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Abstract A pad-on-disc frictional model, a rotating
disc under acted by a pad, is established. The mov-
ing interaction between the coupled pad and disc is
estimated using the Stribeck-type friction model, and
the partial differential equation of the disc vibration is
calculated using the finite differencemethodwithmov-
ing load simulation procedure.Bifurcation diagramand
phase portraits of the pad motion with 3-DOFs reveal
that as the rotating speed is below a critical value, insta-
bility happens and stick–slip vibration is resulted for
the pad. Then, eigenvalue analysis is applied to evalu-
ate stability of the pad considering stochastic variation
of frictional coefficients and contact effect. Probabil-
ity distribution diagrams are presented to show that the
higher initial displacement of preload or friction coeffi-
cient can bring occurrence of more probably instability
in uncertain state.
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1 Introduction

In a pad-on-disc frictional system, instability is usu-
ally occurred with high amplitude which has nega-
tive influences on the engineering. Many researches
have been carried out for this problem with analyt-
ical, computational and experimental techniques. To
investigate the frictional system of rotating brake disc
acted by the fixed pad, the early achievements on sys-
tem are attributed to the dry frictional stick–slip self-
excited vibration [1] and unstable structural vibration
[2]. Stick–slip refers to a fluctuation of friction force,
sliding velocity with time or sliding distance changing
[3].

For the stick–slip mechanism, the model of rigid
body–rigid transmission belt also called “mass-on-
moving-belt model” has been widely used previously
[4]. Stick–slip is often caused by the nonlinear stiffness
effect [5] or nonlinear discontinuity in μ − v friction
curve [6]. To describe the occurrence of stick–slip, the
critical excitation speed is pointed out by Thomsen [7].
In 2001, a dynamic system is presented by Galvanetto
to get the mechanism of discontinuous bifurcations,
and the results show that the stick–slip vibration can be
affected by the non-smooth bifurcations [8]. Hereby,
Stribeck-type coefficient is usually concluded in stick–
slip analysis to analyse the system stability and deter-
mine the critical speed of the dynamic model [9].

However, using of the rigid belt model ignores the
interaction between the brake pad and disc in trans-
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verse direction. To overcome this shortage, elastic or
flexible brake disc models are adopted in recent inves-
tigations. A frictional system with a flexible thick plate
for disc and two continuous beams for pads using the
Mindlin’s theory is established by Beloiu and Ibrahim
to account for the influence of flexible belt on the brak-
ing behaviours. The braking responses in time and
frequency domains are investigated analytically and
experimentally by considering the influence of nonlin-
earity and randomness of contact forces [10]. Nayfeh et
al. reduced the order of a circular flexible uniform thick-
ness disc and analysed its dynamical behaviour analyti-
cally [11]. More recently, an elastic annular disc model
is adopted for the coupling system with separation and
reattachment by Li et al. for investigating the friction-
induced vibration in braking using the improved elastic
disc model [12].

During braking, the time-dependent nature of the
contacting interface in the pad–disc system is evident
and must be considered even if at lower relative speed
[13]. From the point of the rotating disc, its vibration
is activated by the moving action of the rigid pad all
the time. The influence of the moving force on sys-
tem stability attracts more and more attentions and
the moving load method is adopted in finite element
method and experimental approaches in recent years.
The deflection of a beam with moving force and the
resonance velocity of the moving load are analysed by
Yanmeni Wayou et al. [14]. An approximation solu-
tion of moving oscillator was investigated by Pesterev
and Bergman to describe the variation of displacement
and shear force in a one-dimensional distributed sys-
tem with an arbitrarily varying speed [15]. Chen et
al. analysed an axially accelerating viscoelastic string
using the method of multiple scales. They found that
the instability frequency intervals are influenced by the
axial speed and the structure coefficient [16].

More recently, the eigenvalue analysis iswidelyused
for investigating the stability of the disc–pad frictional
system. Using the eigenvalue method, unstable fre-
quencies of a braking system inspired by moving loads
can be obtained via the finite element method [17,18].
A linear complex-valued eigenvalue formulation for a
disc with moving load is established by Cao et al. to
calculate the stationary components of the disc brake
[19]. Accordingly, Ouyang investigated the instability
of a brake disc by presenting the relationship between
eigenvalue and disc’s rotating speed [13]. Through the
new technology, a disc brake stability-analysis model

and a linear finite element system are constructed to
get proper parameters for improving the stability in the
proposed approach by Lü and Yu [20].

Some stochastic studies applied to the brake system
have also been discussed recently. The most practical
way to propagate the stochastic parameters is Monte
Carlo simulation, which is not computationally effi-
cient and cannot be applied to a large FEmodel directly
[21]. Considering the brake systems, the statistical cor-
relation analysis, basic statistical analysis of data and
experimental data arementioned in Ref [22]. For a pad-
on-disc frictional system, stability of motion is influ-
enced by many structural and operational parameters.
Some of these parameters vary stochastically during
frictional acting process, such as friction coefficient and
contact effect. The negative slope in relation between
the friction coefficient and relative velocity is one of
the accounts related to the system instability.Generally,
friction contact between elements of the system induces
temperature increasing and stochastic varieties of fric-
tion coefficients. Some researches discuss the relation
between material friction coefficient and temperature
and its influence to the structure stability. According
to Oberst and Lai, brake squeal depends mostly on the
friction coefficients and pressure [23]. Therefore, the
normal pressure given by the handler is another factor
affecting the system stability which is stochastic and
varied during braking. With regard to the contact pres-
sure, the equilibrium and main frequency of the system
are varied in the braking process where the stability
of motion becomes stochastically varied. Considering
these, a certain optimizationmethod for the pad-on-disc
frictional system with interval parameters is addressed
byLü andYu [24]. Similarly, in their recent research, an
instability analysis model considered imprecise uncer-
tainty is established to study the squeal problems and
discuss the evidence theory [25]. The stochastic anal-
ysis is also discussed using Kriging-based model and
FE model by Nechak et al. [26]

The disc unstable mode mechanism of pad-on-disc
model has been researched by using the finite element
method [18,27]. The mechanisms from stick–slip to
binary flutter with mode coupling condition were also
discussed in [27–29]. However, up to now, the eigen-
value analysis of stochastic interval parameters, the
moving interactions and the flexible coupling between
pad and disc have not been considered simultaneously
in one numerical dynamical braking model.
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Table 1 Parameters

Symbol Physical meaning Value

X/Y/Φ Tangential/normal/angle displacements of the pad

R/Θ/W Radial/circumference/ transverse displacements of disc

kx Tangential stiffness of pad 3.0 × 104 kN/m;
ks Angle stiffness of pad 3.5 × 104 kN/m/rad

kt1/kt2 Tangential contact stiffness between pad and disc 3.1 × 104 kN/m

ky/ken Normal stiffness of pad /vertical contact stiffness between pad and disc 4.0 × 104 kN/m

m/Is Mass/rotational inertia of pad 0.1 kg/0.25 kg m2

ρ Density of disc 7.8 × 103 kg/m3

E/μ0 Young’s modulus/Poisson’s ratio of disc 196GPa/0.25

q/ra Thickness/inner radius of pad 0.01m/0.09m

cx/cy Tangential/normal damping coefficient of pad 100Ns/m/113Ns/m

cs Angle damping coefficient of pad 118Ns/m/rad

cw Transverse damping coefficient of disc 140 kNs/m

vs The smallest speed corresponding to the friction coefficient 0.5m/s

b/a/h Outer radius/Inner radius/ Thickness of disc 0.16m/0.028m/0.02m

ψ The central angle of contact area between disc and pad π/6 rad

� Initial displacement by the pad to the disc surface

μ/A Contact friction coefficient/ contacting area between the pad and disc

V/Ω The linear speed at the outer edge of disc/disc’s rotating speed

This paper deals with a pad-on-disc, i.e. a rigid–
flexible coupled frictional system. The vibration of disc
is inducedby themoving actionof thepad and solvedby
the finite difference method using a moving load sim-
ulation procedure. Bifurcation analysis and the limit
cycle motion of pad are put forward, and then, the pad’s
stability is discussed based on the linear eigenvalue
analysis. Stochastic instability of frictional coefficient
and contact pressure is investigated using the proba-
bilistic method.

The values referred in this paper are listed in Table 1.

2 Models

2.1 Dynamics model

In the pad-on-disc frictional system, the disc is taken
as an elastic basement rotating with a speed �. The
pad with subtended angle ψ and inner radius ra is con-
strained by the callipers and act on the outer edge of
disc. For simplicity, the pad is assumed as a rigid body
and vibrates in circumferential direction X, vertical
direction Y and angular direction Φ. For the disc, lat-

eral vibrationW is considered and equation of motion
is established with respect to the polar coordinate of
R (radial direction) and Θ (circumferential direction).
The stiffness in the system contains kx/ky/ks repre-
senting the effect of callipers; meanwhile, the contact
stiffness between pads and disc are kt1/kt2/ken . The
corresponding damps are cx/cy/cs/cw in tangential,
normal, angle direction of pad and transverse direction
of disc. In addition, Λ is on behalf of the initial dis-
placement with respect to the normal braking pressure.

The equations of motion of the pad and the disc are
deduced, respectively, as
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

MẌ + kx X + cx Ẋ + P sinΦ

+kt2
(
X − |F |

kt1

)
sgn(V − Ẋ) cosΦ = 0

MŸ + ky(� + Y ) + cyẎ − P cosΦ

+kt2
(
X − |F |

kt1

)
sgn(V − Ẍ) sinΦ = 0

IsΦ̈ + ksΦ + csΦ̇ + kt2
(
X − |F |

kt1

)
× q/2 = 0

(2.1)

and
ρh∂2W

∂T 2 + D∇4W + cw∂W

∂T

+ρh

(
2�∂2W

∂Θ∂T
+ �̇∂W

∂Θ
+ �2∂2W

∂Θ2

)
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Fig. 1 Model of a pad-on-disc system

= H(R)H(Θ)

{

N − [Fsgn(V − Ẋ)] ∂W

R∂Θ

}

×δ(Θ − σ) (2.2)

where D is flexural rigidity of the disc and σ = σ(T )

represents the circumferential position of moving load
varying with time.

∇4 = ∇2∇2,∇2 =
(

∂2

∂R2 + ∂

R∂R
+ ∂2

R2∂Θ2

)

,

D = Eh3

12(1 − μ)
, H(R) =

{
1, ra < R < b
0, else

,

H(ϑ) =
{
1, −ψ < Θ < ψ

0, else
(2.3)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P = ∫ ∫ ken
As

(W − Y − RΘ tanΦ)αRdRdΘ

= ∑m
i=1

∑n
j=1

ken
m·n (Wi, j − Yi, j )αi, j

N = −P;αi, j = max(0,Wi, j−Yi, j )
|Wi, j−Yi, j | ;

Yi, j = Y + RiΘ j tanΦ; F = μ|N |

(2.4)

Here, i, j,m, n are the ith node in radial direction, jth
node in circumferential direction, total number of radial

nodes in contact area, total number of circumferential
nodes in contact area, respectively.Hence,Wi, j ,Yi, j are
the local transverse response of disc, normal response
of the pad with respect to the radial i th, circumferential
j th node. Ri and Θ j represent the radius length of the
radial i th node and the angle of the circumferential j th
node, also shown in Fig. 1. Pi, j and Fi, j are contact
pressures and corresponding friction force between the
pad and disc within the area of A, respectively.

Introduce the dimensionless variables and parame-
ters

w = W

h
; x = X

h
; y = Y

h
; t = T

√
D

ρh4
;

r = R

h
; ā = a

h
; b̄ = b

h
; �ra = ra

h
; θ = Θ;

φ = �;Δ = �

h
; η0 = D

ρh4
; η1 = cw

√

h2

ρD
;

η2 = 2Ω̃

√

ρh4

D
; η3 = ˙̃

Ω
ρh4

D
; η4 = Ω̃2 ρh4

D
;
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η5 = h2

D
; v = V

√

ρh2

D
; Ω̄ = Ω

√

ρh4

D
;

σ̃ (t) = σ(T ); P̄(y, w) = P(Y,W )

h
;

F̄(y, w) = F(Y,W )

h
; N̄ (y, w) = N (Y,W )

h
.

Equations (2.1) and (2.2) are rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mη0 ẍ + kx x + cx
√

η0 ẋ + P̄ sin φ

+ kt2
(
x − |F̄ |

kt1

)
sgn (v − ẋ) cosφ = 0

Mη0 ÿ + ky (Δ + y) + cy
√

η0 ẏ

−P̄ cosφ + kt2

(

x −
∣
∣F̄

∣
∣

kt1

)

× sgn (v − ẋ) sin φ = 0

Isη0φ̈ + ksφ + cs
√

η0φ̇ + kt2h

(

x −
∣
∣F̄

∣
∣

kt1

)

× q/2 = 0

∂2w
∂t2

+ ∇4w
h + η1∂w

∂t +
(

η2∂
2w

∂θ∂t + η3∂w
∂θ

+ η4∂
2w

∂θ2

)

−η5
[
N̄ − F̄sgn (v − ẋ) ∂w

r∂θ

] × δ (θ − σ̃ (t)) = 0

(2.5)

2.2 Friction model

Friction models can be classified into two types, the
staticmodel and the dynamicmodel. Threewidely used
forms of static model to describe the friction properties
are static friction model (used under the condition of
no relative velocity from static to relative motion), the
coulomb (friction model applied before occurrence of
relative displacement between the contact parts) and
Stribeck-type friction model.

The Stribeck effect refers to a phenomenon that the
friction coefficient decreases with the increase in the
relative velocity within a limit velocity range [3]. The
negative slope in relation between the friction and rel-
ative velocity is known as the main reason of friction
instability.

A universal friction model combined with these
effects abovewhich is also called themodifiedStribeck-
type friction coefficient μ(vr ) can be expressed as

μ(vr ) = fc + ( fs − fc) e
−(vr /ṽs )

δ

(2.6)

where fc and fs are the minimum and the maxi-
mum static friction coefficients, respectively. ṽs =
vs

√
ρh2/D is the dimensionless Stribeck velocity, and

vr the relative velocity. When δ = 1, Eq. (2.6) is also
known as Tustin index model (Fig. 2).

Fig. 2 Friction model: static friction+Coulomb fric-
tion+Stribeck effect

3 Numerical analysis

3.1 Moving load simulation

Considering a force F̃ moves along the edge of disc. To
analyse its response under the moving load, the disc’s
circumferential edge is discretized into 6n elements
(the pad covers n elements depending on ψ). Let dt
be the unit time and dθ the unit space, the nodal force
F̃ is subsequently allocated in every unit time.

For the moving load acted system, two conditions
will be dealt with during calculation:

a) Cdθ = Ω̃dt (C is a positive integer). In this case,
the load moves from one discrete point to the Cth
one after each time step dt.

b) dθ = CΩ̃dt (C is a positive integer). In this case,
after each time step dt, the load moves at a place
between the discrete points e and e + 1. Dividing
the space step dθ into C equal sub-spaces, the load
moves at the next sub-point after every time step dt.
When the load F̃ moves at the ith one, (e + i

C dθ)

where i = 1, 2 . . .C , the load F̃ will be resoluted
to the points e and e + 1 as F̃e = (

1 − i
C

)
F̃ and

F̃e+1 = ( i
C )F̃ , respectively (see Fig. 3).

3.2 Boundary conditions

Equations of motion (2.5) contain partial differen-
tial equation of disc and ordinary differential equa-
tions of pad, which can be solved by the finite differ-
encemethod andRunge–Kuttamethod simultaneously.
Considering the contact forces within the contact area
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Fig. 3 Moving load simulation. a Condition Cdθ = �̃dt , b
condition dθ = C�̃dt

moving along the outer edge of the elastic disc, the
transverse response of disc is induced by successive
change of the contact position between the pad and
disc. Consider that the disc clamped at the inner radius
�ra and free at the outer radius b̄. The boundary con-
ditions of the transverse response w = w(r, θ, t) are
deduced as

w|r=ā = 0,
∂w

∂r

∣
∣
∣
∣
r=ā

= 0

at inner radius (3.1)

∂2w

∂r2
+ μ0

(
1

r

∂w

∂r
+ 1

r2
∂2w

∂θ2

)∣
∣
∣
∣
r=b̄

= 0

at outer radius (3.2)
[

∂
(∇2w

)

∂r
+ 1 − μ

r2
∂

∂θ

(
∂2w

∂r∂θ
− ∂w

r∂θ

)]∣
∣
∣
∣
∣
r=b̄

= 0

at outer radius (3.3)

3.3 Bifurcation analysis

Linear eigenvaluemethod has beenwidely used for sta-
bility analysis of braking frictional systems. Thematrix
vibration equations of the pad are generally expressed
as

[M]
[
Q̈

]+[K ] [Q]+[C]
[
Q̇

]+[Gh]+[G0] = 0 (3.4)

where [Gh] and [G0] are the nonlinear contacting and
constant forces and [M], [C], [K ] and [Q], respec-
tively, denote the mass matrix, the gyroscopic matrix,
the damping matrix and the displacement vector of the
pad.

The equilibrium position (U )0 =
[

(Q)0
(Q̇)0

]

, which

depends on the rotating speed �, can be obtained by
setting all derivative terms to be zero, i.e. [K ] (Q)0 +
[G0] + [Gh]Q̇=0 = 0 and

(
Q̇

)

0 = 0.
Introduce the perturbation vector and the state-space

matrix, as follows:

[U ] =
[
Q
Q̇

]

, [A] =
[

0 I
−M−1K −M−1C

]

.

The differential perturbation equation (3.5) is
resulted from (3.4).

[
U̇

] = [A] [U ] + [Gh] + [G0] (3.5)

Letting SU = U − (U )0, investigate the stability at
static equilibrium position (U )0 which yields the per-
turbation equation (3.6). Here [ Ã] and [G̃] are trans-
formed by [A], [Gh] and [G0]. [30]

[ ˙SU ] = [ Ã][SU ] + [G̃] (3.6)

The eigenvalue corresponding to the matrix [ Ã] is

λ = α ± j� (3.7)

where α and � correspond to the real and imaginary
parts of the eigenvalue λ, respectively.

Numerical simulation shows that the angle displace-
ment is very small, so we take sin φ = 0 and cosφ = 1.
When the pad is in equilibrium, its velocity is near
zero. So we have sgn (v − ẋ) = 1. Influence of the
disc vibration on instability of the pad is very slight,
and it can be neglected.

Choose the variables a1 = kt2
kt1

ken, a2 = kx + kt2,

a3 = ky + ken, μ0 = fc + ( fs − fc) e
v
ṽs . Letting

ẋ0 = 0, ẏ0 = 0, φ̇0 = 0, the equilibrium of the pad
is determined as x0 = − kyμ0a1Δ

a2a3
, y0 = − kyΔ

a3
and

φ0 = kyqhΔμ0kt2
2ksa3

(
ken
kt1

+ a1
a2

)
.
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Fig. 4 Eigenvalue analysis of the systemwith rotating velocities

Then, the state-space Jacobi matrix of the system is
deduced as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0
− a2

Mη0
m1 −μ0a1

Mη0
0 0 0

0 0 0 1 0 0

0 0 −a3
Mη0

−cy
√

η0
Mη0

0 0
0 0 0 0 0 1

− kt2h
q
2

Isη0
m2 −

q
2 ha1μ0
Isη0

0 − ks
Isη0

− cs
√

η0
Isη0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.8)

where

m1 =
−cx

√
η0 + a1kyΔ

ky+ken
( fs− fc)

ṽs
e

v
ṽs

Mη0

and

m2 =
kenkyqΔh
ky+ken

kt2
kt1

( fs− fc)
2ṽs

e
v
ṽs

Isη0
.

Let Δ = 0.1, 0.2 and 0.3. Instability of the pad is
occurred as at least one real part of eigenvalue becomes
positive. While the rotating velocities decrease until 0,
variation of themaximum real part of eigenvalues of the
pad in termsof the rotating speed is shown inFig. 4.One
finds that the slope of the curve is varied with value of
the initial pressureΔ. Larger initial pressure leads to the
larger critical speed or early occurrence of the friction-
induced instability. The equilibrium of the pad changes
to be a limit cycle vibration. The image part of the pure
eigenvalues represents frequency of the limit cycle.
WhenΔ = 0.1, the critical speed is �̃ = 16.56 and the
eigenvalues are −0.02± 1.0012i , −0.0478± 2.3934i
and the pure eigenvalue pair ±2.0904i , respectively.
The phase portraits of the pad vibration in x direction

Fig. 5 Phase portrait at different rotating speeds (Δ = 0.1): a
�̃ = 35, b �̃ = 10, c �̃ = 20

(circumferential motion) at �̃ = 35, 10 and 20 are
shown in Fig. 5.

Typical bifurcationdiagramof circumferencemotion
of the pad (Δ = 0.1)with the variation of rotating speed
�̃ is shown in Fig. 6. �̃ varies from 40 to 10 to sim-
ulate the braking procedure and also sweeps from 10
to 40 to obtain the reverse bifurcation process. When
�̃ is larger enough, the pad stays in static equilibrium,
which is defined as a relative-equilibrium state because
it is attached and in slightly vibration together with
the elastic disc [31]. At the critical speed �̃ = 16.56
(also called the Hopf bifurcation point), the relative
equilibrium of the pad loses its stability and a large-
amplitude limit cycle vibration with amplitude about
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Fig. 6 Bifurcation diagram of the tangential motion of the pad
(Δ = 0.1)

0.02 is resulted by the moving friction interaction. In
other words, when the velocity is exceeded, the pad
becomes unstable [30].With the decrease in �̃ (positive
direction), the limit cycle amplitude is shrunk gradually
until zero. At negative direction, the amplitude of the
limit cycle vibration is increasing until the saddle-node
bifurcation point (speed) of the limit cycle at �̃ = 30,
both the relative equilibrium and the stable limit cycle
exist simultaneously within the speed range of 15.56–
30. Initial conditions of motion determine which one is
resulted.

3.4 Limit cycle vibration of the pad

During braking, the disc’s rotating speed �̃ is persis-
tently reduced until zero. According to the bifurcation
diagram Fig. 6, a large-amplitude limit cycle vibration
is resulted by the moving frictional interaction as �̃ is
lower than the critical speed 15.56. The relative equilib-
rium and limit cycle vibration of the pad are presented
by diagrams of time histories and phase portraits of the
pad’s circumferential motion, as shown in Fig. 7a, b,
respectively.

When �̃ = 35, vibration of the pad will be damped
to a relative-equilibrium state. Figure 7a indicates that
such the state is in fact a quasi-periodic motion with
very small amplitude, until stable equilibrium with the
value around 8.15 × 10−3 in x direction, which can
be attributed to the sustained oscillation of the con-
tacting force resulted from the disc transverse vibra-
tion. When �̃ decreases to 15.56, the Stribeck-type
friction effect induced self-excited vibration (or stick–
slip) appears and the limit cycle vibration with rather
large amplitude in all directions of the pad is resulted.

In this Hopf bifurcation, the stable relative-equilibrium
motion transforms suddenly, after the bifurcation point,
to be the stable limit cycle with larger amplitude. As
the rotating speed continues to decrease, the amplitude
of the limit cycle decreases steadily.

In termsof the quasi-periodicmotionof pad, Fig. 8a–
d shows the variation of the relativemotion. In this case,
the pad’s tangential velocity is always smaller than the
rotating speed, so that the pad slides on the disc from
the beginning to end. However, through the damping
effect, the pad’s tangential velocity will be limited and
the response will become a small-value periodic varia-
tion. On account of the pad’s small velocity, the friction
coefficient will be settled in a range around 0.25 which
is shown in Fig. 8b. Meanwhile, the friction force and
contact pressure are damped as stable periodic vari-
ations of the pad coincidently. So a small-amplitude
vibration is occurred by the decreased contact forces
and pad’s tangential velocity.

For the stick–slip motion of the pad, its tangential
velocity response is shown in Fig. 9a. During stick
stage, the pad moves with the disc where the pad’s tan-
gential speed is approximately equal to the disc’s linear
speed at the outer edge (vx = v); namely, the pad stays
still relative to the disc. In this stage, the pad’s tangen-
tial response reaches the highest amplitude rapidly and
the friction coefficient μ becomes equal to the maxi-
mum static friction coefficient fs with respect to the
condition vr = 0. Then, the pad starts slipping and
the friction coefficient initially decreases with increas-
ing velocity in the slip phase (shown in Fig. 9b). On
account of the stick–slip self-excited vibration, the pad
becomes unstable with high amplitude response.

Conclusions are obtained in time-domain analysis
that if the rotating speed is big enough, the pad is
vibrating as a stable focus with small amplitude for the
pad-on-disc system.As �̃ decreases, a friction-induced
limit cycle appears for the pad and the stick–slip/limit
cycle vibration takes place.

Frequency-domain analyses are also carried out to
reveal the characteristic of motion of the pad-on-disc
frictional system, from the relative equilibrium to a
stable limit cycle, as shown by frequency spectra in
Fig. 10, which are obtained by FFT technique for
the pad’s tangential, normal and angle motions. Fig-
ure 11 represents the disc’s transverse motion after
the friction-induced limit cycle vibration has happened
(�̃ = 10).
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Fig. 7 Tangential motion of the pad (Δ = 0.1). a Stable focus (�̃ = 35) and b friction-induced limit cycle (�̃ = 10)

With reference to frequency analysis for the spec-
trum diagrams at lower rotating velocity, a periodi-
cal motion appears in the pad’s circumference direc-
tion with main frequency of 0.23Hz, the second- order
frequency of 0.45Hz, the third-order frequency of
0.68Hz, etc. also found in pad’s normal and angle
directions. In Fig. 10b, d, the first-order frequency of
0.29Hz of the disc can be found in pad’s normal direc-
tion and the natural frequency of 0.16Hz in angle direc-
tion existed in Fig. 10d.

For the disc’s transverse response, equation of
motion of disc is expanded by a finite difference model
with inner edge and outer edge in radius direction, and
continuation in circumferential direction. Calculation
shows that the outer amplitude is larger than the inner
one. In Fig. 11a, there aremany frequency components,
where the peak at 0.29Hz is the first-order natural fre-
quency of disc. The others with lower amplitude are
1.87Hz of the second-order frequency and 5.03Hz of
the third-order frequency of disc, respectively. Also,

one finds that pad’s main frequency of 0.23Hz and the
second-order frequency of 0.45Hz in disc’s spectrums
represent that deflection w depends on x , y and φ, vice
versa. Obviously, the dominant frequency is coincident
in the whole disc and the first-order mode vibration
always exists. However, the frequency distribution is
different in the radial direction, that is, the second- and
third-order natural frequencies are evident in the inner
edge of disc but not distinct in the outer edge of disc.

By comparison, amplitude of the first-order mode
vibration increases along the radial direction, but the
proportions with other frequencies are decreased. It
should be pointed out that in the outer edge of disc, only
the first-order mode can be induced in the disc acted
by moving pad through numerical calculation. Con-
sidering the outer edge of the disc, the disc’s partial
differential equation can be discretized by first-order
dimensional reduction for further research.
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Fig. 8 Variation of the relative motion and friction in relative-equilibrium state. a Relative velocity, b friction coefficient variation, c
friction force variation, d contact pressure variation

Fig. 9 Variation of the relative motion and friction in stick–slip case. a Relative velocity and b friction coefficient variation

4 Stochastic variations of parameters

Linear eigenvalue analysis is an available technology
for pad stability analysis even for the uncertainty prob-
lems. In this section, the stability analyses are carried
out considering of the stochastic contact pressure and

friction coefficient, by using the eigenvalue analysis
and Monte Carlo simulation.

The pad is completely hinged on the callipers, and
the contact force on the pad can be changed through
adjusting the displacement between the callipers and
pad. We define the assumed or expected displacement
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Fig. 10 Spectra of the circumferential response of pad (�̃ = 10) a x direction, b y direction, c φ direction, d y direction (�̃ = 35)

as the initial displacement Δ, which results contact
pressure Fn = kyΔ acting on the pad where ky is con-
tact stiffness between calliper and pad. It should be
noted that in a disc brake system, the pad may separate
from the rotating disc occasionally with a small preload
or low initial displacement, as revealed by Ouyang et
al. [32] with the contact-point assumption.

Considering the complete contact case, the initial
displacement varies between 0.01 and 0.30. Introduce
the random normal distributed standard deviation δΔ

with themeanvalue 0 andvariance 0.2; then, the sample
of initial displacement is obtained by Δ̄ = Δ(1 + δΔ).
Then, the distributions of the input variables and ran-
domized instable probability are revealed in Fig. 12.
This method employs a random generator to produce
a considerable amount of samples over the process-
ing domain. Then, the corresponding output distribu-
tions are achieved using the Monte Carlo simulation.
For the interval initial displacement, the pad’s instabil-
ity is occurred in probability at the instable state of Δ̄

between 0.072 and 0.256. Choose 10 sampled points
of Δ̄ from the instable state, and the probabilities are
shown in Table 2. However, away from the instable sec-
tion, the probability seems to be 0 or 1. Apparently, the
higher initial displacement of preload can bring occur-
rence of more probably instability in unstable state.

Similarly, the stochastic interval friction coefficient
varies from 0.25 to 0.50 and the deviation δ fs is cho-
sen to express the data fluctuation around 104 samples,
which satisfies the relation �fs = fs

(
1 + δ fs

)
. For the

random inputs, the mean value is 0 and the variances
are 0.1, 0.2, 0.25 and 0.3 as stochastic normal distri-
butions shown, respectively, in Fig. 13a. It should be
emphasized that the instable probability is calculated
at a determinate rotating speed �̃ = 16. Figure 13b
and Table 3 display the unstable probabilities (10 typ-
ical samples) and distributions for the random friction
coefficient obtained by the Monte Carlo simulation.
With various input data fluctuations, the probabilistic
response of fs is different that the bigger fluctuation
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Fig. 11 Spectra and vibration of the disc: a Spectra of disc’s transverse response at �̃ = 10, b disc’s transverse response, c disc radial
outer edge response, d disc radial inner edge response

Fig. 12 Distribution of instable points with initial normal pressure (variance=0.2)

can bring the smaller slope of probabilistic distributed
curve.

Via linear eigenvalue analysis, the contact effect
and friction coefficient are selected as stochastic inter-
val variables using the two-dimensional probabilistic
analysis. At the constant rotating velocity (�̃ = 15),
take the stochastic normal distributed parameters Δ ∈

[0.01, 0.30] and fs ∈ [0.25, 0.50] with the mean value
0 and variance 0.2. Then, the instable probabilities are
provided by eigenvalue calculation, and the probabilis-
tic response surface is given inFig. 14a. In timedomain,
instability is occurred with high amplitude in pad’s cir-
cumferential direction (see Sect. 3.4). Therefore, the
pad’s time-domain amplitude is another index to mea-
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Table 2 Probability results
of samples Δ

(variance=0.2)

No. Expected value Distribution Probability

1 0.072 Norm 0.001

2 0.092 Norm 0.108

3 0.113 Norm 0.452

4 0.154 Norm 0.886

5 0.174 Norm 0.952

6 0.195 Norm 0.979

7 0.215 Norm 0.988

8 0.236 Norm 0.993

9 0.256 Norm 0.997

10 0.224 Norm 0.995

Fig. 13 Distribution of instable points with interval friction coefficient using different variances

Table 3 Probability results of samples fs at different variances

No. Expected value Distribution Probability
Variance=0.1 Variance=0.2 Variance=0.25 Variance=0.3

1 0.250 Norm 0.000 0.001 0.008 0.019

2 0.278 Norm 0.000 0.011 0.040 0.083

3 0.301 Norm 0.001 0.052 0.104 0.163

4 0.333 Norm 0.028 0.140 0.197 0.261

5 0.361 Norm 0.134 0.273 0.301 0.361

6 0.389 Norm 0.376 0.413 0.425 0.458

7 0.417 Norm 0.660 0.550 0.539 0.545

8 0.444 Norm 0.836 0.653 0.646 0.630

9 0.472 Norm 0.928 0.749 0.725 0.697

10 0.500 Norm 0.970 0.809 0.783 0.745
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Fig. 14 Probability distribution of the instable points at different velocities (variance=0.20). a Via eigenvalue analysis, b via time-
domain analysis �̃ = 15, c �̃ = 10, d �̃ = 20

sure the instability and the probability distribution of
Δ − fs via time-domain analysis is shown in Fig. 14b.
By comparison, this section is treated as a demon-
stration of the conclusion collected by eigenvalues. It
should be stressed that in the Monte Carlo simulation,
the accuracy of the results will be reliable with enough
specimens. Thus, to verify the results by these two
methods, the Monte Carlo simulation is applied twice
with two groups of specimens. Apparently, the proba-
bility distributions tend to be coincident by approaches
in Fig. 14a, b where a significant conclusion is obtained
that the instability of the pad is relative to friction coef-
ficient and initial displacement (normal pressure), and
the critical instable point of the system is varied by the
parameters probabilistically.

Under this case, the probability distributions at dif-
ferent velocities are analysed and the probability distri-
butions at �̃ = 10 and �̃ = 20 are given in Fig. 14c, d.
One finds that a stable region appears inΔ− fs curves,
where the pad will be stable with parameters falling
in the zone; however, the stable areas are varied with
different rotating velocities. More specifically, a higher

rotating velocity leads to a wider stable region. Mean-
while, the pad’s instability is probabilistically uncertain
by the near of the stable region. In terms of the Monte
Carlo simulationmentioned above, the lower initial dis-
placement or friction coefficient is, the more stably the
pad vibrates. In fact, lower friction coefficient and nor-
mal pressure lead to a lower friction force, which is
applied to express the interaction of the contact effect
affecting the pad’s stability.When the pad is stick to the
disc, the friction force does positive work for the pad.
Thus, if the stick–slip vibration is occurred at lower
rotating velocity, the friction force will affect the pad’s
stability with high energy, leading to the large insta-
ble probability around the sample point. In addition,
the gradients in the probabilistic response surface are
varied by different variances of the normal distributed
inputswhere the probability distributionswith different
variances are shown in Fig. 15.

Compared with the FE models [21,26], stochastic
instability can also be applied using the finite differ-
ence model with rigid pad–elastic disc coupling model
to overcome the issue of computational workloads by
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Fig. 15 Probability distribution of the instable points with different variances (�̃ = 15). a variance=0.10, b variance=0.30

the Monte Carlo simulation. Similarly, the pad’s insta-
bility is influenced by interval parameters of friction
coefficient and contact pressure. Particularly, themodel
can also be improved, such as the pad’s transform by
using the elastic pad model and disc’s circumferential
vibration with more equations. Meanwhile, the contact
stiffnesses can be more accurate with proper experi-
ments.

5 Conclusions

A frictional pad-on-disc couplingmodel considered the
moving interactions is investigated in this paper. Bifur-
cation analysis and the limit cycle motion of pad are
conducted to get dynamical responses. The eigenvalue
analysis is applied for studying stochastic variations of
parameters.

Conclusions are summarized in the following.

1. The Hopf bifurcation happens for the pad as the
rotating speed of disc is decreased across the criti-
cal speed. Then, the relative equilibrium of the pad
loses its stability and a larger amplitude stick–slip
is resulted by the friction interaction with the disc.

2. There are many frequency components in the disc
vibration, but only the first-order mode frequency
is dominant in circumferential vibration along the
outer edge of disc obviously.

3. When stochastic variations of parameters are con-
sidered, instable regions in Δ − fs curves are var-
ied with different rotating speeds, that is, the higher
rotating speed leads to the wider stable region.

4. Lower initial displacement or friction coefficient
leads to lower probability of instability. In the other

words, the friction force is the dominant factor for
the pad’s stability of motion with friction interac-
tion.
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