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Abstract This paper presents a new technique using
a recurrent non-singleton type-2 sequential fuzzy neu-
ral network (RNT2SFNN) for synchronization of the
fractional-order chaotic systems with time-varying
delay anduncertain dynamics. The consequent parame-
ters of the proposed RNT2SFNN are learned based on
the Lyapunov–Krasovskii stability analysis. The pro-
posed control method is used to synchronize two non-
identical and identical fractional-order chaotic sys-
tems, with time-varying delay. Also, to demonstrate
the performance of the proposed control method, in the
other practical applications, the proposed controller is
applied to synchronize the master–slave bilateral tele-
operation problemwith time-varying delay. Simulation
results show that the proposed control scenario results
in good performance in the presence of external dis-
turbance, unknown functions in the dynamics of the
system and also time-varying delay in the control sig-
nal and the dynamics of system. Finally, the effective-
ness of proposed RNT2SFNN is verified by a nonlinear
identification problem and its performance is compared
with other well-known neural networks.
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1 Introduction

Time-delay phenomenon and transportation lag are
commonly happened in control systems. It has been
shown that the delay differential equations are useful to
describe many real-world problems such as metal cut-
ting, traffic models, chemical kinetics, neuroscience,
population dynamics [1,2]. Delay systems are infinite-
dimensional systems in nature, and the delay in the
model of one system enriches its dynamics [3].

It has been proven that many real-world physical
systems can be more precisely described by using
fractional-ordermodels. The stability analysis and con-
troller synthesis for time-delay integer-order systems
have widely been studied by using delay-dependent
Lyapunov–Krasovskii function [4–6]. However, time-
delay fractional-order systems have seldom been con-
sidered. For instance, in [7], a fractional-order PID
controller is presented to stabilize the fractional-order
linear systems with time-delay, in which, based on a
numerical algorithm, a set of global stability regions is
determined and then the biggest stability region in this
set is chosen. Stability regions are described by plot-
ting the real root boundary line, infinite root boundary
line and complex root boundary curve. The presented
method is effective for time-delay linear systems, but
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it is not a simple and straight scheme, and also the
considered time-delay is constant and there is no delay
in control signal. In [8], another approach based on
the finite-time stability analysis is proposed for a class
of linear fractional-order systems with time-invariant
delay. In [8], a stability criterion for a class of linear
fractional-order systems is obtained by considering the
generalizedGronwall inequality. In [9], the linear time-
delay fractional-order systems are studied and some
sufficient conditions for the finite-time stability are
derived. In [10], an analytical stability bound is derived
for a class of the time-delay fractional-order differential
equations by using Lambert function, inwhich the first-
order time-delay fractional-order differential equations
with constant coefficients are considered. The stability
of the linear time-delay fractional differential equations
with n-dimensional is investigated in [11]. In this paper,
by using the Laplace transform, the characteristic equa-
tion for such systems is obtained and then based on this
equation the stability criterions are derived. In [12], the
intervals of stability for the time-delay fractional-order
systems are investigated. In all of thementionedworks,
it is assumed that the dynamics of the system is known
and also the delay in constant.

Although the synchronization of the fractional-order
chaotic systems without time-delay has abundantly
been studied, not many contributions are available
about synchronization of the time-delay fractional-
order chaotic systems. This problem has been inves-
tigated in some works. For instance, in [13] the param-
eters of the time-delay fractional-order chaotic systems
are identified by a numerical algorithm. The fractional-
order neural networkswith time-varying delay are stud-
ied in [14]. In [15], an active controlmethod is proposed
to synchronize time-delay fractional-order neural net-
works. In [16,17], the bifurcation and stability behav-
iors of the delayed fractional-order systems are studied.
In [18], an adaptive neural network control is presented
for the synchronization of the fractional-order time-
delay systems. In [18], the radial basis function neural
network is used for the estimation of the unknown func-
tions, and it is assumed that the time-delay is constant
and there is no time-delay in the control signal.

In this paper, a new approach based on Lyapunov–
Krasovskii stability analysis is presented to design
control signal and to derive adaptation laws for the
consequent parameters of the proposed RNT2SFNN.
The proposed RNT2SFNN is a recurrent sequential
fuzzy system which is developed based on the type-2

fuzzy neural network with non-singleton fuzzification.
Unlike the most of related works, it is assumed that the
dynamics of the system are unknown and are perturbed
by the bounded external disturbances. Furthermore, a
time-varying delay is considered in the dynamics of the
system and also in the control signal. To demonstrate
the effectiveness of the controller, in the other prac-
tical applications, the proposed controller is applied
to synchronize the master–slave bilateral teleoperation
problem with time-varying delay.

The reminder of this paper is organized as follows:
The problem statement and the system description are
given in Sect. 2. The proposed fuzzy system is pre-
sented in Sect. 3. Stability and robustness analysis is
given in Sect. 4. Simulation results are given in Sect. 5,
and the obtained main results are summarized and con-
cluded in Sect. 6.

2 Problem statement and system description

Definition 1 The Caputo derivative and integral of
fractional-order q of a function f are given as follows:

Dq
t f (t) = 1

�(m − q)

∫ t

0
(t − τ)m−q−1 dm

dtm
f (τ )dτ

(1)

I qt f (t) = 1

�(q)

∫ t

0
(t − τ)q−1 f (τ )dτ (2)

where �(·) is Gamma function, and m is an integer so
that m − 1 < q < m.

In this paper, the following class of fractional-order
time-delay chaotic systems is considered as the master
system:

Master system:

⎧⎨
⎩

Dq
t yi = yi+1 1 ≤ i ≤ n − 1

Dq
t yn = g(y(t), y(t − τm1(t)), . . . , y(t − τmr (t)))

y = [y1, y2, . . . , yn] ∈ Rn

(3)

where 0 < q < 1 is the fractional derivative order,
and g(y, y(t −τm1(t)), . . . , y(t −τmr (t))) is unknown
but bounded function. yi ∈ R, i = 1, 2, . . . , n are the
outputs of the master system, and τm1(t), . . . , τmr (t)
are the time-varying delays.

The slave system is:

Slave system :

⎧⎪⎪⎨
⎪⎪⎩

Dq
t xi = xi+1 1 ≤ i ≤ n − 1

Dq
t xn = f (x(t), x(t − τs1(t)), . . . , x(t − τsr (t)))

+ d(t) + u(t − τ(t))
x = [x1, x2, . . . , xn] ∈ Rn

(4)
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Fig. 1 The block diagram of the proposed control

where f (x, x(t − τs1), . . . , x(t − τsr )) is unknown
but bounded function, d(t) is the bounded exter-
nal disturbance, u(t) is the control signal, and x =
[x1, x2, . . . , xn]T are the outputs of the slave system.
τs1(t), τs2(t), . . . , τsr (t) are the time-varying delays,
and τ(t) is the variable time-delay in control signal
such that 0 ≤ τ(t) ≤ h and τ̇ (t) ≤ μ.

The block diagram of the proposed control is shown
in Fig. 1. The control objective is to design nonlinear
controller u(t), such that the slave system tracks the
master system.

To begin the designing of controller, a dynamic sur-
face is defined as follows:

s(t) = λ1e1(t) + · · · + λn−1en−1(t) + λnen(t) (5)

where ei (t) = xi (t)−yi (t), i = 1, . . . , n, andλi , i =
1, . . . , n are chosen such that defined surface (5) is sta-
ble. Thederivative of fractional-orderq ofEq. (5) gives:

Dq
t s(t) =

n−1∑
i=1

λi ei+1(t) + λn [ f (t) + d(t)

+ u (t − τ(t)) − g(t)] (6)

where g(t) and f (t) are the unknown functions in the
dynamics of master and slave systems (3, 4), respec-
tively, and d(t) is the external disturbance.

From the fact that ẋ = D1−q
t Dq

t x (see the proper-
ties of the fractional derivative in [19]), Eq. (6) can be
rewritten as follows:

ṡ(t) = w(t) + λnD
1−q
t u (t − τ(t)) (7)

where

w(t) = D1−q
t

[
n−1∑
i=1

λi ei+1(t) + λn ( f (t) + d(t) − g(t))

]

(8)

The dynamics of s in (7) can be estimated as:

˙̂s(t) = ŵ (θ(t)|unn(t)) + λnD
1−q
t u (t − τ(t)) (9)

where ŵ(t) is the estimation ofw(t), which is obtained
by the proposed RNT2SFNN, unn(t) = [xT (t), yT (t),

D1−q
t eT (t)]T and θ(t) is the vector of trainable param-

eters of RNT2SFNN. By considering (9), the control
signal is proposed as:

u(t) = 1

λn
I 1−q
t

[−K ŝ(t) − ŵ (θ(t)|unn(t))
]

(10)

where K and the adaptation laws of θ(t) are determined
based on the Lyapunov–Krasovskii stability analysis
such that the dynamics of ŝ (11) are asymptotically sta-
ble (see Theorem 1). By replacing control signal (10)
into (9), and subtracting (9) from (7), the dynamics of
ŝ(t) and s̃(t) = s(t) − ŝ(t) are as follows:

˙̂s(t) = −K ŝ (t − τ(t)) + ε(t) (11)
˙̃s(t) = w(t) − ŵ (θ(t)|unn(t)) (12)
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Fig. 2 The proposed recurrent non-singleton type-2 sequential fuzzy neural network

where ε(t) = ŵ(θ(t)|unn(t))−ŵ(θ (t − τ(t)) |unn(t−
τ(t))).

3 Proposed recurrent non-singleton
type-2 sequential fuzzy neural network

In this section a recurrent non-singleton type-2 sequen-
tial fuzzy neural network is presented. The proposed
structure is the development of the sequential fuzzy
system, presented in [20]. The sequential fuzzy system
is designed based on the functional similarity between
a fuzzy system and a radial basis function neural net-
work. The proposed structure is shown in Fig. 2, where
unni , i = 1, . . . , Nu and onn are the inputs and the
output of RNT2SFNN, respectively. In the fuzzifica-
tion layer for each input unn j , j = 1, . . . , Nu , a type-

2 Gaussian MF B̃ j with center unn j , upper MF B̄ j ,
lower MF B j , upper width σ̄B̃ j

and lower width σ B̃ j

is considered. Nu is the number of inputs. In mem-
bership layer for each input unn j , Nm Gaussian type-

2 MFs Ãi
j , i = 1, . . . , Nm, j = 1, . . . , Nu , with

upper MF Āi
j , lower MF Ai

j , center cÃi
j
, upper width

σ̄ Ãi
j
and lower width σ Ãi

j
are considered (see Fig. 3).

θ1, . . . , θ Nm
and θ̄1, . . . , θ̄Nm are the lower and upper

consequent parameters. The output of the proposed
RNT2SFNN onn is calculated step by step as follows:
Step 1 Compute the upper and the lower memberships
for each input. Consider ith MF for jth input unn j , and
to compute the upper membership μ̄ Ãi

j
and the lower

membership μ
Ãi
j
, at first, based on the non-singleton
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Fig. 3 The type-2 membership function

fuzzification and by using minimum inference, the
input unn j is transformed to ūnnij

and unnij
as follows:

ūnnij
=

σ̄ 2
B̃ j
cÃi

j
+ σ̄ 2

Ãi
j
unn j

σ̄ 2
B̃ j

+ σ̄ 2
Ãi
j

, unnij
=

σ 2
B̃ j
cÃi

j
+ σ 2

Ãi
j
unn j

σ 2
B̃ j

+ σ 2
Ãi
j

(13)

where σ̄B̃ j
/σ B̃ j

and σ̄ Ãi
j
/σ Ãi

j
are upper/lower width of

the MFs B̃ j and Ãi
j , respectively. Then we can write:

μ̄ Ãi
j
= exp

⎡
⎢⎣

−
(
ūnnij

(t) − cÃi
j
(t)

)2
σ̄ 2
Ãij

⎤
⎥⎦ ,

μ
Ãi
j
= exp

⎡
⎢⎣

−
(
unnij

(t) − cÃi
j
(t)

)2
σ 2

Ãij

⎤
⎥⎦ (14)

Step 2 Compute the firing degree of rules. The number
of rules is equal to the number of MFs for each input
(Nm). Each rule is written as follows:

Rl : If unn1 is Ãl
1 and . . . and unn j is Ã

l
j and . . . and unnNu is Ã

l
nnNu

Then onn ∈ [
θ l , θ̄l

]
l = 1, . . . , Nm (15)

where Ãl
j , j = 1, . . . , Nu is the lth Gaussian type-2

MF for the jth input.
Consider the following definitions:

σ̄ Ã1
1

= σ̄ Ã1
2

= · · · = σ̄ Ã1
Nu

= σ̄1

σ̄ Ã2
1

= σ̄ Ã2
2

= · · · = σ̄ Ã2
Nu

= σ̄2

...

σ̄ ÃNm
1

= σ̄ ÃNm
2

= · · · = σ̄ ÃNm
Nu

= σ̄Nm

(16)

σ Ã1
1

= σ Ã1
2

= · · · = σ Ã1
Nu

= σ 1

σ Ã2
1

= σ Ã2
2

= · · · = σ Ã2
Nu

= σ 2

...

σ ÃNm
1

= σ ÃNm
2

= · · · = σ ÃNm
Nu

= σ Nm

(17)

Ci =
[
cÃi

1
, cÃi

2
, . . . , cÃi

Nu

]T
(18)

Unni =
[
unni1

, unni2
, . . . , unniNu

]T
(19)

The upper and the lower firing degrees of each rule are
computed as follows:

z̄i (t) = r z̄i (t − 1) + e

−∥∥Unni (t) − Ci (t)
∥∥2

σ̄ 2
i

zi (t) = r zi (t − 1) + e

−∥∥Unni (t) − Ci (t)
∥∥2

σ 2
i , i = 1, . . . , Nm

(20)

where z̄i (t − 1) and zi (t − 1) are the upper and the
lower firing degrees of ith rule, at previous sample time,
respectively. r , σ i , σ̄i and Ci , i = 1, . . . , Nm are the
constant designable parameters.
Step 3 Compute the output as follows:

onn(t) =
∑Nm

i=1 θ̄i (t) × z̄i (t) +
Nm∑
i=1

θ i (t) × zi (t)

2
(21)

where θ̄i and θ i are considered as linear combination
of inputs:

θ̄i (t) = ᾱ0
i (t) + ᾱ1

i (t)unn1(t) + · · · + ᾱ
Nu
i (t)unnNu (t)

θ i (t) = α0
i (t) + α1

i (t)unn1(t) + · · ·
+α

Nu
i (t)unnNu (t), i = 1, . . . , Nm (22)

From (21), the output of RNT2SFNN can be written in
the vector form as follows:
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onn (θ(t)|unn(t)) = θT (t)ζ(t) (23)

where

θ(t) =
[
ᾱ0
1(t), ᾱ

1
1(t), . . . , ᾱ

Nu
1 (t), . . . , ᾱ0

Nm
(t), ᾱ1

Nm
(t), . . . , ᾱ

Nu
Nm

(t)

α0
1(t), α

1
1(t), . . . , α

Nu
1 (t), . . . , α0

Nm
(t), α1

Nm
(t), . . . , α

Nu
Nm

(t)
]T

(24)
ζ(t) = 1

2 [ z̄1(t), z̄1(t)unn1 (t), . . . , z̄1(t)unnNu (t), . . . ,

z̄Nm (t), z̄Nm (t)unn1 (t), . . . , z̄Nm (t)unnNu (t), . . . ,

z1(t), z1(t)unn1 (t), . . . , z1(t)unnNu (t), . . . ,

zNm
(t), zNm

(t)unn1 (t), . . . , zNm
(t)unnNu (t) ]T

(25)

Remark 1 As mentioned before the nonlinear func-
tion w(t) in (8) is estimated by RNT2SFNN
ŵ (θ(t)|unn(t)). The parameters θ(t) are tuned based
on the Lyapunov–Krasovskii stability analysis [see
Theorem 1 and relation (28)].

4 Stability and robustness analysis

Consider the dynamics of s̃(t) in (12), we assume that
there exists the optimal θ∗(t) such that if θ(t) is reached
to θ∗(t), ŵ (θ(t)|unn(t)) will be reached to w(t). In
other words we can write:

w(t) = θ∗T (t)ζ(t) (26)

Then from (12), (23) and (26) we have:

˙̃s(t) = θ̃T (t)ζ(t) (27)

where θ̃ (t) = θ∗(t)− θ(t) and θ(t) and ζ(t) have been
defined in (24) and (25), respectively.

Theorem 1 The dynamics of (11), with delay τ(t) such
that 0 ≤ τ(t) < h and τ̇ (t) < μ, is asymptotically sta-
ble and s̃(t) → 0 [see (12)], if there exist K > 0,
Z ≥ 0 and N1 and N2, such that:

θ̇ (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ s̃(t)ζ(t) if θ < θ(t) < θ̄

or θ(t) ≥ θ̄ and γ s̃(t)ζ(t) < 0
or θ(t) ≤ θ and γ s̃(t)ζ(t) > 0

0 or θ(t) ≥ θ̄ and γ s̃(t)ζ(t) ≥ 0
or θ(t) ≤ θ and γ s̃(t)ζ(t) ≤ 0

(28)

� =
⎡
⎣φ11 φ12 0

∗ φ22 hK
∗ ∗ −h

⎤
⎦ < 0 (29)


 =
⎡
⎣ z11 z12 N1

∗ z22 N2

∗ ∗ 1

⎤
⎦ ≥ 0 (30)

where θ and θ̄ are the lower and upper bound of θ , and:

φ11 = N1 + ψ + 1 + hz11
φ12 = − 1

2K − 1
2N1 + 1

2N2 + hz12
φ22 = − N2 + hz22 − (1 − μ)

(31)

Z =
[
z11 z12
∗ z22

]
(32)

γ is the adaptation rate, and ψ is a positive constant
[see (37)].

Proof Consider a Lyapunov–Krasovskii functional
candidate as follows:

V (t) = 1

2
ŝ2(t) + 1

2
s̃2(t) +

∫ t

t−τ(t)
ŝ2(υ)dυ

+
∫ 0

−h

∫ t

t+α

˙̂s2(υ)dυdα + 1

2γ
θ̃T (t)θ̃(t)

(33)

Time derivative of (33) yields:

V̇ (t) = ŝ(t) ˙̂s(t) + s̃(t) ˙̃s(t)
+ŝ2(t) − (1 − τ̇ (t)) ŝ2 (t − τ(t))

+ h ˙̂s2(t) − ∫ t
t−h

˙̂s2(υ)dυ − 1
γ
θ̃T (t)θ̇(t)

(34)

By replacing ˙̂s(t) and ˙̃s(t) from (11) and (12), into (34),
and by considering the assumption that τ̇ (t) ≤ μ, we
have:

V̇ (t) ≤ ŝ(t)
[−K ŝ (t − τ(t)) + ε(t)

]

+ s̃(t)θ̃T (t)ζ(t) − 1

γ
θ̃T (t)θ̇(t)

+ ŝ2(t) − (1 − μ) ŝ2 (t − τ(t)) −
∫ t

t−h

˙̂s2(υ)dυ

+ h
[−K ŝ (t − τ(t)) + ε(t)

]2 (35)

From the adaptation law for θ(t) (see 28), inequality
(35) becomes:

V̇ (t) ≤ − K ŝ(t)ŝ (t − τ(t)) + hK 2ŝ2 (t − τ(t))
+ [

ε(t)ŝ(t) − ε(t)hK ŝ (t − τ(t)) + hε2(t)
]

+ ŝ2(t) − (1 − μ)ŝ2 (t − τ(t)) − ∫ t
t−h

˙̂s2(υ)dυ

(36)
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A variable ψ is chosen such that[
ε(t)ŝ(t) − ε(t)hK ŝ (t − τ(t)) + hε2(t)

]

≤ ψ
[
ŝ2(t) + ŝ2 (t − τ(t))

]
(37)

Then we have:

V̇ (t) ≤ −K ŝ(t)ŝ (t − τ(t))

+
[
hK 2 + ψ + μ − 1

]
ŝ2 (t − τ(t))

+ [1 + ψ] ŝ2(t) −
∫ t

t−h

˙̂s2(υ)dυ (38)

Based on Newton–Leibniz formula, for any appropri-
ately dimensioned matrices N1 and N2 the following
relation holds
[
ŝ(t)N1 + ŝ (t − τ(t)) N2

] [
ŝ(t) −

∫ t

t−τ(t)

˙̂s(υ)dυ

− ŝ (t − τ(t))

]
= 0 (39)

Note that
∫ t
t−τ(t)

˙̂s(υ)dυ = ŝ(t)− ŝ (t − τ(t)) and then[
ŝ(t) − ∫ t

t−τ(t)
˙̂s(υ)dυ − ŝ (t − τ(t))

]
= 0. Also by

considering η1 = [
ŝ(t), ŝ (t − τ(t))

]
for any Z ≥ 0

the following inequality is true

hη1
T (t)Zη1(t) −

∫ t

t−τ(t)
η1

T (t)Zη1(t)dυ ≥ 0 (40)

Note that
∫ t
t−τ(t) η1

T (t)Zη1(t)dυ = η1
T (t)Zη1(t)τ (t),

then:

hη1
T (t)Zη1(t) −

∫ t

t−τ(t)
η1

T (t)Zη1(t)dυ

= η1
T (t)Zη1(t) [h − τ (t)] (41)

Since τ (t) < h and Z ≥ 0, inequality (40) is true. By
adding (39) and (40) into right-hand side of (38) and
some simple calculations, we have

V̇ (t) ≤ η1
T (t)�η1(t) −

∫ t

t−τ(t)
η2

T (t, υ)
η2(t, ν)dυ

(42)

where

η2(t, ν) =
[
ŝ(t), ŝ (t − τ(t)) , ˙̂s(υ)

]T
(43)

� =
[

φ11 φ12

∗ φ22 + hK 2

]
(44)

and 
, φ11, φ12 and φ22 have been defined in (30) and
(31).

Given that:

[
φ11 φ12

∗ φ22 + hK 2

]
=

[
φ11 φ12

∗ φ22

]
−

[
0
hK

]
h−1 [

0 hK
]

(45)

From (45) and based on Schur complement inequality
(42) becomes:

V̇ (t) ≤ η1
T (t)�η1(t) −

∫ t

t−τ(t)
η2

T (t, υ)
η2(t, ν)dυ

(46)

Then if � < 0 and 
 ≥ 0, then V̇ (t) ≤ 0. To derive
asymptotic stability the following lemma is used:

Barbalat’s lemma: Assume that f (t) is a function
of time and has a limit when t → ∞, if ḟ (t) is uni-
formly continuous ( f̈ (t) is bounded), then ḟ (t) → ∞
as t → ∞.

From V̇ (t) ≤ 0 it is obtained that V (t) ≤ V (0).
To verify the boundedness of V̈ , it needs to show that
η1 ∈ �2 and η2 ∈ �2 and also the approximation error ε
must be bounded. Considering the definition of ε(t) =
ŵ (θ(t)|unn(t)) − ŵ (θ (t − τ(t)) |unn (t − τ(t))) [see
(11)], and the adaptation law of θ [see (28)], the bound-
edness of ε is obvious.

To show η1 ∈ �2 and η2 ∈ �2, note that V is a
non-increasing and positive definite function then:

−
∫ t

0
V̇ = V (0) − V (t) < ∞ (47)

Then

− ∫ t
0 V̇ dτ < ∞

⇒ ∫ t
0

[
λmin (−�) ‖η1‖2 + λmin (
) ‖η2‖2

]
dτ < ∞

⇒
√∫ t

0

[
λmin (−�) ‖η1‖2 + λmin (
) ‖η2‖2

]
dτ < ∞

⇒
√∫ t

0 ‖η1‖2dτ < ∞ and
√∫ t

0 ‖η2‖2dτ < ∞
(48)

where λmin (−�) and λmin (
) represent the minimum
eigenvalues of−� and
, respectively. From (48), it is
concluded that η1 ∈ �2 and η2 ∈ �2. Then it is derived
that lim

t→0
V̇ (t) = 0, and by considering V̇ (t) in (34) the
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asymptotic stability is concluded. This completes the
proof. 
�

5 Simulation

In this section four examples are used to demonstrate
the results of the proposed method.

Example 1 In this example, synchronization of two
different uncertain fractional-order Duffing–Holmes
time-delay chaotic systems is considered. The master
system is given as follows:

Dq
t y1 = y2

Dq
t y2 = − 1

2.52
y31 − y1 − 0.1y2 + 0.025y1 (t − τ1)

+ 0.025y21 (t − τ1) + 0.01y2 (t − τ1)

+ 62.5 cos(1.29t) (49)

The slave system is given as follows:

Dq
t x1 = x2

Dq
t x2 = − 2.2

2.52
x31 − 2.2

1.8
x1 − 0.1x2 + 0.022x1 (t − τ1)

+ 0.022x21 (t − τ1) + 0.01x2 (t − τ1)

+ 55 cos(1.29t) + d(t) + u(t − τ2(t)) (50)

where d(t) = 0.7 sin(t) is the external disturbance. The
time-delays τ1 and τ2(t) are considered as τ1 = 0.001
and τ2(t) = 0.02tanh(t). Since the simulation sample
time is 0.001, then maximum delay τ2(t) will be 20
sample times. The initial conditions are y1(−τ1) = 0,
y2(−τ1) = 0, x1(−τ1) = 1 and x2(−τ1) = −1. The
initial conditions in t ∈ [−τ1, 0] are constant. The frac-
tional derivative order is q = 0.98. For each input five
MFs with centers [−1, −0.5, 0, 0.5, 1], upper width
1 and lower width 0.1 are chosen [see (16)–(18)]. The
upper and lower widths of the MF in the fuzzification
layer are 0.05 and 0.01, respectively [see (13)]. Other
parameters of the controller are given in Table 1.

The output trajectories of the slave and master sys-
tems are shown in Fig. 4. The synchronization errors

Table 1 The simulation parameters

Nu Nm λ1, λ2 K γ σ̄i σ i r Ci

See Fig. 2 See (5) See (10) See (28) See (20)

6 5 1, 0.1 600 0.95 1 0.1 0.05 Random

0 2 4 6 8 10
−10

0

10

20

Time(s)

  y1
  x1

0 2 4 6 8 10
−40

−20

0

20

40

Time(s)

  y2
  x2

Fig. 4 The synchronization performance in Example 1

123



Robust synchronization of uncertain fractional-order 1817

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

Time(s)

  e1

0 2 4 6 8 10
−20

−10

0

10

Time(s)

  e2

Fig. 5 The synchronization errors, Example 1

0 0.5 1 1.5 2
−2000

−1000

0

1000

2000

Time(s)

  control signal

Fig. 6 Control signal, Example 1

and the control signal are given in Figs. 5 and 6, respec-
tively. As it can be seen, the proposed control method
gives a good performance in the synchronization of two
uncertain time-delay fractional-order chaotic systems.

Example 2 Consider the synchronization of two non-
identical fractional-order time-delay chaotic systems,
where the dynamics of the master system are given as
follows:

Dq
t y1(t) = y3(t) − 3y1(t) + y1(t)y2(t − τ(t)) + dm1 (t)

Dq
t y2(t) = 1 − 0.1y2(t) − y21 (t − τ(t)) + dm2 (t)

Dq
t y3(t) = −y1(t − τ(t)) − y3(t) + dm3 (t)

(51)

where q = 0.92, dmi (t), i = 1, 2, 3 are the exter-
nal disturbances which are taken to be as dm1 (t) =
0.1 cos(10t), dm2 (t) = 0.2 cos(20t) and dm3 (t) =
0.1 sin(10t). The initial conditions are y1(−τ) = 0.1
, y2(−τ) = 4 (the initial conditions in t ∈ [−τ, 0] are

constant.) and y3(−τ) = 0.5. The time-varying delay
τ(t) is randomly chosen 0.01 and 0.05 s. Since the sim-
ulation sample time is 0.001, then the number of delay
samples is between 10 and 50.

The slave system is Liu fractional-order time-delay
chaotic system in which its dynamics are as follows:

Dq
t x1(t) = 10 (x2(t) − x1(t)) + ds1(t) + u1(t − τ1(t))

Dq
t x2(t) = 40x1(t − τ) − x1(t)x3(t)

+ ds2(t) + u2(t − τ2(t))

Dq
t x3(t) = − 2.5x3(t − τ) + 4x21 (t)

+ ds3(t) + u3(t − τ3(t)) (52)

where q = 0.92, τi (t), i = 1, 2, 3 are the time-
varying delays which are randomly changed between
0 and 20s, dsi (t), i = 1, 2, 3 are the external distur-
bances which are taken to be as ds1(t) = 0.1 sin(20t),
ds2(t) = − 0.3 sin(10t) and ds3(t) = − 0.5 cos(10t),
and the initial conditions are x1(−τ) = 1.2 , x2(−τ) =
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Fig. 7 The synchronization performance in Example 2
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Fig. 8 Control signals, Example 2
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Fig. 9 Block diagram of the bilateral teleoperation problem,
Example 3

2.4 and x3(−τ) = 11. The controller design procedure
and parameters are the same as Example 1, with only
difference that k = 300 [see (10)].

The synchronization performance and the control
signals are shown in Figs.7 and 8, respectively. As
it can be seen, the proposed controller effectively
synchronizes two non-identical fractional-order time-
delay chaotic systems.

Example 3 As mentioned before, the proposed con-
troller can be used in many applications. To show this
property, in this example the proposed control scheme
is applied to the master–slave bilateral teleoperation
system with varying communication time-delay. The
subject of bilateral teleoperation is reviewed in [21].
The block diagram of the bilateral teleoperation prob-
lem is shown in Fig. 9, in which fh and fe are the
applied forces to the master and the slave systems,
by the operator and environment, and d1(t) and d2(t)
are the time-varying delay. In this problem, the master
device is manipulated by the human operator and the
objective is to design a controller such that the slave
manipulator executes real tasks in a remote site.

The state space representation of the slave and mas-
ter systems is obtained as follows [22]:

ẋ1(t) = x2(t)

ẋ2(t) = − bs
ms

x2(t) + 1

ms
u(t) (53)

ẏ1(t) = y2(t)

ẏ2(t) = − K

M
y1(t) − B

M
y2(t)

+ 1

M
fh (t − d1(t)) − 1

M
u (t − d1(t) − d2(t))

(54)

where M = 1 kg, B = 1 Ns/m, K = 1 N/m, ms = 1
kg, bs = 1 Ns/m, d1(t) and d2(t) are the random time-
varying delays, with maximum values 0.2 s. (Sample
time is 0.001; then, the maximum of delay is 200 sam-

ple times.) Other controller parameters are the same as
Example 1.

The outputs of the master and the slave systems are
shown in Fig. 10, and the control signal is given in
Fig. 11. It must be noted that we assume the dynamics
of the master and the slave systems are unknown and
the controller with the same parameters in Example 1
is applied to this problem. The simulation results are
shown the good performance of the proposed scheme
in spite of the big time-varying delay and the unknown
dynamics. This example shows that the proposed con-
trol scenario can be successfully applied to other prac-
tical applications.

Example 4 In this example, to evaluate the perfor-
mance of the proposedRNT2SFNN, the following non-
linear system identification problem is considered [20]:

y(t) = y(t − 1)y(t − 2)(y(t − 1) − 0.5)

1 + y2(t − 1) + y2(t − 2)
+ u(t − 1)

(55)

where the input u(t) is uniformly chosen in the range
[−1.5, 1.5] and the test input u(t) is given by u(t) =
sin(2π t/25). For testing and training 200 and 5000
input–output data pairs are produced [20]. The per-
formance of proposed non-singleton type-2 sequen-
tial fuzzy neural network (NT2SFNN) is compared
with the singleton type-2 sequential fuzzy neural net-
work (ST2SFNN), sequential adaptive fuzzy inference
system (SAFIS) [20], minimal radial basis function
MRBF [23], evolving Takagi–Sugeno fuzzy system
ETSFS [24]. The simulation parameters are the same as
Example 1, with the exception that the recurrent weight
q is considered as q = 0. The values of the root-mean-
square error (RMSE) are given in Table 2. As it can be
seen, the performanceof the proposed type-2 sequential
fuzzy neural network with non-singleton fuzzification
is better than other structures.

6 Conclusion

Synchronization of the fractional-order chaotic sys-
tems with time-varying delay is considered in this
paper.Anewmethodbasedon theLyapunov–Krasovskii
stability analysis and by using a proposed recurrent
non-singleton type-2 sequential fuzzy neural network
(RNT2SFNN) is presented for deriving asymptotically
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Fig. 10 Position tracking, in the teleoperation problem, Example 3
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Fig. 11 Control signal, in the teleoperation problem, Example 3

Table 2 Results of nonlinear identification problem, Example 4

SOFMLS SAFIS ETSFS MRBF NT2SFNN ST2SFNN

Train RMSE 0.0341 0.0539 0.0292 0.0371 0.0178 0.0167

Test RMSE 0.0201 0.0221 0.0212 0.0271 0.0178 0.0176

No. of rules 5 17 49 22 5 5

stability performance. The proposed control method is
applied to synchronize two non-identical and identical
chaotic systems with time-varying delay. Also the pro-
posed controller is applied to synchronize the master–
slave bilateral teleoperation problem. The simulation
results show that the proposed control scheme gives
good performance in the presence of external distur-
bance, time-varying delay and unknown functions in
the dynamics of the system and the proposed controller
can be used in wide practical applications. Also the

proposed non-singleton type-2 sequential fuzzy neural
network is applied on a identification problem, and it
is shown that the proposed structure gives better per-
formance than other well-known neural networks.
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8. Lazarević, M.P., Spasić, A.M.: Finite-time stability anal-
ysis of fractional order time-delay systems: Gronwall’s
approach. Math. Comput. Model. 49(3), 475–481 (2009)

9. Zhang, X.: Some results of linear fractional order time-delay
system. Appl. Math. Comput. 197(1), 407–411 (2008)

10. Chen, Y., Moore, K.L.: Analytical stability bound for a class
of delayed fractional-order dynamic systems. Nonlinear
Dyn. 29(1), 191–200 (2002)

11. Deng,W., Li, C., Lü, J.: Stability analysis of linear fractional
differential system with multiple time delays. Nonlinear
Dyn. 48(4), 409–416 (2007)

12. Gao, Z.: A computing method on stability intervals of time-
delay for fractional-order retarded systems with commen-
surate time-delays. Automatica 50(6), 1611–1616 (2014)

13. Liu, F., Li, X., Liu, X., Tang, Y.: Parameter identification
of fractional-order chaotic system with time delay via
multi-selection differential evolution. Syst. Sci. Control
Eng. 5(1), 42–48 (2017)

14. Stamov, G., Stamova, I.: Impulsive fractional-order neu-
ral networks with time-varying delays: almost periodic
solutions. Neural Comput. Appl. 28(11), 3307–3316 (2017)

15. Song, X., Song, S., Li, B., Tejado Balsera, I.: Adaptive
projective synchronization for time-delayed fractional-
order neural networks with uncertain parameters and its
application in secure communications. Trans. Inst. Meas.
Control 0142331217714523 (2017)

16. Hu, W., Ding, D., Wang, N.: Nonlinear dynamic analysis
of a simplest fractional-order delayed memristive chaotic
system. J. Comput. Nonlinear Dyn. 12(4), 041003 (2017)

17. Rakkiyappan, R., Udhayakumar, K., Velmurugan, G., Cao,
J., Alsaedi, A.: Stability and hopf bifurcation analysis of
fractional-order complex-valued neural networks with time
delays. Adv. Differ. Equ. 2017(1), 225 (2017)

18. Fei-Fei, L., Zhe-Zhao, Z.: Synchronization of uncertain
fractional-order chaotic systems with time delay based
on adaptive neural network control. Acta Phys. Sin. 66(9)
(2017). https://doi.org/10.7498/aps.66.090504

19. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory
and Applications of Fractional Differential Equations.
North-Holland Mathematics Studies, vol. 204. Elsevier,
Amsterdam (2006)

20. Rong, H.-J., Sundararajan, N., Huang, G.-B., Saratchan-
dran, P.: Sequential adaptive fuzzy inference system
(SAFIS) for nonlinear system identification and prediction.
Fuzzy Sets Syst. 157(9), 1260–1275 (2006)

21. Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: an
historical survey. Automatica 42(12), 2035–2057 (2006)

22. Sadeghi, M.S., Momeni, H., Amirifar, R.: H∞ and L1
control of a teleoperation system via LMIs. Appl. Math.
Comput. 206(2), 669–677 (2008)

23. Yingwei, L., Sundararajan, N., Saratchandran, P.: A
sequential learning scheme for function approximation
using minimal radial basis function neural networks. Neural
Comput. 9(2), 461–478 (1997)

24. Angelov, P.P., Filev, D.P.: An approach to online identifi-
cation of Takagi–Sugeno fuzzy models. IEEE Trans. Syst.
Man Cybern. Part B Cybern. 34(1), 484–498 (2004)

123

https://doi.org/10.7498/aps.66.090504

	Robust synchronization of uncertain fractional-order chaotic systems with time-varying delay
	Abstract
	1 Introduction
	2 Problem statement and system description
	3 Proposed recurrent non-singleton type-2 sequential fuzzy neural network
	4 Stability and robustness analysis
	5 Simulation
	6 Conclusion
	References




