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Abstract In this paper, a physical SBT memristor-
based Wien-bridge chaotic circuit is proposed. The
equilibrium point and stability of the chaotic circuit are
analyzed theoretically. The dynamical characteristics
of circuit system with the variation in the initial state
and the circuit element parameters are investigated by
means of Lyapunov exponents, bifurcation diagrams
and phase portraits. The results show that the circuit
system exhibits complex dynamic behaviors, such as
stable point, period, and chaos. Specifically, the system
can generate hidden chaotic attractors and coexisting
chaotic attractors. All the results provide an important
theoretical basis for the next physical implementation
of the chaotic circuit.

Keywords Physical SBT memristor - Wien-bridge

circuit - Chaos - Hidden attractors - Coexisting
attractors

1 Introduction

In 2016, researchers at North Carolina State University
have developed nonlinear chaos-based integrated cir-
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cuits, which enable computer chips to perform multiple
functions with fewer transistors [1]. As the researchers
say: “The potential of 100 morphable nonlinear chaos-
based circuits doing work equivalent to 100 thou-
sand circuits, or of 100 million transistors doing work
equivalent to three billion transistors holds promise for
extending Moore’s law-not through doubling the num-
ber of transistors every 2 years but through increasing
what transistors are capable of when combined in non-
linear and chaotic circuit” [2]. Consequently, construct-
ing chaotic circuits is still a research hotspot.

It is well known that a nonlinear two-terminal elec-
tronic element is easily used to construct chaotic cir-
cuits. Coincidentally, the memristor is a nonlinear two-
terminal electronic element revealing the relationship
between magnetic flux ¢ and charge g [3,4], which
is very suitable for designing chaotic circuits in the-
ory. Therefore, memristor-based chaotic circuits and
their generating complex dynamical behaviors have
been studied extensively [5—17]. In the published stud-
ies, those existing memristors in the memristor-based
chaotic circuits were mainly memristor emulators. In
2008, the first physical TiO;-based nanostructured
memristor was prepared by researchers of Hewlett—
Packard Laboratory [18], which rekindled the attention
of researchers to the memristor because of its potential
applications in nonvolatile memory and artificial neu-
ral network [19-24]. From then on, many new mate-
rial systems have been reported toward the physical
memristor [25-31]. However, the physical memristor
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is not applied into the chaotic circuit design and realiza-
tion, because it is unavailable as a commercial element
now.

In order to apply the physical memristor into non-
linear circuit designs, firstly, a Srg.95Bag o5 TiO3 (SBT)
nanometer film was prepared in our laboratory [32],
and then a flux-controlled mathematical model with
definite parameters was established [33]. In this paper,
a physical SBT memristor-based Wien-bridge chaotic
circuit is proposed, and its dynamic behaviors are ana-
lyzed by means of Lyapunov exponents [34-36], bifur-
cation diagrams and phase portraits. It can guide the
research on the realization of physical SBT memristor-
based chaotic circuit in the future.

This paper is organized as follows: Sect. 2 gives
a flux-controlled mathematical model of the physical
SBT memristor and the physical SBT memristor-based
Wien-bridge circuit. In Sect. 3, the circuit system is
modeled by fourth-order state equations, the system’s
stability is analyzed, and the dynamics of dependence
on the initial states are studied by means of numerical
simulations. In Sect. 4, the impacts of circuit param-
eters on the dynamic behaviors of the circuit system
are investigated. Finally, the conclusions are given in
Sect. 5.

2 The physical SBT memristor-based Wien-bridge
chaotic circuit
In our previous work, a SrgosBagosTiO3z (SBT)

nanometer film was prepared, which can be used as a
physical memristive element [32]. And the SBT mem-
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ristor’s flux-controlled mathematical model with deter-
ministic parameters was obtained as follows:

d
G =u®

{i(t) = (A + Blo(®)u(r)

where A = 0.0676S, and B = 0.3682S/Wb [33].
Herein, the physical SBT memristor can be used to
design chaotic circuit.

The physical SBT memristor-based Wien-bridge
chaotic circuit is shown in Fig. 1. The chaotic circuit
consists of an operational amplifier, three linear capac-
itors C1, Cp, and C3, five linear resistors Ri, R», R3,
R4, and Rs, a linear negative conductance G, and a
nonlinear physical SBT memristor. The physical SBT
memristor is a fundamental circuit element, along with
the resistor, capacitor and inductor, which is not com-
posed of simulated circuit.

3 Dynamic analysis of the physical SBT
memristor-based Wien-bridge circuit

3.1 Modeling of a physical SBT memristor-based
Wien-bridge circuit

There are four state variables of wuy(t), ux(t), us(t)
and ¢(t), which represent the voltage of the capaci-
tor Cy, the voltage of the capacitor C», the voltage of
the capacitor C3, and the magnetic flux of the physical
SBT memristor, respectively. The dynamical equations
of the physical SBT memristor-based Wien-bridge cir-
cuit are as follows:
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Table 1 The element parameter values of the physical SBT 1000
memristor-based Wien-bridge circuit 500 L LE,
Parameters Values ® 0
. ]
Capacitance C 10nF g 5000 . ! / [B—
Capacitance C» 20nF X
. = -1000 f 50 LEZ/7 1
Capacitance C3 20nF 2
Resistance R) 25k 5 -1500 | -100
2
Resistance Ry 25k E ~2000 LE4 1.98 2
Resistance R3 4kQ LE3
. -2500 |
Resistance R4 10 k€2 - o
i -3000 : : :
Resistance Rs 45kQ2 0 05 1 15 5
Negative conductance G —0.0677S

The A and B of SBT memristor

0.0676S, 0.3682 S/Wb

U0 — & (050 — A+ Blp)] + O 1)

d R (D)=

20 = L () — grus () — grua(n) — 200D
d 1 R. 1

) = L (houn () — us (1)

d

G = ()

ey

With some suitable parameters, this circuit can exhibit
chaotic oscillations. Table 1 gives the selected circuit
element parameter values: the capacitance values (10 or
20nF), the resistance values (4, 10, 25, or 45k2), and
the negative conductance value (— 0.0677 S), which are
easily gained in the laboratory. The initial values of

Fig. 2 The double-scroll
chaotic attractor of the
physical SBT
memristor-based
Wien-bridge circuit

uz/V

ug/V

Fig. 3 The Lyapunov exponents on the time interval 7 € [0, 2]

four state variables are assigned as u1(0) = 0.001V,
u2(0) = 0V,u3(0) = 0V,and ¢(0) = 0 Wb. The phase
locus of the physical SBT memristor-based Wien-
bridge circuit is simulated numerically, and the projec-
tions of the phase portraits onto the two-dimensional
planes are shown in Fig. 2. The finite-time local Lya-
punov exponents on the time interval ¢ € [0, 2] are
shown in Fig. 3, and they are calculated as LE; =
12.9955, LE; = —4.4780, LE3 = —102.0071 and
LE4 = —2829.3563, which indicate that the physical
SBT memristor-based Wien-bridge circuit is chaotic.
The phase locus is a double-scroll chaotic attractor (see
Fig. 2).

»/mWb

-2 0 2 -5 0 5
uz/V
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3.2 Equilibrium point and stability analysis

The system is invariant when variables (u1,u2,u3,p)
are transformed into (—u1,—uo,—u3,—¢) for the state
equations (1). Therefore, the SBT memristor-based
Wien-bridge circuit system is symmetrical with respect
to the origin. Let the right hand of state equations (1)
be equal to 0. An equilibrium point is obtained as:

E = {(uy,uz, u3, 9)|luy =uz =u3 =0, 9 = o}
where ¢ is an arbitrary constant. All the points in the
@ axis are equilibrium points of the fourth-order non-
linear system.

The Jacobi matrix at the equilibrium point (0, 0, O,
¢p) can be expressed as:

1 1 1
—& (A+Blpl + G+ &) e

_1 1 ( Ry 1 _
J=| CR;s Cy \ RoR3 Ry
0 R
C3RR3
1 0

Table 2 The three nonzero eigenvalues of Jacobi matrix with
different |¢g| values

l¢ol/mWb A A3
0 8119.8070 —226.5701 £ 2552.8350i
0.1 4672.3812 — 343.8573 £ 2528.4436i
0.2328 0 —452.3810 4 1906.9927i
0.25 —1140.1385 —199.0974 £ 1848.7914i
0.2778 —2562.7270 +2006.3619i
0.5 —10,810.6980 33.6823 + 2379.4052i
0.7452 —19,770.6063 +2436.6934i
1 —29,120.9110 —16.2112 £ 2456.7393i
0 0
1 1
R_s) C2Ry 0
1
C3Ry 0
0 0

The characteristic equation of Jacobi matrix J is as
follows:

det(\] —J) =203 +ar? +aii+ap) =0. (2)

Setting the circuit element parameter values as
shown in Table 1, the coefficients of characteristic equa-
tion are shown as:

ar = 0.3682|¢o| x 108 — 0.7667 x 10%,
ar = 4.0911|¢o| x 10° 4 0.2889 x 107,
ap = 2.2910|¢o| x 10 —5.3333 x 10'°.

Equation (2) indicates that the characteristic equa-
tion of Jacobi matrix J has one zero eigenvalue and
three nonzero eigenvalues. According to the Routh—
Hurwitz criterion of stability, all the nonzero eigenval-
ues of Eq. (2) have negative real parts when a > 0,
aop > 0 and aa; — ap > 0, namely:

ar = 0.3682|¢p| x 108 —0.7667 x 10* > 0

0.2778mWb < |¢g| <0.7452mWb, the equilibrium
point is unstable. The system in the neighborhood of
the equilibrium point may give rise to a variety of tra-
jectories, such as stable point, period or chaos. The
three nonzero eigenvalues of Jacobi matrix J are listed
in Table 2 with different |¢g| values. The results show
that the type of equilibrium point with different |gg|
values converts among unstable saddle-focus and sta-
ble focus.

3.3 Dynamic analysis of dependence on the initial
state ¢ (0) of the SBT memristor

The selected circuit element parameters are shown as
in Table 1, the initial state values except ¢ (0) are set as
u1(0) = 0.001V, u(0) = 0V, and u3(0) = OV. The
variation range of ¢(0) is from — 1 to 1 mWb. When

arar — ap = 1.5063]¢p|? x 1017 — 1.5410]¢o| x 10'* +3.1185 x 100 > 0

ap = 2.2910|¢p| x 10 —5.3333 x 101° > 0

The solutions of inequality group are 0.2328 mWb <
lpo] <0.2778 mWb or |pg| > 0.7452mWb. On the
contrary, when O0mWb< |gy] <0.2328mWb or
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the initial state ¢ (0) gradually increases, the Lyapunov
exponents spectrum and the bifurcation diagram of the
state variable i are displayed in Fig. 4a, b, respectively.
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Fig. 4 Dynamic behaviors @ 500 2
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state ¢(0) of the SBT g 0
memristor: a Lyapunov &
exponents spectrum, and b M 500
bifurcation diagram é ‘H
2 \
-1000
o
= —1500 b—u ‘ il P :
-1 -0.5 0.5 1 -1 -0.5 0 0.5 1
#(0)/mWb ©(0)/mWb
(a) (b)
Fig. 5 The phase portraits 0.5 1 1
on the uy—¢ plane with
different initial state ¢(0) 0o e} e}
0 0.5
value: a % % %
¢(0) = —0.55mWb, b = = =
@(0) = —0.1 mWhb, and ¢ S 05 > 0 &
¢(0) = 0.45mWb
-1 -0.5 -1
-5 0 -5 0 5 -2 0 2
u2/V u2/V u2/V
(a) (b) (©
Fig. 6 The phase portraits -0.1 0.5 0.4
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A part of the minimum Lyapunov exponent is depicted
in Fig. 4a for clarity. The bifurcation diagram coin-
cides with Lyapunov exponents spectrum well. Figure 4
shows that the physical SBT memristor-based Wien-
bridge circuit system can exhibit multiple dynamical
behaviors with the variation in initial state ¢(0).

If the initial state ¢(0) is in the range of [—1,
—0.75mWb],[—0.28, — 0.25mWDb],[0.19,0.28 mWb]
or [0.75, 1 mWb], the four Lyapunov exponents are less
than zero and the dynamic behaviors of system can be
stabilized finally (see Fig. 4).

If ¢(0) is in the range of [—0.74, —0.35mWb],
[—0.24, 0.11mWb] or [0.35, 0.74mWb], there are
positive Lynpunov exponents, and the sum of four
Lyapunov exponents is negative, so the physical SBT

memristor-based Wien-bridge circuit system is chaotic
(see Fig. 4). For ¢(0) = —0.55, —0.1 and 0.45 mWb,
the phase portraits on the u»-¢ plane are depicted in
Fig. 5. The circuit system exhibits chaotic behaviors,
including two single-scroll attractors (Fig. 5a, b) and
one double-scroll attractor (Fig. 5c¢).

If ¢(0) is in the range of [—0.34, —0.29 mWb],
[0.12, 0.18 mWb] and [0.29, 0.34 mWb], the maxi-
mum Lyapunov exponent is zero and the system is
periodic (see Fig. 4). The phase portraits on the us-
¢ plane for ¢(0) = —0.335, 0.13, and 0.32mWb are
shown in Fig. 6. The circuit system is 4-periodic for
¢(0) = —0.335mWhb (Fig. 6a) or 0.13mWb (Fig. 6b)
and is 1-periodic for ¢(0) = 0.32mWb (Fig. 6¢).

@ Springer
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Table 3 The Lyapunov exponents and dynamical behavior with some typical initial state ¢y values
@o (mMWDb) LE; LE, LE4 Dynamical behavior Depicted figures
—0.55 100.2444 8.7327 —11.4502 —2671.8248 Chaos Fig. 5a
—0.335 3.1254 1.1648 —257.9458 —2900.8114 Period Fig. 6a
—0.10 106.8943 14.4573 —17.7949 —2753.0446 Chaos Fig. 5b
0.13 2.8663 —0.9270 —278.2424 —2938.0157 Period Fig. 6b
0.32 2.5685 1.4274 —283.9530 —2727.8649 Period Fig. 6¢
0.45 26.2849 1.0645 —68.8281 —2894.9695 Chaos Fig. 5¢
Tabl? 4 .The dynarr?lcs of The initial state Interval Dynamics Depicted figures
the circuit system with the
variation in the initial state 1 (0) (—5.00, —3.80V) Stable point Fig. 7
(u1(0), u2(0), u3(0)) .
(—=3.79, —0.45V) Single-scroll attractor
(—0.44,0.44V) Double-scroll attractor
(0.45,3.79V) Single-scroll attractor
(3.80, 5.00V) Stable point
uz(0) (—6.00, —4.87V) Limit cycle Fig. 8
(—4.86, —0.40V) Single-scroll attractor
(—0.39,0.39V) Double-scroll attractor
(0.40,4.86 V) Single-scroll attractor
(4.87,6.00V) Limit cycle
u3(0) (—8.00, —7.01V) Stable point Fig. 9
(=7.00, —0.77V) Single-scroll attractor
(—0.76,0.76 V) Double-scroll attractor
(0.77,7.00V) Single-scroll attractor
(7.01, 8.00V) Stable point
Fig. 7 Dynamic behaviors = 200
with the variation in initial g LE,
state #1(0): a Lyapunov 5
exponents spectrum, and b % 0 §
bifurcation diagram LS 2
9] =
£ -200 LE, S
g
S LE:3
~400
- 0 5
u1(0)/V
(a)

The four finite-time local Lyapunov exponents on

the time interval t€[0, 2] and dynamical behavior of states
the circuit system with some typical initial state ¢ (0)

are listed in Table 3.

@ Springer

3.4 Dynamic analysis of dependence on other initial

The circuit element parameters are selected as shown
in Table 1. The dynamics of the circuit system with
the variation in the initial state (u1(0), u2(0), u3(0))
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Fig. 8 Dynamic behaviors @ 200
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Fig. 10 A single-scroll hidden chaotic attractor at ¢(0) = KAV
—0.235mWb _ ‘ ‘ ‘
8000 0 0.5 1 1.5 2

are depicted in Table 4. The corresponding Lyapunov
exponents spectrums and bifurcation diagrams are dis-
played in Figs. 7, 8 and 9; the minimum Lyapunov
exponents are not depicted for clarity. In a word, the
circuit system is very sensitive to the initial states.

3.5 A hidden chaotic attractor

The basin of a hidden attractor is not connected with
equilibrium point. For example, the hidden attractors
are the attractor in the system with no equilibrium
point or with only one stable equilibrium point [37].
When —0.2400mWb < ¢(0) < —0.2328 mWb, the

Time

Fig. 11 The Lyapunov exponents at ¢(0) = — 0.235 mWb

theoretical analysis in Sect. 3.2 shows that the equi-
librium point is stable, the numerical simulation in
Sect. 3.3 shows that the system is chaotic (see Fig. 4b),
so the hidden attractors may exist in the system. For
example, when ¢(0) = —0.235mWb, the equilib-
rium point corresponding to three nonzero eigenval-
ues Ay = —135.3871 and A3 = —425.3231 £
1885.2675i is stable. By numerical simulation at
¢(0) = —0.235 mWb, the single-scroll chaotic attrac-
tor is obtained (see Fig. 10). The finite-time local
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Fig. 12 Dynamic behaviors , 300
with variation in the circuit =l LE
. Q 1
parameter C: a Lyapunov = M/«\ Mﬂ«\ﬂ ,_,,.»L
exponents spectrum, and b 2, 0 % !
bifurcation diagram ;ﬁ
> LE,
& _
5 300 |_|53
2.
3
3 -600
5 10 15 20 25 20 25
Cy/nF C1/nF
(a) (b)
! 15 1
0.5 1
2 2 o 05 o : 1
= 2 s = F "{0:001V, 0V, OV,0Wb)
g E E OV, 0.001V, OWb)
-0.5 S 0 S 0 V )
. -05 T
-5 0 5 -10 0 10 05
u2/V u2/V 75 10 15 20
(@) (b) Cy/nF

Fig. 13 The phase portraits on the uy-¢ plane with different
circuit parameter C1: a C; = 8nF,and b C; = 13nF

0.8

0.6

0.4

©/mWb

0.2

-5 0 5
uz/V

Fig. 14 The phase portraits on the u2-¢ plane for C; = 18nF

Lyapunov exponents on the time interval te[0, 2] at

¢(0) = —0.235mWb are shown in Fig. 11, and
they are calculated as LE;=121.5404, LE;=16.5271,
LE; = —38.2758 and LE4 = —2667.7087, which

Fig. 15 Bifurcation diagram with the variation in circuit param-
eter C

indicates that the physical SBT memristor-based Wien-
bridge circuit system is chaotic. Consequently, a hidden
chaotic attractor exists in the system.

4 Dynamic analysis of dependence on circuit
element parameters

4.1 Multiple dynamics with the variation in
capacitance C|

The circuit element parameters except C; are selected
as shown in Table 1. The initial state values are set
as u1(0) = 0.001V, u2(0) = 0V, u3(0) = 0V and
¢(0) = O0Wb. The Lyapunov exponents spectrum and
bifurcation diagram with the variation in C; are dis-

Table S The Lyapunov exponents and dynamical behavior with the variation in circuit parameter C

C1 (nF) LE; LE, LE; LE4 Dynamical behavior Depicted figures
8 99.5569 14.0130 — 34.4005 —2681.6930 Double-scroll attractor Fig. 13a

13 136.1033 5.3094 —4.3251 —2915.3999 Single-scroll attractor Fig. 13b

18 3.2123 —0.4470 —70.2676 —3036.3521 Period Fig. 14
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Fig. 16 The phase portraits 4 2
on the ¢-u plane: a a (OV, 0V, 0.001V, OWDb) oV, 0V, 0 V, OWb)
coexisting chaotic attractors .
atC; = 13.50F, b 5 \ ]
coexisting periods at
C; = 17.0nF
% 0 Z 9
S g
-2 -1 /
-
(0.001V, OV, OV, OWDb) (0g1V, 0V, 0 Wb)
-4 -0.5 0 05 1 2 -0.5 0 05 1
¢/mWb ¢/mWb
(@) (b)

played in Fig. 12a, b, respectively. A part of the third
Lyapunov exponent and the minimum Lyapunov expo-
nent are not depicted in Fig. 12a for clarity. The bifurca-
tion diagram coincides with Lyapunov exponents spec-
trum well.

With the increase in the capacitance C1, the system
exhibits various dynamic behaviors (see Fig. 12). If the
circuit parameter C; is in the range of [5.0, 14.8nF],
there are positive Lynpunov exponents and the sum
of four Lyapunov exponents is negative, so the phys-
ical SBT memristor-based Wien-bridge circuit system
is chaotic. For C1 = 8 and 13nF, the phase portraits
on the us-¢ plane are depicted in Fig. 13. The circuit
system exhibits chaotic behaviors, including a double-
scroll attractor and a single-scroll attractor (see Fig. 13).

If Cy isin the range of [14.9, 21.2 nF], the maximum
Lyapunov exponent is zero, so the system is periodic.
For C; = 18nF, the phase portrait on the u>-¢ plane is
1-periodic, as shown in Fig. 14. If C; is in the range of
[21.3, 25.0nF], the four Lyapunov exponents are less
than zero and the locus curves converge into a stable
equilibrium point.

The four finite-time local Lyapunov exponents on
the time interval t€[0, 2] and dynamical behavior of the
circuit system with the variation in circuit parameter C
are listed in Table 5.

4.2 Coexisting chaotic attractors and coexisting
periods

Selecting the circuit parameters as Table 1 except Cy,
and setting the initial states as (0, 0, 0.001V, OWb) and

(0.001, 0,0V, OWDb) separately, the bifurcation dia-
gram of the state variable ¢(¢) with variation of the
capacitance Cj is shown in Fig. 15. The red line is cor-
responding to (0, 0, 0.001V, 0WDb), and the blue line
is corresponding to (0.001, 0, 0V, 0Wb) (see Fig. 15).
With the two initial states, the system has coexisting
chaotic attractors when Cj is at the range of [12.5,
14.8 nF] and has coexisting periods when Cj is at the
range of [14.9, 20.0nF]. For C; = 13.5 and 17.0nF,
the phase portraits on the p-u; plane are coexisting
chaotic attractors and coexisting periods with the two
initial states of (0, 0, 0.001V, 0 Wb) and (0.001, 0,0V,
0Wb), as shown in Fig. 16a, b.

4.3 Dynamic analysis of dependence on other circuit
element parameters

The circuit element parameters are selected as shown
in Table 1. The dynamics of the circuit system with
the variation in other circuit element parameters (C,
Cs, Ry, Ry, Ilg—;‘, Rs) are depicted in Table 6. The cor-
responding Lyapunov exponents spectrum and bifurca-
tion diagram are displayed in Figs. 17, 18, 19, 20,21 and
22; the minimum Lyapunov exponents are not depicted
for clarity. In a word, the circuit system exhibits mul-
tiple dynamics with the variation in circuit element
parameters.

5 Conclusion

In the paper, the physical SBT memristor-based Wien-
bridge circuit is proposed, and its mathematical model

@ Springer
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Table 6 The' dynamics of The initial state Interval Dynamics Depicted figures
the system with the
variation in circuit element C, (19.00, 20.54 nF) Chaos Fig. 17
parameters (Ca, C3, Ry, Ra, .
R Ry (20.55, 20.85nF) Period
I
} (20.86, 21.00nF) Stable point
C3 (19.00, 19.20nF) Stable point Fig. 18
(19.21, 19.51 nF) Period
(19.52, 21.00nF) Chaos
Ry (23.50, 23.97k<2) Stable point Fig. 19
(23.98, 24.45kQ2) Period
(24.46, 27.00k<2) Chaos
Ry (23.50, 25.41k2) Chaos Fig. 20
(25.42,25.75k2) Period
(25.76, 26.00k2) Stable point
I;—;‘ (2.400, 2.458) Stable point Fig. 21
(2.459, 2.477) Period
(2.478, 2.550) Chaos
Rs (35.00, 40.09k<2) Stable point Fig. 22
(40.10, 42.20k<2) Period
(42.21, 50.00k<2) Chaos
Fig. 17 Dynamic behaviors " 500
with the variation in circuit % LE,
parameter C: a Lyapunov 5 0
exponents spectrum, and b &
. . . I
bifurcation diagram N 500 LE
o 2
g
2, -1000 LE3
15
>
= _1500 _ : ‘
1 19.5 20 20.5 21 19 195 20 205 21
Ca/nF Cy/nF
(@) (b)
Fig. 18 Dynamic behaviors @ 500
with the variation in circuit g L F
parameter C3: a Lyapunov 5 0
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is established using fourth-order state equations. The
system generates typical chaotic attractors by choos-
ing suitable circuit element parameters. By means
of theoretical analysis, when 0.2328mWb < |gpg| <
0.2778 mWb or |pg| > 0.7452mWb, the equilibrium
point is stable; when OmWb < |¢g| <0.2328 mWb
and 0.2778 mWb < |¢g| <0.7452mWb, the equilib-
rium point is unstable. Moreover, the numerical simu-
lation results indicate that this circuit system exhibits
various dynamic behaviors with the variation in the ini-
tial states and the circuit element parameters. Specif-
ically, some interesting dynamic behaviors have been
found. When the initial state ¢(0) is in the range of
[—0.2400, —0.2328 mWhb], the system can generate
hidden chaotic attractors. When the capacitance C; is
in the range of [12.5, 20.0nF], the system can generate
coexisting chaotic attractors and coexisting periods. All
the results provide an important theoretical basis for the
next physical implementation of the chaotic circuit.
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