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Abstract In this paper, we consider a (2 + 1)-
dimensional generalized Caudrey–Dodd–Gibbon–
Kotera–Sawada (gCDGKS) equation,which is a higher-
order generalization of the celebrated Kadomtsev–
Petviashvili (KP) equation. By considering the Hirota
bilinear form of the CDGKS equation, we study a type
of exact interaction waves by the way of vector nota-
tions. The interaction solutions, which possess exten-
sive applications in the nonlinear system, are composed
by lumpwaveparts and solitonwaveparts, respectively.
Under certain conditions, this kind of solutions can
be transformed into the pure lump waves or the stripe
solitons. Moreover, we provide the graphical analysis
of such solutions in order to better understand their
dynamical behavior.
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1 Introduction

We all know that soliton solutions occupy a vital posi-
tion in the nonlinear evolution equations (NLEEs). It is
a popular topic to find exact solutions for NLEEs and
has attracted a great many researchers. Over the past
decade, many methods are provided to solve NLEEs,
such as the Hirota bilinear method [1], inverse scatter-
ing transformation (IST) [2], and Darboux transforma-
tion (DT) [3–8]. Recently, the study of lump waves,
which can be regarded as one kind of the rationally
localized solutions, has become a hot topic both in the
theory and experiment. Lump waves can be applied to
various fields, such as nonlinear optic media, plasma,
and shallowwaterwave [9–11].Nowadays,many lump
wave solutions have been found through the new direct
method [12–16]. In addition, analyticity between lump
solutions and the stripe solitons has been reported in
[17–20]. Multifarious nonlinear systems in nature can
be described well by the interaction solutions. Some-
times, this type of interaction solutions is used to fore-
cast the appearance of rogue waves through analyzing
the relations between rogue parts and twin-soliton parts
[21].

In this work, we consider the following (2 + 1)-
dimensional generalized Caudrey–Dodd–Gibbon–
Kotera–Sawada (gCDGKS) equation
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⎧
⎨

⎩

36ut + (
uxxxx + 15uuxx + 15u3

)

x − αvyy

− γ
(
uxxy + 3uuy + 3uxvy

) = 0,
vx = u,

(1)

where α and γ are two constants and u = u(x, y, t)
and v = v(x, y, t) are two differentiable functions
with the variables x, y and t . It is a generalized
form of the CDGKS equation introduced in [22],
which is a higher-order generalization of the cel-
ebrated Kadomtsev–Petviashvili (KP) equation and
widely employed in many physical branches. As a
extended form of the KP equation, it can describe non-
linear dispersive physical phenomena well. gCDGKS
Eq. (1) can be reduced to the (2 + 1)-dimensional
CDGKS equation for α = γ = 5, which was
first proposed by Konopelchenk and Dubovsky [22].
When α = γ = 5 and uy = 0, Eq. (1) changes
into the (1+ 1)-dimensional CDGKS equation, whose
N -soliton solutions and integrabilities were found in
[23,24]. The other works for the (2 + 1)-dimensional
CDGKS equation were also carried out, including
discussing quasiperiodic solutions and the interaction
behaviors between solitons and cnoidal periodic waves
[25–27].

To the best of our knowledge, although a great
number of work have been researched about the
CDGKS equation, the characteristics of the solitary
waves and lump waves with interaction phenomena
have not studied for gCDGKS Eq. (1). Based on
the symbol calculation methods [28–45], the main
propose of this paper is to study the lump waves
based on the bilinear form and vector notations of
(1). Then, we derive its one-soliton and two-soliton
solutions. Furthermore, we analyze the interaction
between lump waves and solitary waves. Finally, the
graphical analysis of these solutions is analyzed in
order to better understand their dynamical behav-
ior.

The outline of this paper is as follows. In Sect. 2,
we firstly derive the Hirota bilinear form of the gen-
eralized (2 + 1)-dimensional CDGKS equation. Then
through expression (6) with (7), we construct the spe-
cial form of interaction solutions (7) for the equation
in the case of three variables. In Sect. 3, based on these
preconditions, we obtain its lump wave solutions . In
addition, in Sect. 4, one-soliton and two-soliton solu-
tions are derived in detail. In Sect. 5, we analyze the
interaction between lump wave and solitary wave of
the gCDGKS equation. Furthermore, we also display

some plots to depict the propagation behaviors of these
solutions. In last section, some conclusions of thiswork
are discussed.

2 Mathematical analysis

2.1 Bilinear form

Based on the previous results [46–57], the Hirota bilin-
ear form of the gCDGKS equation can be read by

BCDGK S ( f )

=
(
36Dx Dt + D6

x − αD2
y − γ D3

x Dy

)
f · f = 0,

(2)

under the transformations as follows

u = 2 ln ( f )xx ⇔ v = 2 ln ( f )x , (3)

with

D6
x f · f = 2

(
f6x f + 15 f4x f2x − 10 f 23x − 6 f5x fx

)
,

D3
x Dy f · f =2

(
f3x,y f − f3x fy−3 f2x,y fx+3 f2x fx,y

)
,

Dx Dt f · f = 2
(
fx,t f − fx ft

)
,

D2
y f · f = 2

(
f2y f − f 2y

)
, (4)

where the D-operator is denoted by

Dm
x Dn

y ( f · g) =
(

∂

∂x
− ∂

∂x ′

)m (
∂

∂y
− ∂

∂y′

)n

× f (x, y) · g (
x ′, y′) ∣

∣
x=x ′,y=y′ .

(5)

2.2 Theories analysis for the interaction solutions

In this section, we provide the following main theorem
in order to find the interaction solutions of gCDGKS
Eq. (1).

Main Theorem 1 gCDGKS Eq. (1) admits the inter-
action solutions as follows

u = Γ
(
∂xi

)
ln f (6)
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with

f = f0 +
n∑

i, j=0

pi j xi x j + κ1e
ξ + κ2e

−ξ

= f0 + χ2 + κ1e
ξ + κ2e

−ξ , (7)

where Γ
(
∂xi

)
means a series of partial derivatives

operations to xi (i = 1, 2, . . . n − 1). ξ = ∑n
i=1 li xi ,

χ2 is the inner product of M dimension vector χ

with respect to itself, and χ = ∑n
i=0 xiPi , Pi =

(Pi1, Pi2, . . . , PiM ), wherein x0 = 1, xn = t , pi j =
p ji = Pi · P j = ∑M

m=1 Pim Pjm (i, j = 0, 1, 2, . . . n),
and we have χ2 = ∑M

m=1 χ2
m . Moreover, nandM are

both positive integers, and f0, κ1, κ2, li are free scalar
parameters.

The gCDGKS Eq. (1) admits the following interac-
tion wave solutions

f = f0 + χ2 + κ1e
ξ0 + κ2e

−ξ0 ,

ξ0 = a0x + b0y + c0t, (8)

where κ1, κ2 are free parameters, f0, a0, b0, c0 are arbi-
trary scalar parameters to be known later, and χ2 =
χ · χ = ∑M

m=1 χ2
m , χ is a M(M is positive integers)-

dimensional vector which can be expressed by the con-
stant vectors a, b, c, and λ in the following form

χ = xa + yb + tc + λ, (9)

where a = (a1, a2, . . . , aM ), b = (b1, b2, . . . , bM ),

c = (c1, c2, . . . , cM ),λ = (λ1, λ2, . . . , λM ). Next, we
introduce the symbolsΔ12 = a · b = ∑M

m=1 ambm,Δ13

= a · c,Δ23 = b · c,Δ11 = a2 = a · a,Δ22 = b2 =
b · b,Δ01 = a · λ,Δ02 = b · λ.

In terms of expression (8), it denotes that the solu-
tion consists of three parts, including rational solu-
tion f0 + χ2 (lump wave part), the exponential solu-
tion κ1eξ0 (soliton part), and another exponential solu-
tion κ2e−ξ0 (soliton part), respectively. Therefore, if
κ1 = κ2 = 0, solution (3) with expression (8) turns into
a pure lump. On the other hand, the solution becomes
a pure soliton with χ2 = 0. When κ1 �= 0, κ2 = 0, and
ξ0 → +∞, the soliton solution part κ1eξ0 will tend
to infinity, and the lump solution part and the soliton
solution part κ2e−ξ0 can be ignored. Similarly, the lump
solution part is also discarded under the circumstances
of κ2 �= 0, κ1 = 0 and ξ0 → −∞.

3 Lump wave solutions

Notably, when κ1 = κ2 = 0, we know that Eq. (8)
degenerates to the pure lumpwaves,which are the ratio-
nal solutions and localized in all directions in space,
given by

f = f0 + χ2. (10)

Substituting (10) into (2), through symbolic computa-
tions with Maple, we can obtain

36Δ13 − αb2 = 0, Δ12 = 0, (11)

which yields a broad categories of lump waves (3) with
(10) for Eq. (1).

In order to catch the arrival place of lump waves (3)
with (10), we need to obtain the critical point of lump
waves. Taking fx = fy = 0, we have

x = x (t) = −Δ01

a2
− Δ13

a2
t,

y = y (t) = −Δ02

b2
− Δ23

b2
t. (12)

which can represent the travel path of the lump waves.
For presenting lump solutions specifically, we take

M = 2, and then a = (a1, a2), b = (b1, b2), c =
(c1, c2),λ = (λ1, λ2). Through taking one of particular
cases of (11), a series of constraining expressions for
the parameters can be obtained (see [46]):

a1 = b1
3a22

, c1 = 0, b2 = − b21
3a32

,

c2 = αb21
(
9a62 + b21

)

324a72
,

b1 = b1, λ1 = λ1, a2 = a2, λ2 = λ2, f0 = f0.
(13)

where a2 �= 0. Based on these parameters, the alge-
braic solutions (lump wave solutions) of Eq. (1) can be
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Fig. 1 (Color online) The lump waves of Eq. (1) with parameters (19): a density plot, b three-dimensional plot at time t = 0, c the
contour plot about the progress of moving described by the straight line (16), i.e., x = − 1

36 t, y = 1
108 t

expressed in the form

u =
4

(

a22 + b21
9a42

)

f

−
8

[(

a22+ b21
9a42

)

x+αb21
(
9a62+b21

)

324a62
t + b1λ1

3a22
+ a2λ2

]2

f 2
,

v =
4

[(

a22 + b21
9a42

)

x + αb21
(
9a62+b21

)

324a62
t + b1λ1

3a22
+ a2λ2

]

f
,

(14)

with

f = f0 +
(

b1
3a22

x + b1y + λ1

)2

+
(

a2x − b21
3a32

y + αb21
(
9a62 + b21

)

324a72
t + λ2

)2

,

(15)

and the travel path meets

x (t) = −3a22
(
b1λ1 + 3a32λ2

)

b21 + 9a62
− αb21

36a22
t,

y (t) = −3a32
(
3a32λ1 − b1λ2

)

b1
(
9a62 + b21

) + αb21
108a42

t, (16)

where a2, b1, λ1, λ2, f0 are free scalar constants and
α is arbitrary scalar parameters. That means the lump

waves move along the straight line

y = − 1

3a22
x − λ1

b1
, (17)

The amplitude of the lump waves should be con-
sidered, which can be obtained by solving the system
{ux = 0, uy = 0}. Therefore, the amplitude of the
lump waves can be given by

Alump =
∣
∣
∣
∣
∣

36a62 + 4b21
9a42 f0

∣
∣
∣
∣
∣
, (18)

which means that the amplitude just depends on the
arbitrary constants of a2, b1, f0.

To understand more about lump waves (14), the
graphical analysis is plotted in Fig. 1 in order to show
some behaviors of the lump waves by selecting follow-
ing free parameters:

α = b1 = a2 = f0 = 1, c1 = λ1 = λ2 = 0. (19)

4 Solitary wave solutions

In order to find the solitary wave solutions for Eq. (1),
we expand the function f (x, y, t)with a formal expan-
sion parameter ε:

f (x, y, t) = 1 + f (1)ε + f (2)ε2 + f (3)ε3 + · · · ,

(20)

where the coefficients f (i) = f (i)(x, y, t) (i =
1, 2, . . .) are some differentiable functions to be deter-
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mined. Substituting (20) into bilinear form (2), and then
taking all coefficients of the same powers of ε to equate
zero, we have the soliton solutions of Eq. (1).

4.1 One-soliton solutions

In general, in order to seek one-solitary waves, above
expansion (20) can be truncated based on f (i) =
0 (i = 2, 3, 4, . . .), and we have

f = 1 + f (1)ε = 1 + eη1ε, (21)

where η1 = h1x + ρ1y + �1t + θ1, and h1, ρ1, θ1 are
constants. Then, putting (21) into (2), and let ε = 1,
we find

�1 = γ h31ρ1 + αρ2
1 − h61

36h1
. (22)

Hence, the one-soliton solutions of Eq. (1) admit the
following form

u = 2
[
ln

(
1 + eη1

)]

xx

= h21
2
sech2

h1x + ρ1y + �1t + θ1

2
, (23)

where h1, ρ1, θ1 are real constants and �1 is denoted
by h1, ρ1.

4.2 Two-soliton solutions

In the same way, for getting the two-soliton solutions,
expansion (20) can be truncated based on F (i) =
0 (i = 3, 4, 5, . . .), and we have

f = 1 + f (1)ε + f (2)ε2, (24)

where f (1) = eη1 + eη2 , f (2) = eη1+η2+Ω12 , ηi =
hi x + ρi y + �i t + θi , hi , ρi and θi (i = 1, 2) are all
constants. Putting (24) into (2), and taking ε = 1, we
have

�i = γ h3i ρi + αρ2
i − h6i

36hi
, i = 1, 2, (25)

eΩ12 = −
[
γ (h1 − h2)3 (ρ1 − ρ2) + α (ρ1 − ρ2)

2 − (h1 − h2)6 − 36 (h1 − h2) (�1 − �2)
]

[
γ (h1 + h2)3 (ρ1 + ρ2) + α (ρ1 + ρ2)

2 − (h1 + h2)6 − 36 (h1 + h2) (�1 + �2)
] . (26)

Therefore, the two-soliton solutions of Eq. (1) have
the following form

u = 2
[
ln

(
1 + eη1 + eη2 + eη1+η2+Ω12

)]

xx , (27)

where ηi = hi x + ρi y + �i t + θi (i = 1, 2), hi , ρi , θi
�i are real constants and �i are denoted by hi , ρi .

5 Interaction between lump waves and solitary
waves

In this part, in order to analyze the interaction between
lump waves and solitary waves, we discuss expression
(8) in the case that κ1, κ2 are not all zero. Substituting
interaction solutions (8) into Eq. (2), with the help of
Maple, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

36Δ13 − αb2 = 0,

−a60 + γ a30b0 + αb20 − 36a0c0 = 0,
(−6a50 + 3γ a20b0 − 36c0

)
a

+ (
γ a30 + 2αb0

)
b − 36a0c = 0,

(−5a40 + γ a0b0
)
a2 + γ a20Δ12 = 0,

(−αb20 + 36a0c0 − 4γ a30b0 + 16a60
)
κ1κ2

−3γ a2Δ12 = 0.

(28)

By considering (28) based on a · b = Δ12 = 0, one
finds

b0 = 5a30
γ

, c0 =
(

25α

36γ 2 + 1

9

)

a50, (29)

and

c = 5a40
36γ 2

(
γ 2 − 5α

)
a + a20

36γ

(
γ 2 + 10α

)
b, (30)

which yield the following constraining equations
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Fig. 2 (Color online) One-soliton wave (23) of Eq. (1) by select-
ing suitable parameters: α = 2, γ = 1, h1 = ρ1 = 2, θ1 = π

3 . a
Perspective view of the real part of the wave (t = 0). b Perspec-

tive view of the real part of the wave (y = 0). c Perspective view
of the real part of the wave (x = 0)

Fig. 3 (Color online) Two-soliton wave (27) of Eq. (1) by
selecting suitable parameters: α = 2, γ = −2.5, h1 = ρ1 =
1.8, h2 = −ρ2 = 1.5, θ1 = θ2 = 0. a Perspective view of the

real part of the wave (t = 0). b Perspective view of the real part
of the wave (y = 0). c Perspective view of the real part of the
wave (x = 0)

5a40
γ 2

(
γ 2 − 5α

)
a2 − αb2 = 0, Δ12 = 0. (31)

where α, γ are both parameters and a0, a, b are arbi-
trary constant vectors.

Similarly, in order to display the interaction solu-
tions in detail, we take M = 2 as a illustration;
therefore, we have a = (a1, a2), b = (b1, b2), c =
(c1, c2),λ = (λ1, λ2); then according to constraining
Eqs. (31), a series of constraining expressions for the
parameters can be obtained by

a1 = a1, a2 = a2, b1 = −
√

5

α
− 25

γ 2 a
2
0a2,

b2 =
√

5

α
− 25

γ 2 a
2
0a1,

c1 = αa40
36γ 2

√

5γ 2

α
− 25

×
⎡

⎣

√

5γ 2

α
− 25a1 −

(
γ 2

α
+ 10

)

a2

⎤

⎦ ,

c2 = αa40
36γ 2

√

5γ 2

α
− 25

×
⎡

⎣

√

5γ 2

α
− 25a2 +

(
γ 2

α
+ 10

)

a1

⎤

⎦ ,
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(a) (b) (c)

(d) (e) (f)

Fig. 4 (Color online) Three-dimensional plots and contour plots of the interaction solution for Eq. (1) with parameters (35): a, d
t = − 400, b, e t = − 180, c, f t = 400

λ1 = λ1, λ2 = λ2, a0 = a0, f0 = f0, (32)

where α �= 0, γ �= 0 and 5
α

− 25
γ 2 > 0. According to

these parameters, interaction solutions (3) with (8) for
Eq. (1) can be read by

u = 2

f

(
2a21 + 2a22 + κ1a

2
0e

ξ0 + κ2a
2
0e

−ξ0
)

− 2

f 2
(2a1 (a1x + b1y + c1t + λ1)

+ 2a2 (a2x + b2y + c2t + λ2) + κ1a0e
ξ0 − κ2a0e

−ξ0
)2

,

v = 2

f
(2a1 (a1x + b1y + c1t + λ1)

+ 2a2 (a2x + b2y + c2t + λ2) + κ1a0e
ξ0 − κ2a0e

−ξ0
)
,

(33)

with

f = f0 + (a1x + b1y + c1t + λ1)
2

+ (a2x + b2y + c2t + λ2)
2 + κ1e

ξ0 + κ2e
−ξ0 .

(34)

wherea1, a2, b1, b2, c1, c2, λ1, λ2, a0 are satisfiedwith
constraining expressions (32) and ξ0 is written as

a0x + 5a30
γ

y +
(

25α
36γ 2 + 1

9

)
t .

5.1 Interaction between lump waves and line
single-soliton waves

When κ2 = 0, solution (33) implicates the interac-
tion between lumpwaves and line single-solitonwaves.
In the following, we provide several related figures to
show interaction solutions (33) by selecting following
two sets of different free parameters:

α = 0.4, γ = 3.4, f0 = 1, κ1 = 0.1, κ2 = 0,

a0 = 0.7, a1 = 1, a2 = −2.1, λ = 0. (35)
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(a) (b) (c)

(d) (e) (f)

Fig. 5 (Color online) Three-dimensional plots and contour plots of the interaction solution for Eq. (1) with the same parameters as in
(35) except for κ2 = 0.1: a, d t = − 400 , b, e t = 0, c, f t = 400

Figure 4 shows the process of travelingwaves for the
interaction between lumpwaves and line single-soliton
waves based on parameter selections (35). As shown in
Fig. 4, the wave is composed by two part, including
lump wave part and single-soliton wave part, respec-
tively. Apparently, from Fig. 4a, d, we easily find that
lump wave begins to be swallowed by single-soliton,
andwhen t → −∞, the lumpwave vanishes gradually,
and only the solitonwave exists. The twowaves collide
over a period of time, exactly as the time at t = −180
displayed in Fig. 4b, e; at the moment, the the lump
turns to tangle with the soliton, and the amplitudes and
shapes of lump wave and line single-soliton wave are
changed. But when t → +∞, they are separated from
each other and propagate along the respective direc-
tions and recover their original amplitudes and shapes,
which can be explicitly observed from Fig. 4c, f. On
the other hands, when we choose κ1 = 0, κ2 = 0.1
instead of κ1 = 0.1, κ2 = 0, the other parameters
remain unchanged, and some similar figures can be
exported fromFig. 4 through transforming (x, y, t) into
(−x,−y,−t).

5.2 Interaction between lump waves and line
twin-soliton waves

When κ1 �= 0, κ2 �= 0, solution (33) means the
interaction between lump waves and line twin-soliton
waves.

Case I: Choosing the same parameters as in (35)
except for κ2 = 0.1, the interaction solution is shown
in Fig. 5.

Case II: When

α = 1, γ = 4, f0 = 1, κ1 = 0.1, κ2 = 0.1,

a0 = 1, a1 = 1, a2 = 2.5, λ = 0, (36)

the interaction solution is shown in Fig. 6.
Figures 5 and 6 hold up interaction between lump

waves and line twin-solitonwaves. As shown in Fig. 5a,
d and c, f, the lump wave turns to tangle with one of
the soliton and then begins to be swallowed by ones
until to be vanish with t → −∞ or t → +∞.
When time comes t = 0 in Fig. 5b, e, the lump
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(a) (b) (c)

(d) (e) (f)

Fig. 6 (Color online) Three-dimensional plots and contour plots of the interaction solution for Eq. (1) with parameters (35): a, d
t = − 100, b, e t = 0, c, f t = 100

appears with arriving its peak. The identical phe-
nomena can be acquired in Fig. 6 based on different
parameters.

6 Conclusions and discussions

In this work, gCDGKS Eq. (1) has been investigated.
Based on the Hirota bilinear form of Eq. (1) and vector
symbolic computations, we have obtained lump solu-
tions (14) and interaction solutions (33). Firstly, we
have provided the Hirota bilinear form of Eq. (1) and
defined a type of interaction solutions (7) and given its
special case (8) for Eq. (1). Then,we have indicated that
interaction solutions (8) reduce to the lump waves for
κ1 = κ2 = 0 and provided the lump solutions for Eq.
(1). Next, soliton solutions have been found by Hirota
bilinear method.Moreover, we have calculated interac-
tion solutions (33) based on a · b = 0 and analyzed the
interaction phenomena between lump wave and soli-
tary wave. In order to analyze the dynamical behaviors
of these solutions (include lump waves, soliton waves,

interaction solutions between lump solutions and one
stripe soliton or a pair of resonance stripe solitons), we
have drawn sixfigureswith Figs. 1, 2, 3, 4, 5 and 6under
some free parameters. In this work, it is necessary to
note that the dimensionM of these vector can be took as
3 or some other positive integer, not just for 2. Finally,
we need to emphasize that the prominent approach we
employ still adapt to find some other classes of lump
and interaction solutions for other models well. In the
near future, more works remain to be solved for the
nonlinear evolution equations in the fields of mathe-
matical physics and engineering.
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