, the Neimark–Sacker curve NS∓

1,2

is divided into a supercritical branch NS−
1 , a subcrit-

ical branch NS+
1 and a neutral saddle cycle branch

NS+
2 by R1 and CH. Labels of curves and bifurcation

points are explained in the caption of Fig. 7c. Now
we analyze bifurcation behaviors of limit cycles when
a parameter point is chosen in different domains of
Fig. 7c.

1′ When parameters are chosen between H− and
NS−

2 and on the left of the line 1, there exists a sta-
ble limit cycle, which is generated by a supercritical
Hopf bifurcation of the origin O . A phase diagram for
(ka11, v∗) = (− 0.08, 3.5) is exhibited in Fig. 8a. As
v∗ increases and crosses the neutral saddle cycle curve
NS−

2 , the stable limit cycle becomes unstable.
2′ For parameters between the line 1 and the line 2,

like the case in Fig. 6b, the unstable limit cycles resulted
from H+ undergo a limit point bifurcation at T ′ and
then turn into stable cycles, which are always present
till the line BPC− is encountered. When v∗ crosses
the line BPC−, the stable limit cycles lose stabilities
and a pair of symmetrical stable cycles appears. A
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Fig. 7 a Bifurcation structure of cycles for ka11 = 0.7 and
αyyy = 0.4. The magenta lines and the blue ones denote unsta-
ble cycles and stable limit cycles, respectively. The red lines
correspond to bifurcation points of cycles. Cycle limit point
LPC2 for v∗ = 2.42781, cycle branch point BPC1 (BPC2)
for v∗ = 6.671552 (v∗ = 10.35964) and Neimark–Sacker
point NS2 for v∗ = 19.68055. b Bifurcation structure of the
cycles from H1 in three-dimensional space. The explanation
of labels is the same as that in a. c Bifurcation curves and
bifurcation points for αyyy = 0.4. The meaning of T ′ and
GH′ for (ka11, v∗) = (− 0.05231, 1.43756) is the same as that
of T and GH, respectively. BPC± is a branch point bifurca-

tion curve. The green line NS±
1 is a Neimark–Sacker bifurca-

tion curve, which is divided into a supercritical branch NS−
1

and a subcritical branch NS+
1 by CH, while the magenta lines

NS±
2 are neutral saddle cycle curves. R1 for (ka11, v∗) =

(0.62932, 16.46944) is a 1:1 resonance point, and R4′ for
(ka11, v∗) = (0.78959, 26.8305) is another 1:4 resonance point.
CH for (ka11, v∗) = (0.75306, 23.255) is a Chenciner point of
cycles. d A period-doubling bifurcation segment of a branch of
symmetrical cycles fromBPC3 for (ka11, v∗) = (0.3, 3.798801).
PD for (ka11, v∗) = (0.3, 4.896602) is a period-doubling bifur-
cation point of cycles. (Color figure online)
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Fig. 8 Phase diagrams for different parameter regions in Fig.
7c. a A stable period orbit for (ka11, v∗) = (− 0.08, 3.5), which
is between H− and NS−

2 and on the left of the line 1. b A pair
of stable symmetrical cycles for (ka11, v∗) = (0.3, 3.9). c A pair
of period-two cycles for (ka11, v∗) = (0.3, 5), which is resulted

from a period-doubling bifurcation of the symmetrical cycles.
d A period-six orbit for (ka11, v∗) = (0.65, 16) near R1 and
above BPC+. e A stable torus for (ka11, v∗) = (0.758, 24.54)
above NS−

1 and on the right of line 4. f A period-four orbit for
(ka11, v∗) = (0.789, 26.7) near R′4. (Color figure online)
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phase diagram of a pair of symmetrical limit cycles for
(ka11, v∗) = (0.3, 3.9) is exhibited in Fig. 8b. In fact,
when v∗ continues to increase, two symmetrical limit
cycles will both experience a series of bifurcations at
the same value of v∗, such as the period-doubling bifur-
cation, the limit point bifurcation and the Neimark–
Sacker bifurcation. If the integrated bifurcation dia-
gram of two symmetrical limit cycles is exhibited in a
figure, the bifurcation structure is too complicated to be
viewed clearly. So a period-doubling bifurcation frag-
ment of a branch of symmetrical cycles is displayed in
Fig. 7d, which shows that the symmetrical limit cycles
bifurcated from BPC3 lose stabilities through a period-
doubling bifurcation and a pair of period-two cycles is
resulted from the point PD. A phase diagram of two
period-two cycles for (ka11, v∗) = (0.3, 5) is exhib-
ited in Fig. 8c. As v∗ further increases, the Neimark–
Sacker bifurcation and the limit point bifurcation will
take place in the symmetrical cycles, which is not ana-
lyzed in detail here.

3′ When parameters lie between the line 2 and the
line 3, unlike the case 2′, two branch point curves of
cycles BPC− and BCP+ will be encountered. Between
them a pair of symmetrical stable limit cycles coexists
with an unstable limit cycle, whose phase diagram is
similar to Fig. 8b. When v∗ exceeds the line BCP+,
the symmetrical limit cycles disappear and the unsta-
ble limit cycle turns into a stable one. And then the
stable limit cycle loses its stability through a subcriti-
cal Neimark–Sacker bifurcation when v∗ crosses NS+

1
from bottom to top. The bifurcation diagram in Fig. 7a
belongs to this case. In addition, it is worth pointing
out that when v∗ increases and approaches to the point
R1, an Arnold tongue structure will root at some point
onNS+

1 . Long-periodic or quasi-periodic orbits, homo-
clinic tangencies or chaotic motion maybe appear. The
complete picture includes other bifurcations and seems
to be unknown, which is confirmed in [17]. A period-
six orbit for (ka11, v∗) = (0.65, 16) near R1 is shown
in Fig. 8d.

4′ When aparameter point is chosen between the line
3 and the line 4, the branch points of cycles disappear
and the stable limit cycles resulted from T ′ continue
till the line NS+

1 is encountered, where the stable limit
cycles lose stabilities through a subcritical Neimark–
Sacker bifurcation and an unstable torus is created.

5′ For parameters on the right of line 4, the bifur-
cation behavior is similar to the case 4′ except that the
Neimark–Sacker bifurcation is supercritical. A stable

torus is created when v∗ crosses the line NS−
1 from bot-

tom to top, which is displayed in Fig. 8e. A Chenciner
bifurcation point CH divides the green Neimark–
Sacker bifurcation curve NS1 into a supercritical
branch NS−

1 and a subcritical branch NS+
1 . It should

be noted that there is a resonance point R4′ on the line
NS−

1 . When a parameter point is chosen near the point
R4′, a period-four cycle will appear and a phase dia-
gram for (ka11, v∗) = (0.789, 26.7) is shown in Fig. 8f.

From the above analysis, it is shown that changing
the value of αyyy will affect the location of bifurca-
tion curves of cycles, thus affecting the distribution of
bifurcation parameter regions, while it will not affect
the location of bifurcation curves of the equilibrium O .

4 Conclusions

In this paper, at first, a stable parameter domain of the
equilibrium O of a simplified railway wheelset model
is given, by which it is shown that the equilibrium
O loses its stability through a supercritical or sub-
critical Hopf bifurcation. Next, bifurcation behaviors
of the cycles resulted from H1 have been discussed.
With the variation of v∗, the limit cycle point, the cycle
branch point or the Neimark–Sacker bifurcation point
will be encountered, whose existence is dependent on
the nonlinear coefficients αyyy, . . . , βyψψ ,and βψψψ .
As a typical case study, the effect of αyyy has been stud-
ied, which shows that changing the value of αyyy can
affect the location and existenceof bifurcation curves of
cycles as well as the distribution of bifurcation param-
eter regions. In the case for αyyy = 0.4, two different
resonant points and cycle branch points will be encoun-
tered, near which two symmetrical cycles or a cycle
with several turns arise. It shows that if the motion of
running wheels deviates from the central position, the
running wheels will oscillate along the left or the right
cycle or along the cycle combining with several oscil-
lations. In addition, as the variation of v∗, a stable torus
can be created by a supercriticalNeimark–Sacker bifur-
cation of cycles, which can be distinguished from the
subcritical Neimark–Sacker bifurcation by aChenciner
point.

Although some bifurcations of limit cycles have
been discussed in this paper based on two bifurca-
tion parameters ka11 and v∗ for a simplified railway
wheelset model, there are still a lot of questions not
to be solved. For example, what kinds of global bifur-
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cation phenomena will happen if many more parame-
ters are considered? If there exist homoclinic or hete-
roclinic tangencies or even chaotic motions, what are
their mechanisms of hunting motion and what are their
bifurcation structures near the resonance points? These
questions have not fully been understood so far, which
will be our future work.
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Appendix

A21 = − 3d322
τ̄k321

(
k11 − k22 + ka11

d11 + d22
+ i

ω

v∗

)

×
(
k11 − k22 + ka11

d11 + d22
− i

ω

v∗

)2

αyyy

− d222
τ̄k221

(
3(k11 − k22 + ka11)2

(d11 + d22)2
+ ω2

v∗2

− i
2ω(k11 − k22 + ka11)

(d11 + d22)v∗

)

αyyψ

− d22
τ̄k21

(
3(k11 − k22 + ka11)

d11 + d22
− i

ω

v∗

)

αyψψ

− 3

τ̄
αψψψ

+ 3d11d322
(
(k11−k22+ka11)2v∗2+ω2(d11+d22)2

)2

τ(k21v∗)4(d11+d22)4
βyyy

+ d11d222
τ̄k321

(
(k11 − k22 + ka11)2

(d11 + d22)2
+ ω2

v∗2

)

×
(
3(k11 − k22 + ka11)

d11 + d22
+ i

ω

v∗

)

βyyψ

+ d11d22
τ̄k221

(
3(k11 − k22 + ka11)2

(d11 + d22)2

+ ω2

v∗2 + i
2ω(k11 − k22 + ka11)

(d11 + d22)v∗

)

βyψψ

+ 3d11
τ̄k21

(
k11−k22+ka11

d11+d22
+i

ω

v∗

)

βψψψ ,

l1(ka11, v
∗) =

[(
2265k5a11 − 2379.1k4a11 + 789.17k3a11

− 46.093k2a11 − 30.711ka11 + 0.8893
)
v∗4

+ (
120,500k4a11 − 51,814k3a11 − 6779.5k2a11

+1550.7ka11 + 140.13) v∗2

+ (0.6474ka11 + 0.1006)
3
2 (0.399 + 2.5689ka11) v∗

+ 1,602,800k3a11 + 305,210k2a11
− 21,188ka11 − 4648.3]

/{[(
k3a11 − 0.2688k2a11

− 0.021ka11 + 0.007) v∗5 + (98.661ka11

+ 9.4776 + 242.36k2a11
)
v∗3

+ (157.15 + 1011.8ka11) v∗] √
0.6474ka11 + 0.1006

}
.
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