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Abstract Jaya algorithm is one of the recent algo-
rithms developed to solve optimization problems. The
basic concept of this algorithm consists in moving
the obtained solution, for a given problem, toward
the best solution and avoiding the worst one. How-
ever, it severely suffers from premature convergence
problem and therefore can be easily trapped in local
optimums. This study aimed to alleviate these draw-
backs and improve the performance of the original Jaya
algorithm. Here, three new mutation strategies were
implemented in the original Jaya to improve both its
global and local search abilities. Chaotic maps were
proved to be able to boost the search capabilities of
meta-heuristic algorithms.Therefore, after demonstrat-
ing its chaotic behavior through the sensitivity to ini-
tial conditions, topological transitivity and the den-
sity of periodic points, we proposed a new 2D cross
chaotic map. The chaotic sequences provided by the
proposed chaotic map were embedded into the orig-
inal Jaya algorithm to generate the initial population
and control the search equations. It is worthmentioning
that themodifications incorporated in the original algo-
rithm did not affect its two essential characteristics, i.e.,
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simplicity and nonrequirement of additional control
parameters. As case studies, sixteen benchmark func-
tions were used to evaluate the performance of the pro-
posed chaotic Jaya algorithm (C-Jaya) regarding solu-
tion accuracy and convergence speed. Comparisons
with some other meta-heuristic algorithms for low-,
middle- and high-dimensional benchmark functions
show that the proposed C-Jaya algorithm enhances the
performance of original Jaya significantly.Moreover, it
offers the fastest global convergence, the highest solu-
tion quality and it is the most robust on almost all the
test functions among all the algorithms. Nonparamet-
ric statistical procedures, i.e., Friedman test, Friedman
aligned ranks test and Quade test, conducted to ana-
lyze the obtained results, show the superiority of the
proposed algorithm.

Keywords Chaos theory · 2D cross chaotic map ·
Optimization · Jaya algorithm · C-Jaya algorithm

1 Introduction

1.1 Research background

Several problems in various engineering domains can
be formulated as optimization problems. Thus, the
achievement of optimal solutions requires better opti-
mization algorithms. Traditional optimization algo-
rithms like dynamic programming, linear program-
ming, steepest descent usually fail to reach optimal
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solutions for large-scale problems particularly with
nondifferentiable, epistasis, i.e., correlated parameter,
nonconvex and nonlinear objective function. More-
over, previous techniques fail to handle multimodal
optimization problems. To overcome the aforemen-
tioned problems, heuristic algorithms have emerged
as a robust method for finding optimum solutions for
a given problem. Several classification criteria have
been considered in the literature, such as determinis-
tic, iterative-based, stochastic, population-based. The
search process of population-based algorithms is ini-
tiated with the generation of random candidate solu-
tions. The initial population is enhanced over time
until a termination condition is satisfied. This kind
of algorithms can be classified into two main groups:
swarm intelligence-based algorithms and evolution-
ary algorithms (EA). Recently, some inventive tech-
niques have been involved in improving the efficiency
of the heuristic methods and the obtained algorithms
are calledmeta-heuristic. Themain advantages of these
algorithms compared to conventional techniques are
simplicity, better local optimum avoidance, gradient-
free mechanism and flexibility. Researchers have made
enormous efforts in this field, and nature-inspiredmeta-
heuristic optimization algorithms have proved their
efficiency in several optimization problems and thereby
are extensively used.

1.2 Related works

Over the last three decades,well-knownnature-inspired
optimization algorithms have been developed: genetic
algorithm (GA) [23] based on simulating living beings
evolution and the survival of the fittest stated in Dar-
winian theory; particle swarm optimization (PSO) [32]
based on the social behavior of fish schooling or
bird flocking; artificial immune algorithm (AIA) [17]
which is inspired by the behavior of the human being’s
immune system; ant colony optimization (ACO) [14]
which imitates the ant colonies foraging behavior;
biogeography-based optimization (BBO) [54] which
simulates the island species migration behavior; shuf-
fled frog Leaping (SFL) [15] which imitates the col-
laborative behavior of the frogs; artificial bee colony
(ABC) [31] which is inspired by the honey bee for-
aging behavior; gravitational search algorithm (GSA)
[51] which works on Newton gravity law; Grenade
Explosion Method (GEM) [2] which is inspired by

the explosion of a grenade; and teaching-learning algo-
rithm (TLA) [48,49] which imitates the teaching and
learning processes.

All the aforementioned algorithms presented some
limitations in their evolution process. The main weak-
ness consists in the fact that the effectiveness of these
algorithms is profoundly affected by the fixed con-
trol parameters [49]. In other words, the excellent
selection of the parameters is crucial for the evolu-
tion process toward the optimum solution. For exam-
ple, genetic algorithm provides near-optimal solutions
owing to the difficulty to adjust the adequate control-
ling settings, such as mutation rate and crossover rate.
The same applies to PSO, which uses cognitive and
social parameters and inertia weight [28]. Similar to
these two algorithms, ABC needs some control param-
eters, for instance, number of bees, limit. Similarly,
BBO requires the probability of the habitat modifi-
cation, mutation probability, habitat elitism parame-
ter and population size. The design of an optimization
algorithm that does not require control parameters has
challenged researchers. This property was taken into
account in this research.

Recently, there has been a surge of interest in
the use of hybridization which is the combination of
optimization algorithms to improve their quality [6–
8,21,64]. The performance of the obtained algorithm is
almost always superior to the original. Chaos is among
the newest techniques applied in various engineering
fields. Chaos theory concerns the study of chaotic
dynamical systems which can be defined as nonlinear
dynamical systems characterized by a high sensitiv-
ity to their initial conditions [38,42]. In other words,
the outcome of the system is substantially affected by
small changes in the initial conditions.Moreover, it can
be recognized as pseudo-random behavior produced
by a deterministic nonlinear system. Due to dynamic
characteristics and ergodicity, chaos search emerges as
a powerful technique for hybridization. The incorpo-
ration of chaos in a meta-heuristic algorithm can be
divided into three classes; in the first class, the chaotic
sequences generated by chaotic maps are used to sub-
stitute random numbers. In the second, local search
approaches are implemented via chaotic map function,
whereas the control parameters of algorithms are gen-
erated chaotically in the third one [30].

Being fascinated by the potential of chaos, many
researchers have demonstrated that the introduction
of chaos in optimization algorithms contributes to
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improving their original version, such as chaotic dif-
ferential evolution [27,43], chaotic genetic algorithms
[37,61], chaotic simulated annealing [24,39], chaotic
firefly algorithm [19,22], chaotic-bat swarm optimiza-
tion [18] and chaotic biogeography-based optimization
[52,53,59]. In 2010, Alatas embedded seven chaotic
maps into harmony search (HS) algorithms [4]. He
proved that chaos could improve their solution qual-
ity. In another work, Alatas demonstrated the benefit of
introducing chaos in the ABC algorithm [3]. A chaos-
improved version of the imperialist competitive algo-
rithm (ICA) was proposed in 2012 by Talatahari et al.
[57]. Mirjalili and Gandomi [40] pinpointed the prob-
lemof trapping in local optimum in gravitational search
algorithm (GSA) and proposed a chaos-enhanced ver-
sion of GSA. Also, Gao et al. [20] introduced chaos in
GSA in two different manners. The first approach can
be summarized in substituting random sequences by
chaotic sequences generated by the chaotic map, while
the second one uses chaos like a local search method.
In [29], Jordehi developed three different versions of
chaotic-bat swarmoptimization (BSO) algorithmusing
eleven chaotic maps, and the best one was retained as
the proposed BSO algorithm. Huang et al. [25] pro-
posed a new chaotic cuckoo search (CCS) optimization
algorithm by embedding chaotic approach into cuckoo
search (CS) algorithm. In [16], Farah et al. proposed
a new chaotic teaching-learning algorithm and applied
it to a real-life problem. All the above studies prove
the successful applicability of chaos approach in meta-
heuristic algorithms.

1.3 Our contribution

The objective of the present work was to establish an
efficient chaotic-based C-Jaya algorithm that allevi-
ates premature convergence problem and outperforms
the performance of its original version as well as
those of the existing well-established meta-heuristic
algorithms. Three new search equations were imple-
mented for modifying the search process of the original
Jaya algorithm which increases its search capabilities,
improves the global convergence abilities and prevents
the search process from sticking on a local optimum.
Furthermore, a new 2D cross chaotic map was pro-
posed and its characteristics were proved by Devaney
definition. This chaotic map was firstly used to gener-
ate the initial population and secondly integrated into

the search equations. By doing so, the chaotic search
would directly enhance the current solutions obtained
by Jaya algorithm, lead to a satisfactory convergence
speed and possibly allow a higher probability to escape
from local solution.

1.4 Structure of the paper

The remainder of this paper is organized as follows. The
proposed 2D cross chaotic map and its impact on Jaya
algorithm are given in Sect. 2. Section 3 presents a brief
description of the Jaya algorithm. Section 4 discusses
the integration of the proposed chaotic map into the
original Jaya algorithm to develop the proposed C-Jaya
algorithm. Section 5 is devoted to testing the proposed
approach through benchmark problems by comparing
the results achieved by the proposed algorithm with
those obtained via well-known meta-heuristic algo-
rithms. Finally, a summary of our paper based on the
comparison analysis is presented in Sect. 6.

2 The proposed 2D cross
chaotic map and its impact on Jaya algorithm

2.1 The new 2D cross chaotic map

The proposed 2D cross chaotic map is defined as fol-
lows:{
xi+1 = cos (k arccos(yi ))

yi+1 = 16x5i − 20x3i + 5xi
(1)

where xi , yi ∈ [− 1, 1], k > 1 and (x0, y0) are the
initial conditions. However, Chebyshev map xi+1 =
cos (k arccos(yi )) has been proven chaotic in [33]. The
chaos proof of G(x) = 16x5 − 20x3 + 5x based on
Devaney definition [12] is given in “Appendix A.”

2.2 The impact of the 2D cross map on Jaya algorithm

Before explaining the role of the new 2D cross map in
the improvement of Jaya algorithm, two concepts must
be defined: exploitation and exploration. The former
consists in focusingmore on a thoroughly narrow—but
promising—area of the search space to improve the ini-
tial solution. This process allows to refine the solution
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Fig. 1 The evaluated solutions by 2000 FEs of Jaya algorithm when solving f6 and f7 problems a f6 Ackley, b f7 Rastrigin

and avoid big jumps in the search space. Therefore,
exploitation is linked to local search as it improves the
present solution by searching in its vicinity with a tiny
perturbation. The latter deals with covering the whole
search space to find other good solutions that can be
enhanced. Indeed, it is linked with global search, i.e.,
search in diverse regions of the whole space, to gain
new promising solutions and avoid being trapped in
local optimums. A good optimization algorithm should
strike a balance between exploitation and exploration
[9,13,56,58]. In fact, escaping local optimums requires
a high level of diversification at the beginning of the
algorithm and a lower one at its end. At the same time,
the improvement of the current solution(s) requires a
high level of intensification (refining) at the end of the
algorithm and a lower one in its beginning. In short, the
algorithm should favor global search in the beginning
and local search at the end.

Recently, chaos has been extensively studied in the
optimization field due to its dynamic properties, which
support the algorithm to overcome local optimums
[62,63]. These properties include sensitivity to initial
conditions, quasi-stochastic property and ergodicity
[34]. They produce a high level of diversification in the
algorithm that helps to explore the search space prop-
erly and then escape from any potential local optimum.

Moreover, the main idea of Jaya defined by Eq. (2)
is as follows: A promising solution derived from a spe-
cific problem should approach the best solution and
escape the worst one concurrently. This fact intensi-
fies the local search and accelerates the convergence

rate of the algorithm. So, Jaya favors exploitation over
exploration, which affects the population diversity and
the capability of the algorithm to avoid local opti-
mums. The evaluated solutions of 2000 function eval-
uations (FEs), of f6 and f7 10-dimensional functions
(see Table 1), using the standard Jaya algorithm, in the
scenario of minimization problems are shown in Fig. 1.
It is clear that the algorithm was unable to escape local
minima and then fails to converge to the best solution.
The former effect transposes the main idea of Jaya (Eq.
(2)), which favors exploitation rather than exploration.
Moreover, the convergence visualizations of f6 and f7
10-dimensional functions are illustrated in Fig. 2 for
the first five generations. One can note the weakness
of Jaya algorithm to reach the best solution (here, the
global minima, i.e., the (0, 0) pair.) Therefore, a bal-
ance between exploitation and exploration should be
established. In this context, an improvement of Jaya
algorithm based on the new 2D cross chaotic map was
proposed. In fact, to maintain in equilibrium the explo-
ration and exploitation capabilities of the search pro-
cess, three mutation equations (Eqs. (3)–(5)) were used
randomly for each solution in the improved algorithm.
The first mutation (Eq. (3)) serves to enhance the pop-
ulation diversity as well as the global search capability.
The individuals were guided by the best solution with
the hope of finding other promising areas in the search
space. Therefore, the algorithm becomes suitable for
problems characterized by many local optimums. The
second mutation (Eq. (4)) allows further increase in
population diversity and an improvement in the current
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Fig. 2 Convergence visualization of solutions (for the first five generations) when solving f6 and f7 problems using Jaya algorithm a
f6 Ackley, b f7 Rastrigin
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Fig. 3 The evaluated solutions by 2000 FEs of C-Jaya algorithm when solving f6 and f7 problems a f6 Ackley, b f7 Rastrigin

solution by avoiding the worst one. The third mutation
(Eq. (5)) favors local search around the best solution
that implies a fast convergence speed. Additionally,
each mutation was supported by the use of other solu-
tions to improve the population diversity and then the
exploration ability of the algorithm. The chaotic val-
ues derived from the 2D cross map have a dual task.
First, a balance between the local and global search
was achieved by using them to substitute the random
mutation strategy. Second, the chaotic mutation further
improves the capability to avoid being trapped in local
optimums. The evaluated solutions of 2000 FEs, of

f6 and f7 10-dimensional functions, using the chaotic
Jaya (C-Jaya), in minimizing problems are shown in
Fig. 3. It is observed that C-Jaya can escape local min-
ima and achieve a satisfactory success level in lead-
ing to the best solution. In addition, the convergence
visualizations of f6 and f7 10-dimensional functions
are illustrated in Fig. 4 for the first five generations.
It is clear that C-Jaya reaches the best solution. Thus,
it presents an appropriate balance between local and
global search. All the above results ensure that the 2D
crossmap plays a crucial role in enhancing the standard
Jaya algorithm.
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Fig. 4 Convergence visualization of solutions (for the first five generations) when solving f6 and f7 problems using C-Jaya algorithm
a f6 Ackley, b f7 Rastrigin

3 Traditional Jaya algorithm

The Jaya algorithm was first introduced by Rao [44]. It
was designed for handling both unconstrained and con-
strained optimization problems. The basic idea behind
this algorithm is that the obtained solution for the opti-
mization problem should avoid the worst solution and
go toward the best one [46,50].Compared to other algo-
rithms, Jaya algorithm does not require any additional
control parameters except the common control param-
eters, i.e., the number of population and the number of
function evaluations [1]. The details of Jaya algorithm
performance are reported in [47].

Let f (X) be the function to be optimized (i.e.,
objective function). The dimension of decision vector
ism, and the population size is k. Let f (Xbest) be the
best value of the objective function produced by the
best candidate. In the same manner, the worst candi-
date can be defined as the decision vector which pro-
duces the worst objective value (i.e., f (Xworst)). The
solution is updated according to the difference between
the best candidate and the existing solution as well as
the worst candidate and the existing solution as follows
[45,55,60]:

Xnewi, j = Xi, j + r1i, j
(
Xbest j − ∣∣Xi, j

∣∣)
−r2i, j

(
Xworst j − ∣∣Xi, j

∣∣) (2)

where Xbest j and Xworst j are the values of the j th
element of, respectively, the best and the worst can-

Fig. 5 Flowchart of the original Jaya algorithm

didate, Xnewi, j is the update value of Xi, j , r1i, j and
r2i, j are two different random numbers in the range

123



Chaotic Jaya algorithm for unconstrained numerical optimization 1457

Fig. 6 Flowchart of the
proposed chaotic Jaya
algorithm

[0, 1]. The term r1i, j
(
Xbest j − ∣∣Xi, j

∣∣) reveals the ten-
dency of the solution to move toward the best solution,
whereas the term −r2i, j

(
Xworst j − ∣∣Xi, j

∣∣) reveals
the tendency of the solution to escape from the worst
solution. The acceptance criterion of the solutions is the
improvement of the objective function.All the accepted
function values at the end of the iteration are transferred
to the next iteration. The name of the Jaya algorithm
(i.e., victory) comes from the fact that this algorithm
can achieve victories by attaining the best solution. The
flowchart of the traditional Jaya algorithm is given in
Fig. 5.

4 Chaotic Jaya algorithm (C-Jaya)

The population of the original Jaya algorithm suffers
from the lack of diversity and premature convergence
which may occur when the objective function con-
verges to a local optimum. Therefore, to surmount the
drawbacks of the original Jaya algorithm, the diversity
of the population must be increased.

In addition, an efficient optimization algorithm
needs a balance between exploitation and exploration
[5,26,35,41]. The former refers to the ability of a pop-
ulation to converge as fast as possible to optimal solu-
tions, whereas the latter can be defined as the ability of
the algorithm to explore different regions in a search
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Table 1 Details of test functions used

Name Formula Range Acceptance

Sphere f1(x) = ∑D
i=1 x

2
i [− 100, 100] 1E−2

Quadric f2(x) = ∑D
i=1(

∑i
j=1 x j )

2 [− 100, 100] 1E−5

Sum Squares f3(x) = ∑D
i=1(i xi )

2 [− 100, 100] 1E−5

Zakharov f4(x) = ∑D
i=1 x

2
i + (

∑D
i=1 0.5xi )

2 + (
∑n

i=1 0.5xi )
4 [− 10, 10] 1E−5

Rosenbrock f5(x) = ∑D−1
i=1 [100(x2i − xi+1)

2 + (xi − 1)2] [− 2.048, 2.048] 50

Ackley f6(x) = − 20 exp(−0.2
√

1
D

∑D
i=1 x

2
i )

− exp( 1
D

∑D
i=1 cos(2πxi )) + 20 + e

[− 32.768, 32.768] 1E−5

Rastrigin f7(x) = ∑D
i=1(x

2
i − 10 cos(2πxi + 10)) [− 5.12, 5.12] 1E−5

Weierstrass f8(x) = ∑D
i=1(

∑kmax
k=0 [ak cos(2πbk(xi + 0.5))]) − D

∑kmax
k=0 [ak [− 0.5, 0.5] 1E−5

cos(2πbk × 0.5)]a = 0.5b = 3kmax = 20

Griewank f9(x) = ∑D
i=1

x2i
4000 − ∏D

i=1 cos(
xi√
i
) + 1 [− 600, 600] 1E−5

Rotated Sum Square f10(x) = ∑D
i=1 iy

2
i y = M × x [− 100, 100] 1E−5

Rotated Zakharov f11(x) = ∑D
i=1 x

2
i + (

∑D
i=1 0.5iyi )

2 + (
∑n

i=1 0.5iyi )
4

y = M × x
[− 10, 10] 1E−5

Rotated Rosenbrock f12(x) = ∑D−1
i=1 [100(y2i − yi+1)

2 + (yi − 1)2] y = M × x [− 2.048, 2.048] 50

Rotated Ackley f13(x) = − 20 exp(− 0.2
√

1
D

∑D
i=1 y

2
i )

− exp( 1
D

∑D
i=1 cos(2πyi )) + 20 + e

[− 32.768, 32.768] 1E−5

y = M × x

Rotated Rastrigin f14(x) = ∑D
i=1(y

2
i − 10 cos(2πyi + 10)) y = M × x [−5.12, 5.12] 50

Rotated Weierstrass f15(x) = ∑D
i=1(

∑kmax
k=0 [ak cos(2πbk(yi +0.5))])−D

∑kmax
k=0 [ak [−0.5, 0.5] 1E−5

cos(2πbk × 0.5)]a = 0.5b = 3kmax = 20 y = M × x

Rotated Griewank f16(x) = ∑D
i=1

y2i
4000 − ∏D

i=1 cos(
yi√
i
) + 1 y = M × x [−600, 600] 1E−5

space. Excessive exploitation will lead to local search
only, whereas excessive exploration will result in a ran-
dom search. To overcome the search, balance and con-
vergenceproblems,weproposed three search equations
for the original Jaya algorithm. The trial vectors Xnew

were generated using a random solution Xrand, and
the best and worst solutions (Xbest and Xworst) are,
respectively, given as follows:

Xnewi, j = chaosi, j Xrandi, j

+ chaosi, j
(
Xi, j − chaosi, j Xrandi, j

)
+ chaosi, j

(
Xbest j − chaosi, j Xrandi, j

)
(3)

Xnewi, j = chaosi, j Xrandi, j

+ chaosi, j
(
Xi, j − chaosi, j Xrandi, j

)
+ chaosi, j

(
Xworst j − chaosi, j Xrandi, j

)
(4)

Xnewi, j = chaosi, j Xbest j

+ chaosi, j
(
Xrandi, j − SF Xbest j

)
(5)

where chaosi, j is the absolute value of a chaotic vari-
able generated by the 2D cross chaotic map. The scal-
ing factor (SF) can take two values (1 or 2) chaotically.
When SF is equal to 1, Eq. (5) allows a search around
the best solution, which favors local search ability and
then reduces implementation time. However, a prema-
ture convergence is usually encountered when multi-
modal optimization problems are considered. There-
fore, even if the local search is applied, global opti-
mum cannot be reached, whereas, when SF equals 2,
an important perturbation to current solutions is intro-
duced. Consequently, premature convergence to the
local optimum is avoided and the searching behavior
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Table 2 Statistical results of 30 runs on 10-dimensional functions obtained by PSO, DE, HS, ABC, TLBO, Jaya and C-Jaya algorithms

Function PSO DE HS ABC TLBO Jaya C-Jaya

f1

Mean 3.34E−26 8.05E−42 3.39E−01 1.64E−16 8.52E−112 9.65E−27 0.00E+00

SD 1.01E−25 2.34E−41 1.90E−01 6.95E−17 2.22E−111 1.19E−26 0.00E+00

SEM 1.85E−26 4.27E−42 3.46E−02 1.27E−17 4.05E−112 2.17E−27 0.00E+00

f2

Mean 2.99E−07 2.16E−01 1.79E+02 1.46E+02 1.29E−47 1.73E−02 0.00E+00

SD 5.02E−07 3.54E−01 1.42E+02 8.51E+01 5.90E−47 2.51E−02 0.00E+00

SEM 9.17E−08 6.47E−02 2.59E+01 1.55E+01 1.08E−47 4.57E−03 0.00E+00

f3

Mean 7.32E−26 1.70E−41 1.91E+00 1.98E−16 1.87E−111 2.78E−26 0.00E+00

SD 2.34E−25 4.09E−41 1.68E+00 1.01E−16 5.20E−111 2.67E−26 0.00E+00

SEM 4.26E−26 7.46E−42 3.07E−01 1.85E−17 9.50E−112 4.87E−27 0.00E+00

f4

Mean 5.50E−20 1.21E−09 1.54E+00 5.07E−01 3.98E−89 7.21E−13 0.00E+00

SD 1.82E−19 6.59E−09 1.62E+00 1.09E+00 1.61E−88 1.41E−12 0.00E+00

SEM 3.33E−20 1.20E−09 2.96E−01 1.99E−01 2.95E−89 2.57E−13 0.00E+00

f5

Mean 4.31E+00 4.89E+00 4.78E+00 1.99E+00 4.64E+00 1.72E−01 8.81E+00

SD 1.10E+00 1.41E+00 2.93E+00 1.80E+00 6.59E−01 2.75E−01 2.59E−01

SEM 2.01E−01 2.58E−01 5.34E−01 3.29E−01 1.20E−01 5.02E−02 4.73E−02

f6

Mean 8.17E−14 4.44E−15 4.46E−01 6.74E−13 4.44E−15 6.22E−14 8.88E−16

SD 1.71E−13 0.00E+00 2.24E−01 7.57E−13 0.00E+00 6.25E−14 0.00E+00

SEM 3.13E−14 0.00E+00 4.09E−02 1.38E−13 0.00E+00 1.14E−14 0.00E+00

f7

Mean 1.12E+01 9.95E−02 1.55E−01 3.32E−02 3.94E+00 3.14E+01 0.00E+00

SD 6.46E+00 3.04E−01 1.08E−01 1.82E−01 2.25E+00 9.31E+00 0.00E+00

SEM 1.18E+00 5.54E−02 1.96E−02 3.32E−02 4.10E−01 1.70E+00 0.00E+00

f8

Mean 5.00E−02 0.00E+00 4.86E−01 1.54E−15 0.00E+00 5.00E−02 0.00E+00

SD 2.74E−01 0.00E+00 1.38E−01 6.51E−15 0.00E+00 2.74E−01 0.00E+00

SEM 5.00E−02 0.00E+00 2.52E−02 1.19E−15 0.00E+00 5.00E−02 0.00E+00

f9

Mean 8.35E−02 1.55E−03 3.99E−01 1.33E−02 7.53E−03 4.56E−01 0.00E+00

SD 3.46E−02 3.00E−03 1.50E−01 1.21E−02 1.42E−02 1.25E−01 0.00E+00

SEM 6.32E−03 5.47E−04 2.73E−02 2.21E−03 2.59E−03 2.28E−02 0.00E+00

f10

Mean 2.50E−09 4.17E−13 4.59E+01 2.73E−02 6.68E−85 4.01E−18 0.00E+00

SD 1.37E−08 1.81E−12 4.83E+01 3.98E−02 3.39E−84 1.26E−17 0.00E+00

SEM 2.50E−09 3.31E−13 8.82E+00 7.27E−03 6.20E−85 2.29E−18 0.00E+00
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Table 2 continued

Function PSO DE HS ABC TLBO Jaya C-Jaya

f11

Mean 5.20E−05 1.89E+00 2.18E+00 3.48E+02 2.91E−37 2.65E+02 0.00E+00

SD 2.63E−04 2.98E+00 2.91E+00 1.16E+02 8.16E−37 9.60E+01 0.00E+00

SEM 4.81E−05 5.45E−01 5.32E−01 2.12E+01 1.49E−37 1.75E+01 0.00E+00

f12

Mean 8.89E+00 8.89E+00 9.26E+00 8.89E+00 8.89E+00 8.88E+00 8.96E+00

SD 6.08E−02 1.70E−02 4.36E−01 1.53E−02 1.13E−02 1.45E−02 1.68E−02

SEM 1.11E−02 3.10E−03 7.96E−02 2.79E−03 2.06E−03 2.65E−03 3.07E−03

f13

Mean 9.69E−14 4.44E−15 1.84E+00 1.05E−08 4.44E−15 7.19E−14 8.88E−16

SD 1.96E−13 0.00E+00 7.66E−01 3.40E−08 0.00E+00 5.90E−14 0.00E+00

SEM 3.58E−14 0.00E+00 1.40E−01 6.20E−09 0.00E+00 1.08E−14 0.00E+00

f14

Mean 3.17E+01 3.38E+01 2.98E+01 4.05E+01 2.44E+01 4.05E+01 0.00E+00

SD 7.73E+00 4.91E+00 4.05E+00 5.97E+00 8.25E+00 4.96E+00 0.00E+00

SEM 1.41E+00 8.97E−01 7.39E−01 1.09E+00 1.51E+00 9.06E−01 0.00E+00

f15

Mean 8.74E−01 2.45E+00 1.70E+00 1.23E+00 0.00E+00 1.08E−04 0.00E+00

SD 2.58E+00 2.33E+00 7.71E−01 1.10E+00 0.00E+00 1.05E−04 0.00E+00

SEM 4.70E−01 4.26E−01 1.41E−01 2.01E−01 0.00E+00 1.91E−05 0.00E+00

f16

Mean 5.94E−01 4.41E−01 6.71E−01 9.50E−02 1.64E−03 2.22E−02 0.00E+00

SD 1.56E−01 1.64E−01 8.14E−02 1.07E−01 6.16E−03 7.54E−02 0.00E+00

SEM 2.84E−02 3.00E−02 1.49E−02 1.95E−02 1.12E−03 1.38E−02 0.00E+00

is improved. The scaling factor is defined as follows:
SF = round [1 + chaosi ].

In traditional Jaya algorithm, the candidate solutions
are updated by involving theworst and the best solution
simultaneously. This procedure can improve the con-
vergence rate and the exploitation capability of the opti-
mization algorithm. However, the prompt convergence
ratemay degrade the exploration ability and the popula-
tion diversity of the algorithm. To maintain the balance
between the exploitation and the exploration abilities,
a new search strategy based on three mutually exclu-
sive equations is introduced. In fact, the equations are
selected randomly according to chaotic values chaosi, j
and random numbers a and b at each iteration. These
random numbers are generated by a Gaussian distribu-
tion. It can be seen that the introduced random num-
bers allow the choice between the three search equa-
tions which modulate the degree of avoiding the worst
solution and approaching the best one. As a result, this

modulation enables the increase of convergence speed
and the improvement of the current solution. Besides,
a chaotic sequence is introduced to boost the quality of
the best solution which attracts the candidate solutions
to its region.

The first mutation (Eq. (3)) allowed an improvement
of solutions for large-scale problems and increased the
global search capabilities and the population diversity.
The best solution was used as an attractor to guide the
individuals to the most promising areas in a feasible
search space. Unfortunately, in problems characterized
by enormous local optimum, premature convergence
may be encountered. The second mutation (Eq. (4))
further increased the population diversity and improved
the global solution by avoiding the worst one. The third
mutation (Eq. (5)) has a powerful local search around
the best solution and provides a fast convergence speed.
It is worth mentioning that the mutation strategy was
selected randomly.
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Table 3 Mean number of function evaluations, time consumed and success rate by comparative algorithms for 10-dimensional functions
over 30 independent runs

Function PSO DE HS ABC TLBO Jaya C-Jaya

f1

MeanFEs 2690 2702 6160 2817 1117.33 4046.67 201.33

Time (s) 9.82E−02 1.19E−01 3.73E−01 3.19E−02 2.88E−02 4.75E−02 4.57E−03

SR (%) 100 100 3.33 100 100 100 100

f2

MeanFEs 15160.67 NaN NaN NaN 3458.67 NaN 308.67

Time (s) 5.29E−01 NaN NaN NaN 7.99E−02 NaN 7.11E−03

SR (%) 100 0 0 0 100 0 100

f3

MeanFEs 5274.67 4357.33 NaN 7488 1746.67 6467.33 286

Time (s) 1.84E−01 1.79E−01 NaN 7.50E−02 4.22E−02 6.62E−02 6.79E−03

SR (%) 100 100 0 100 100 100 100

f4

MeanFEs 5826 13275.33 19640 NaN 2382.67 12422.67 294

Time (s) 2.05E−01 5.49E−01 1.26E+00 NaN 5.78E−02 1.31E−01 7.29E−03

SR (%) 100 100 3.33 0 100 100 100

f5

MeanFEs 112 891.33 1480.67 925 246.67 1042.67 75.33

Time (s) 3.88E−03 3.46E−02 9.91E−02 1.03E−02 5.84E−03 1.04E−02 1.69E−03

SR (%) 100 100 100 100 100 100 100

f6

MeanFEs 7801.33 5952.67 NaN 10393 2357.33 9194 396

Time (s) 2.88E−01 2.49E−01 NaN 1.32E−01 5.07E−02 9.76E−02 9.65E−03

SR (%) 100 100 0 100 100 100 100

f7

MeanFEs NaN 7201.48 18900 10128.57 13646.67 NaN 266.67

Time (s) NaN 3.01E−01 1.22E+00 1.17E−01 2.97E−01 NaN 6.45E−03

SR (%) 0 90 3.33 93.33 10 0 100

f8

MeanFEs 11323.45 7376 NaN 12622 3808 15211.03 457.33

Time (s) 2.63E+00 1.66E+00 NaN 9.63E+00 7.64E−01 5.49E+00 1.67E−01

SR (%) 96.67 100 0 100 100 96.67 100

f9

MeanFEs NaN 10836.52 NaN 12126.67 9308 NaN 324

Time (s) NaN 4.70E−01 NaN 1.68E−01 2.30E−01 NaN 7.91E−03

SR (%) 0 76.67 0 30 66.67 0 100

f10

MeanFEs 8124 10860 NaN NaN 2212 8597.33 300.67

Time (s) 8.40E−01 1.18E+00 NaN NaN 1.98E−01 1.53E−01 9.66E−03

SR (%) 100 100 0 0 100 100 100
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Table 3 continued

Function PSO DE HS ABC TLBO Jaya C-Jaya

f11

MeanFEs 13022.22 NaN NaN NaN 5828 NaN 286

Time (s) 1.36E+00 NaN NaN NaN 4.84E−01 NaN 8.73E−03

SR (%) 90 0 0 0 100 0 100

f12

MeanFEs 139.33 1145.33 502.67 1812 276 926.67 73.33

Time (s) 1.42E−02 1.21E−01 6.45E−02 6.65E−02 2.29E−02 1.66E−02 2.25E−03

SR (%) 100 100 100 100 100 100 100

f13

MeanFEs 8283.33 7260.67 NaN 15322 2428 9210 350

Time (s) 8.41E−01 8.22E−01 NaN 5.87E−01 2.08E−01 1.63E−01 1.08E−02

SR (%) 100 100 0 100 100 100 100

f14

MeanFEs 811.72 3438.67 1531.33 8231.03 878.67 5532.41 99.33

Time (s) 8.09E−02 3.98E−01 1.98E−01 3.18E−01 7.41E−02 9.95E−02 3.09E−03

SR (%) 96.67 100 100 96.67 100 96.67 100

f15

MeanFEs 18900 NaN NaN NaN 5008 NaN 504

Time (s) 5.53E+00 NaN NaN NaN 1.40E+00 NaN 1.92E−01

SR (%) 3.33 0 0 0 100 0 100

f16

MeanFEs 9060 NaN NaN NaN 5531.30 14805.45 276

Time (s) 9.16E−01 NaN NaN NaN 4.73E−01 2.75E−01 8.60E−03

SR (%) 3.33 0 0 0 76.67 73.33 100

4.1 Steps of the proposed C-Jaya

Based on the aforementioned formulation, the steps
involved in the proposed C-Jaya algorithm can be
encapsulated as follows:

– Step 1 Initialization.

– Step 1.1 Initialize the value of chaos using
the proposed 2D cross chaotic map (x0 =
0.2, y0 = 0.3).

– Step 1.2 Set FEsMAX and SN the maximum
number of function evaluations and the popu-
lation size, respectively.

– Step 2 Generate chaotic sequences.
– Step 3 Generate SN solutions chaotically, with
length D (dimension of problems), to form an ini-
tial population as follows:

Xi, j = XLi + chaosi, j (XUi − XLi )

where 1 ≤ i ≤ SN and 1 ≤ j ≤ D. XLi and
XUi are the lowest and highest bounds of decision
vector, respectively.

– Step 4 Evaluate the objective function of the ini-
tial population and set FEs= SN, where FEs are the
number of function evaluations.

– Step 5 Update population: Let a and b be two ran-
dom integers with a < b, and let chaosi, j be a
chaotic value related to solution in the i th row and
j th column. Herein, 1 ≤ i ≤ SN and 1 ≤ j ≤ D.

– Step 5.1 Identify the worst and the best solu-
tions in the population.
If chaosi, j < a

– Step 5.2 Calculate the new solution Xnewi, j

using Eq. (3).
If a < chaosi, j < b

– Step 5.3 Generate the new solution Xnewi, j

using Eq. (4).
If chaosi, j > b
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Table 4 Statistical results of 30 runs on 30-dimensional functions obtained by PSO, DE, HS, ABC, TLBO, Jaya and C-Jaya algorithms

Function PSO DE HS ABC TLBO Jaya C-Jaya

f1

Mean 5.04E−13 2.89E−28 7.35E+00 1.57E−13 2.48E−179 2.36E−10 0.00E+00

SD 1.28E−12 1.74E−28 2.61E+00 1.87E−13 0.00E+00 1.25E−10 0.00E+00

SEM 2.34E−13 3.18E−29 4.77E−01 3.41E−14 0.00E+00 2.28E−11 0.00E+00

f2

Mean 3.43E+01 1.71E+04 2.98E+03 9.92E+03 2.73E−38 2.74E+04 0.00E+00

SD 1.75E+01 3.03E+03 8.11E+02 2.17E+03 6.58E−38 5.84E+03 0.00E+00

SEM 3.20E+00 5.53E+02 1.48E+02 3.96E+02 1.20E−38 1.07E+03 0.00E+00

f3

Mean 6.43E−12 3.04E−27 1.01E+02 5.48E−11 9.19E−178 3.32E−09 0.00E+00

SD 1.60E−11 1.34E−27 3.70E+01 7.99E−11 0.00E+00 2.12E−09 0.00E+00

SEM 2.92E−12 2.44E−28 6.75E+00 1.46E−11 0.00E+00 3.87E−10 0.00E+00

f4

Mean 3.81E−04 1.95E+02 1.39E+02 6.79E+03 9.00E−96 1.87E+03 0.00E+00

SD 5.70E−04 6.89E+01 4.31E+01 1.20E+03 3.59E−95 3.55E+02 0.00E+00

SEM 1.04E−04 1.26E+01 7.86E+00 2.19E+02 6.55E−96 6.48E+01 0.00E+00

f5

Mean 2.54E+01 2.47E+01 5.46E+01 1.50E+01 2.25E+01 1.72E+01 2.88E+01

SD 1.57E+00 6.05E−01 2.71E+01 5.44E+00 5.73E−01 1.12E+01 2.78E−01

SEM 2.86E−01 1.10E−01 4.94E+00 9.93E−01 1.05E−01 2.05E+00 5.07E−02

f6

Mean 1.46E−07 1.59E−14 1.33E+00 5.63E−08 6.10E−15 8.80E−06 8.88E−16

SD 2.63E−07 1.53E−15 2.81E−01 2.58E−08 1.80E−15 5.86E−06 0.00E+00

SEM 4.80E−08 2.79E−16 5.13E−02 4.72E−09 3.29E−16 1.07E−06 0.00E+00

f7

Mean 4.15E+01 3.62E+01 2.48E+00 5.92E−03 1.22E+01 2.04E+02 0.00E+00

SD 1.48E+01 4.16E+00 7.80E−01 3.07E−02 6.97E+00 2.29E+01 0.00E+00

SEM 2.70E+00 7.59E−01 1.42E−01 5.61E−03 1.27E+00 4.19E+00 0.00E+00

f8

Mean 4.45E−01 0.00E+00 2.47E+00 7.45E−06 0.00E+00 6.43E−01 0.00E+00

SD 8.03E−01 0.00E+00 5.10E−01 4.62E−06 0.00E+00 9.27E−01 0.00E+00

SEM 1.47E−01 0.00E+00 9.31E−02 8.44E−07 0.00E+00 1.69E−01 0.00E+00

f9

Mean 1.02E-02 0.00E+00 1.07E+00 2.92E−03 8.25E−10 8.19E-02 0.00E+00

SD 9.77E-03 0.00E+00 1.99E−02 6.45E−03 4.52E−09 1.24E-01 0.00E+00

SEM 1.78E-03 0.00E+00 3.62E−03 1.18E−03 8.25E−10 2.27E-02 0.00E+00

f10

Mean 1.05E+01 9.01E−03 8.09E+02 4.77E+04 2.98E−153 3.40E−02 0.00E+00

SD 2.66E+01 1.22E−02 3.88E+02 2.23E+04 6.12E−153 2.91E−02 0.00E+00

SEM 4.86E+00 2.23E−03 7.08E+01 4.07E+03 1.12E−153 5.31E−03 0.00E+00
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Table 4 continued

Function PSO DE HS ABC TLBO Jaya C-Jaya

f11

Mean 2.21E+02 5.15E+03 4.73E+02 8.25E+03 3.89E−27 9.43E+03 0.00E+00

SD 4.14E+02 7.05E+02 1.39E+02 8.99E+02 1.23E−26 1.12E+03 0.00E+00

SEM 7.57E+01 1.29E+02 2.53E+01 1.64E+02 2.25E−27 2.05E+02 0.00E+00

f12

Mean 2.91E+01 2.89E+01 3.02E+01 1.44E+02 2.89E+01 2.90E+01 2.90E+01

SD 1.36E−01 2.88E−02 4.52E−01 8.71E+01 1.58E−02 3.42E−02 1.60E−02

SEM 2.48E−02 5.25E−03 8.26E−02 1.59E+01 2.89E−03 6.25E−03 2.91E−03

f13

Mean 5.23E−06 2.45E−13 2.95E+00 1.85E+00 5.39E−15 1.51E−05 8.88E−16

SD 8.89E−06 2.18E−13 3.48E−01 6.22E−01 1.60E−15 6.05E−06 0.00E+00

SEM 1.62E−06 3.97E−14 6.35E−02 1.14E−01 2.92E−16 1.11E−06 0.00E+00

f14

Mean 1.69E+02 2.10E+02 1.87E+02 2.69E+02 1.27E+02 2.60E+02 0.00E+00

SD 1.19E+01 1.07E+01 1.07E+01 1.51E+01 5.07E+01 1.49E+01 0.00E+00

SEM 2.18E+00 1.95E+00 1.95E+00 2.75E+00 9.26E+00 2.72E+00 0.00E+00

f15

Mean 2.97E+00 3.40E+01 7.02E+00 3.73E+01 0.00E+00 3.62E+01 0.00E+00

SD 3.49E+00 2.34E+00 8.93E−01 1.21E+00 0.00E+00 1.26E+00 0.00E+00

SEM 6.36E−01 4.28E−01 1.63E−01 2.21E−01 0.00E+00 2.30E−01 0.00E+00

f16

Mean 4.56E−01 1.18E−03 1.06E+00 1.89E−01 0.00E+00 3.76E−01 0.00E+00

SD 3.63E−01 5.32E−04 2.99E−02 8.87E−02 0.00E+00 7.05E−02 0.00E+00

SEM 6.63E−02 9.72E−05 5.45E−03 1.62E−02 0.00E+00 1.29E−02 0.00E+00

– Step 5.4 Generate the new solution Xnewi, j

using Eq. (5).

– Step 6Evaluate the newfitness for the new decision
vector Xnewi and set FEs = FEs + 1.

– Step 7 Accept Xnewi if the objective function
value is improved.

– Step 8 If FEs < FEsMAX go to Step 5, else stop
and output the best solution so far.

The flowchart of the proposed C-Jaya is given in Fig. 6.

5 Experiments and comparisons

In this section, the accuracy and the performance of
the proposed algorithm were investigated. In fact, it
was applied in the optimization of 16 benchmark func-
tions. The obtained results were compared with those
of PSO, DE, HS, ABC, TLBO and Jaya algorithms.

In what follows, we will present the characteristics of
the benchmark functions and the set of the obtained
results.

5.1 Test functions

The effectiveness of C-Jaya for numerical optimiza-
tionproblemswasprovenbyminimizing16benchmark
functions. Besides, a comparison with traditional Jaya
algorithm and other algorithms was performed. These
functions belong to three different groups, namely: uni-
modal ( f1– f5), multimodal ( f6– f9) and rotated ver-
sions of f3– f9 ( f10– f16). Table 1 illustrates the spec-
ifications of these functions. The global optimum of
all benchmark functions is equal to zero. The set of
test functions were evaluated in 10, 30 and 100 dimen-
sions.
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Table 5 Mean number of function evaluations, time consumed and success rate by comparative algorithms for 30-dimensional functions
over 30 independent runs

Function PSO DE HS ABC TLBO Jaya C-Jaya

f1

MeanFEs 24334.67 16872 NaN 15968 3048 37658.67 492

Time (s) 9.24E−01 1.13E+00 NaN 1.87E−01 8.46E−02 1.22E+00 2.85E−02

SR (%) 100 100 0 100 100 100 100

f2

MeanFEs NaN NaN NaN NaN 17914.67 NaN 838.67

Time (s) NaN NaN NaN NaN 4.61E−01 NaN 5.47E+00

SR (%) 0 0 0 0 100 0 100

f3

MeanFEs 44868 27126.67 NaN 45266 4834.67 60441.33 701.33

Time (s) 1.70E+00 1.41E+00 NaN 5.23E−01 1.20E−01 1.84E+00 4.59E−02

SR (%) 100 100 0 100 100 100 100

f4

MeanFEs NaN NaN NaN NaN 14474.67 NaN 838.67

Time (s) NaN NaN NaN NaN 3.74E−01 NaN 5.52E−02

SR (%) 0 0 0 0 100 0 100

f5

MeanFEs 1482.67 12194.67 34197.33 16624 1008 17252.41 206.67

Time (s) 5.57E−02 6.08E−01 4.30E+00 2.08E−01 2.40E−02 5.42E−01 1.19E−02

SR (%) 100 100 50 100 100 96.67 100

f6

MeanFEs 59320 33666.67 NaN 62276 6048 77652.17 906.67

Time (s) 2.37E+00 1.80E+00 NaN 1.02E+00 1.37E−01 2.34E+00 5.27E−02

SR (%) 100 100 0 100 100 76.67 100

f7

MeanFEs NaN NaN NaN 63954.28 31826.67 NaN 681.33

Time (s) NaN NaN NaN 1.05E+00 7.30E−01 NaN 3.98E−02

SR (%) 0 0 0 93.33 10 0 100

f8

MeanFEs 73896 42934.67 NaN 77457.14 9394.67 NaN 1156

Time (s) 4.03E+01 2.92E+01 NaN 3.13E+02 1.40E+01 NaN 3.89E+00

SR (%) 50 100 0 70 100 0 100

f9

MeanFEs 41214.55 26852 NaN 50440 5309.33 57488.89 682.67

Time (s) 1.57e+00 1.50E+00 NaN 1.55E+00 1.20E−01 1.91e+00 4.52E−02

SR (%) 36.67 100 0 80 100 30 100

f10

MeanFEs NaN NaN NaN NaN 5592 NaN 744

Time (s) NaN NaN NaN NaN 2.20E+01 NaN 6.31E−02

SR (%) 0 0 0 0 100 0 100
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Table 5 continued

Function PSO DE HS ABC TLBO Jaya C-Jaya

f11

MeanFEs NaN NaN NaN NaN 38528 NaN 813.33

Time (s) NaN NaN NaN NaN 5.86E+01 NaN 6.87E−02

SR (%) 0 0 0 0 100 0 100

f12

MeanFEs 1901.33 16626.67 11780 65880 1120 19910.67 214.67

Time (s) 6.68E−01 6.75E+00 6.29E+00 8.28E+00 4.22E−01 9.08E−01 1.63E−02

SR (%) 100 100 100 20 100 100 100

f13

MeanFEs 70024 42104 NaN NaN 6034.67 79340 900

Time (s) 2.43E+01 1.95E+01 NaN NaN 2.02E+00 3.80E+00 6.83E−02

SR (%) 83.33 100 0 0 100 6.67 100

f14

MeanFEs NaN NaN NaN NaN 61280 NaN 292

Time (s) NaN NaN NaN NaN 2.02E+01 NaN 2.21E−02

SR (%) 0 0 0 0 13.33 0 100

f15

MeanFEs NaN NaN NaN NaN 10698.67 NaN 1238.67

Time (s) NaN NaN NaN NaN 1.01E+01 NaN 1.93E+00

SR (%) 0 0 0 0 100 0 100

f16

MeanFEs NaN NaN NaN NaN 5936 NaN 720

Time (s) NaN NaN NaN NaN 1.89E+00 NaN 6.52E−02

SR (%) 0 0 0 0 100 0 100

5.2 Parameter settings

All experiments were carried out using an i7-1.80
GHz CPU, 8-GB RAM and Windows XP with MAT-
LAB 2017a. With the aim of mitigating statistical
errors, all experiments were repeated 30 times. For all
algorithms, the population size was set to 20 in 10-
dimensional problems and 40 for 30-dimensional and
100-dimensional problems. The number of function
evaluations (FEs) is considered as a stopping criterion
for population-based algorithms. In our experiments,
for the 10-dimensional problems, the maximum num-
ber of function evaluations was set as 20,000, whereas
FEs were set to 80,000 for 30-dimensional and 100-
dimensional functions.

P.S In Tables 3, 5 and 7 “NaN” denotes that the
algorithmcannot produce an acceptable solutionduring

30 independent runs, whereas boldface in Tables 2, 3,
4, 5, 6 and 7 indicates the best solutions.

5.3 Results for 10-dimensional problems

5.3.1 Comparison of solution accuracy

The performances of the PSO, DE, HS, ABC and C-
Jaya algorithms on a large set of benchmark functions
for 10D in 30 independent runs are given in Table 2.

The results for the unimodal functions f1– f4 show
that C-Jaya outperforms all the comparative algorithms
regarding the best mean values, the standard deviations
and the standard errors of means and succeeds to reach
the global optimum. It is worthmentioning that the uni-
modal benchmark functions f1– f4 present one global
optimum without any local optimum; thus, they are
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Table 6 Statistical results of 30 runs on 100-dimensional functions obtained by PSO, DE, HS, ABC, TLBO, Jaya and C-Jaya algorithms

Function PSO DE HS ABC TLBO Jaya C-Jaya

f1

Mean 8.98E+00 1.43E−03 1.31E+04 2.99E−03 1.14E−162 2.38E+01 0.00E+00

SD 3.62E+00 2.53E−04 1.11E+03 2.76E−03 2.22E−162 8.75E+00 0.00E+00

SEM 6.61E−01 4.62E−05 2.03E+02 5.04E−04 4.06E−163 1.60E+00 0.00E+00

f2

Mean 2.17E+04 3.55E+05 3.15E+05 1.68E+05 1.85E−17 4.00E+05 0.00E+00

SD 5.94E+03 2.42E+04 3.40E+04 1.59E+04 3.71E−17 4.36E+04 0.00E+00

SEM 1.08E+03 4.41E+03 6.21E+03 2.90E+03 6.77E−18 7.96E+03 0.00E+00

f3

Mean 3.68E+02 5.52E−02 5.22E+05 1.14E−01 5.69E−161 1.41E+03 0.00E+00

SD 1.63E+02 1.33E−02 5.20E+04 8.46E−02 8.77E−161 6.96E+02 0.00E+00

SEM 2.98E+01 2.43E−03 9.50E+03 1.54E−02 1.60E−161 1.27E+02 0.00E+00

f4

Mean 2.47E+03 1.20E+05 5.94E+04 1.38E+05 1.28E−25 1.32E+05 0.00E+00

SD 4.22E+02 6.64E+03 5.85E+03 7.83E+03 5.17E−25 1.63E+04 0.00E+00

SEM 7.70E+01 1.21E+03 1.07E+03 1.43E+03 9.43E−26 2.97E+03 0.00E+00

f5

Mean 9.78E+01 9.64E+01 1.34E+03 2.48E+02 9.50E+01 1.72E+02 9.88E+01

SD 1.05E+00 5.08E−01 9.55E+01 4.67E+01 1.06E+00 4.65E+01 2.10E−01

SEM 1.92E−01 9.27E−02 1.74E+01 8.52E+00 1.93E−01 8.49E+00 3.84E−02

f6

Mean 1.85E+00 5.56E−03 1.22E+01 2.01E+00 7.99E−15 5.38E+00 8.88E−16

SD 3.06E−01 6.54E−04 3.40E−01 2.40E−01 0.00E+00 1.01E+00 0.00E+00

SEM 5.60E−02 1.19E−04 6.20E−02 4.38E−02 0.00E+00 1.85E−01 0.00E+00

f7

Mean 1.47E+02 6.06E+02 1.99E+02 5.15E+01 3.17E+00 6.94E+02 0.00E+00

SD 3.08E+01 2.03E+01 1.71E+01 8.72E+00 1.22E+01 1.50E+02 0.00E+00

SEM 5.62E+00 3.71E+00 3.11E+00 1.59E+00 2.24E+00 2.74E+01 0.00E+00

f8

Mean 8.64E+00 3.18E−01 3.68E+01 2.28E+00 0.00E+00 3.51E+01 0.00E+00

SD 3.14E+00 2.76E−02 2.17E+00 6.57E−01 0.00E+00 4.83E+00 0.00E+00

SEM 5.73E−01 5.03E−03 3.95E−01 1.20E−01 0.00E+00 8.82E−01 0.00E+00

f9

Mean 1.10E+00 9.46E−04 1.23E+02 6.62E−02 0.00E+00 1.26E+00 0.00E+00

SD 3.98E−02 3.47E−04 1.12E+01 5.51E−02 0.00E+00 1.31E−01 0.00E+00

SEM 7.26E−03 6.34E−05 2.05E+00 1.01E−02 0.00E+00 2.40E−02 0.00E+00

f10

Mean 5.74E+04 8.77E+05 7.81E+05 9.28E+06 7.21E−151 7.01E+04 0.00E+00

SD 1.77E+04 3.09E+05 7.14E+04 6.40E+05 1.12E−150 3.25E+04 0.00E+00

SEM 3.22E+03 5.63E+04 1.30E+04 1.17E+05 2.05E−151 5.94E+03 0.00E+00
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Table 6 continued

Function PSO DE HS ABC TLBO Jaya C-Jaya

f11

Mean 2.60E+04 1.32E+05 8.00E+04 1.32E+05 7.81E+02 1.63E+05 0.00E+00

SD 9.39E+03 8.24E+03 6.10E+03 7.51E+03 4.67E+02 1.42E+04 0.00E+00

SEM 1.71E+03 1.50E+03 1.11E+03 1.37E+03 8.53E+01 2.60E+03 0.00E+00

f12

Mean 1.15E+02 3.34E+02 8.46E+02 2.47E+04 9.88E+01 1.40E+02 9.89E+01

SD 3.60E+00 1.07E+02 9.12E+01 2.71E+03 2.04E−02 4.24E+01 2.16E−02

SEM 6.58E−01 1.95E+01 1.67E+01 4.96E+02 3.73E−03 7.75E+00 3.94E−03

f13

Mean 3.91E+00 2.12E+00 1.24E+01 2.06E+01 7.76E−15 3.06E+00 8.88E−16

SD 2.33E−01 1.89E−01 4.46E−01 1.62E−01 9.01E−16 3.23E−01 0.00E+00

SEM 4.26E−02 3.44E−02 8.14E−02 2.96E−02 1.65E−16 5.89E−02 0.00E+00

f14

Mean 8.17E+02 1.14E+03 9.64E+02 1.44E+03 2.95E+00 1.07E+03 0.00E+00

SD 3.02E+01 3.15E+01 2.67E+01 3.97E+01 6.13E+00 2.83E+01 0.00E+00

SEM 5.51E+00 5.74E+00 4.87E+00 7.25E+00 1.12E+00 5.17E+00 0.00E+00

f15

Mean 4.94E+01 1.51E+02 8.81E+01 1.53E+02 0.00E+00 1.47E+02 0.00E+00

SD 1.06E+01 1.96E+00 2.92E+00 2.00E+00 0.00E+00 2.57E+00 0.00E+00

SEM 1.94E+00 3.58E−01 5.33E−01 3.65E−01 0.00E+00 4.70E−01 0.00E+00

f16

Mean 1.09E+00 8.66E−01 1.22E+02 8.22E−01 0.00E+00 1.24E+00 0.00E+00

SD 3.41E−02 3.39E−02 1.06E+01 1.45E−01 0.00E+00 1.21E−01 0.00E+00

SEM 6.23E−03 6.18E−03 1.94E+00 2.65E−02 0.00E+00 2.21E−02 0.00E+00

obviously adequate for investigating the exploitation of
algorithms. Therefore, these results prove that our pro-
posed approach enhances, remarkably, the “exploita-
tion” in Jaya algorithm.

For f5, all algorithms failed to attain the global opti-
mum, and the Jaya algorithm produced the best result.

For f6, the proposed algorithm obtained the best
mean, StdDev and SEM than other ones. However,
PSO,DE,ABC and TLBO reached competitive results.
Only C-Jaya, DE and ABC algorithms attained good
results for f7, and in particular, C-Jaya attained the
global optimum value.

DE, TLBO and C-Jaya produced better results than
other algorithms for f8. Each of these algorithms has
reached the global optimum value. Thus, DE, ABC and
C-Jaya outperform the other algorithms in solving f8
problem. For f9, only C-Jaya reached the global opti-
mum value and the rest of the algorithms performed
similarly.

The multimodal benchmark functions ( f6 to f9),
unlike the unimodal functions, have many local opti-
mums. As a result, they are suitable for testing the
exploration of a given algorithm. Meanwhile, with the
increase of the local minima number of multimodal
functions, the problem becomes very difficult to solve.
According to the obtained results, C-Jaya significantly
provides a good solution accuracy and a higher proba-
bility to escape from local optimums as well.

In rotated problems f10, f11, f14 and f16 only the
proposed algorithm attained the global optimum value.
Furthermore, TLBOalgorithmproduced themost com-
petitive results compared to other ones. The Jaya algo-
rithm has the best mean for f12, whereas C-Jaya is the
best one for solving f13 problem. However, all algo-
rithms, expect TLBO and C-Jaya, failed to reach the
minimum value of f15. We can conclude that the C-
Jaya achieves good results regarding solutions quality
for low-dimensional problems.
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Table 7 Mean number of function evaluations, time consumed and success rate by comparative algorithms for 100-dimensional
functions over 30 independent runs

Function PSO DE HS ABC TLBO Jaya C-Jaya

f1

MeanFEs NaN 71777.33 NaN 63898 3597.33 NaN 592

Time (s) NaN 3.62E+00 NaN 9.05E−01 1.05E−01 NaN 1.12E−01

SR (%) 0 100 0 100 100 0 100

f2

MeanFEs NaN NaN NaN NaN 35658.67 NaN 1052

Time (s) NaN NaN NaN NaN 2.04E+00 NaN 2.98E−01

SR (%) 0 0 0 0 100 0 100

f3

MeanFEs NaN NaN NaN NaN 5816 NaN 884

Time (s) NaN NaN NaN NaN 1.85E−01 NaN 1.89E−01

SR (%) 0 0 0 0 100 0 100

f4

MeanFEs NaN NaN NaN NaN 50250.67 NaN 1412

Time (s) NaN NaN NaN NaN 1.36E+00 NaN 3.05E−01

SR (%) 0 0 0 0 100 0 100

f5

MeanFEs NaN NaN NaN NaN NaN NaN NaN

Time (s) NaN NaN NaN NaN NaN NaN NaN

SR (%) 0 0 0 0 0 0 0

f6

MeanFEs NaN NaN NaN NaN 6592 NaN 981.33

Time (s) NaN NaN NaN NaN 1.78E−01 NaN 2.12E−01

SR (%) 0 0 0 0 100 0 100

f7

MeanFEs NaN NaN NaN NaN 7794.28 NaN 774.67

Time (s) NaN NaN NaN NaN 2.06E−01 NaN 1.53E−01

SR (%) 0 0 0 0 93.33 0 100

f8

MeanFEs NaN NaN NaN NaN 10133.33 NaN 1342.67

Time (s) NaN NaN NaN NaN 1.89E+01 NaN 5.34E+00

SR (%) 0 0 0 0 100 0 100

f9

MeanFEs NaN NaN NaN NaN 4992 NaN 784

Time (s) NaN NaN NaN NaN 1.45E−01 NaN 1.55E−01

SR (%) 0 0 0 0 100 0 100

f10

MeanFEs NaN NaN NaN NaN 6186.67 NaN 908

Time (s) NaN NaN NaN NaN 2.29E+01 NaN 3.26E−01

SR (%) 0 0 0 0 100 0 100

123



1470 A. Farah, A. Belazi

Table 7 continued

Function PSO DE HS ABC TLBO Jaya C-Jaya

f11

MeanFEs NaN NaN NaN NaN NaN NaN 1106.67

Time (s) NaN NaN NaN NaN NaN NaN 4.70E−01

SR (%) 0 0 0 0 0 0 100

f12

MeanFEs NaN NaN NaN NaN NaN NaN NaN

Time (s) NaN NaN NaN NaN NaN NaN NaN

SR (%) 0 0 0 0 0 0 0

f13

MeanFEs NaN NaN NaN NaN 6653.33 NaN 978.67

Time (s) NaN NaN NaN NaN 2.44E+01 NaN 4.66E−01

SR(%) 0 0 0 0 100 0 100

f14

MeanFEs NaN NaN NaN NaN 39501.33 NaN 337.33

Time(s) NaN NaN NaN NaN 1.45E+02 NaN 1.57E−01

SR (%) 0 0 0 0 100 0 100

f15

MeanFEs NaN NaN NaN NaN 10613.33 NaN 1418.67

Time (s) NaN NaN NaN NaN 6.00E+01 NaN 6.08E+00

SR (%) 0 0 0 0 100 0 100

f16

MeanFEs NaN NaN NaN NaN 6568 NaN 777.33

Time (s) NaN NaN NaN NaN 2.57E+01 NaN 3.65E−01

SR (%) 0 0 0 0 100 0 100

5.3.2 Comparison of convergence

The speed of attaining global optimum is an impor-
tant criterion in judging the performance of a given
optimization algorithm. The effectiveness of the pro-
posed algorithm was demonstrated via the computa-
tional effort expressed by the mean number of func-
tion evaluations (FEs), the CPU time and the success
rate (SR) provided in Table 3. The proposed algorithm
presents the highest success rate and the fewest number
of FEs required to attain the global optimum. To further
evaluate the exploitation property of C-Jaya algorithm
compared to other ones, the convergence graphs of all
used functions are illustrated in Figs. 7, 8, 9 and 10. It
is worth mentioning that we shifted the values of the
objective function by a gap of 10−3, due to the existence
of some zero values. Thus, we can plot them in semi-
log scale. These figures show that the C-Jaya algorithm
presents not only a good overall performance regard-

ing the quality of the obtained optimal solution but also
faster convergence rates inmost test problems. It is also
clear that the C-Jaya algorithm outperforms other algo-
rithms concerning the ultimate result similarly. As far
as the convergence characteristic is concerned, the pro-
posed algorithm converges very fast in most of the test
functions compared to the other algorithms. Overall,
the performance of C-Jaya is significantly superior to
the other comparative algorithms, except for Rosen-
brock function in which the ABC algorithm is the most
effective.

To further validate the convergence performance of
the proposed algorithm, a comparison of the computa-
tional time spent by all used algorithms to reach the
first acceptable solution was made (Table 3). These
CPU times allow a fair comparison of speed conver-
gence among all algorithms. It is clear that the C-Jaya
requires less CPU time to reach the first acceptable
solution than other algorithms for all test functions.
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Fig. 7 Convergence performance of different algorithms on the f1 − f4 10-dimensional functions a f1 sphere, b f2 quadric, c f3 sum
square, d f4 Zakharov

Despite the fact that the proposed algorithm uses addi-
tional sequences compared with the original algorithm,
C-Jaya ranks first among all the algorithms. In fact, it
requires a minimum number of FEs to attain an accept-
able solution.

In conclusion, C-Jaya is a powerful algorithm for
solving complex optimization problems.

5.3.3 Statistical tests

We applied the Friedman test which is a well-known
procedure for testing the differences betweenmore than
two algorithms [10,11,36]. To achieve this goal, we
also used its two advanced versionswhich are the Fried-

man aligned ranks test and the Quade test. Figures 11
and 12 illustrate the ranking of algorithms used in the
experiments based on the standard errors of means. As
can be seen from these figures, C-Jaya obtained the
best ranking, followed by TLBO algorithm. We can
conclude that the proposed algorithm evidently outper-
forms the comparative algorithms.

5.4 Results for 30-dimensional problems

5.4.1 Comparison of solution accuracy

Table 4 indicates that C-Jaya reaches the global opti-
mum for the unimodal functions f1– f4 and the TLBO
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Fig. 8 Convergence performance of different algorithms on the f5 − f8 10-dimensional functions a f5 Rosenbrock, b f6 Ackley, c f7
Rastrigin, d f8 Weierstrass

algorithm gives the best results among the other com-
parative algorithms. All the other algorithms, except
HS algorithm, obtained acceptable solutions for the
test function f5. Nevertheless, all algorithms failed to
reach the global optimum for the same function. For
the test function f6, DE, TLBO and C-Jaya obtained
better results than other algorithms. The proposed algo-
rithm gives the same output for the test functions f7–
f11 and f14– f16. The obtained solutions for the previ-
ous test problems are equal to the theoretical optimum.
For the test function f12 all algorithmsproduced similar
results, exceptABCwhich does not reach an acceptable
solution. Moreover, C-Jaya and TLBO again produce
the best solution for f13 test function.

It should be noted that the modifications incorpo-
rated in the original Jaya algorithm improve its perfor-
mance regarding solutions accuracy substantially.

5.4.2 Comparison of convergence

Table 5 shows the mean number of FEs, the CPU time
and the success rate obtained in 30 independent runs.
The success rates were calculated during each run by
counting the number of fitness values less than the
acceptable level (shown in Table 1), after the comple-
tion of 80,000 FEs.

As can be seen from this table, C-Jaya produces the
highest success rate compared to other algorithms for
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Fig. 9 Convergence performance of different algorithms on the f9 − f12 10-dimensional functions a f9 Griewank, b f10 rotated sum
square, c f11 rotated Zakharov, d f12 rotated Rosenbrock

all test functions. Also, the smallest number of FEs
required by C-Jaya to reach an acceptable solution,
demonstrates its high speed of convergence in all test
problems.

To further assess the convergence performance of
the proposed C-Jaya, the CPU required to attain the
first acceptable solution was calculated (Table 5). The
obtained results for C-Jaya algorithm were compared
with other algorithms. We can conclude that C-Jaya
requires less CPU time for all test functions except for
f2 functionwhich is ranked second best. In a first analy-
sis,C-Jaya required the generationof chaotic sequences
and may need more CPU time than the original one.
However, the additional CPU time introduced by the

added operations in C-Jaya was compensated by the
improvement of diversity characteristic.

5.4.3 Statistical tests

To prove the efficiency of the proposed algorithm in
comparison with the other ones, we performed Fried-
man, Friedman aligned andQuade tests. Figures 13 and
14 show that C-Jaya is the best performing algorithm,
for all tests, among all other algorithms. Thus, it is
ranked first among all comparative algorithms. There-
fore, C-Jaya can be considered as a very efficient algo-
rithm for overcoming complex optimization problems.
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Fig. 10 Convergence performance of different on the f9 − f16 10-dimensional functions a f13 rotated Ackley, b f14 rotated Rastrigin,
c f15 rotated Weierstrass, d f16 rotated Griewank

(a) (b)

Fig. 11 Average ranking of comparative algorithms by Friedman test (a) and Friedman aligned test (b) for 10-dimensional problems
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Fig. 12 Average ranking of comparative algorithms by Quade
test for 10-dimensional problems

5.5 Results for 100-dimensional problems

5.5.1 Comparison of solution accuracy

The performances of the proposed C-Jaya, in high-
dimensional problems, were evaluated by considering
the aforementionedbenchmark functions in 100dimen-
sions. The results presented in Table 6 give the means
of the best solutions, the standard deviations and the
standard errors of means obtained from 30 indepen-
dent runs.

It can be seen that C-Jaya outperforms the compara-
tive algorithms. We can again conclude that the TLBO
produces the most competitive results among all other
algorithms. It is worth noting that all comparative algo-
rithms failed to attain the global optimum, except the
TLBO which succeeded to reach the theoretical opti-
mum in only four test functions. Thus, the C-Jaya is a
very efficient algorithm for solving optimization prob-
lems.

Fig. 14 Average ranking of comparative algorithms by Quade
test for 30-dimensional problems

5.5.2 Comparison of convergence

In this section, the computational effort and the success
rate produced by all algorithms, in solving the consid-
ered problems, were studied. Indeed, experiments were
conducted to obtain the FEs required by each algorithm
to reach the optimal solution. The algorithms are ter-
minated, if the global optimum is attained or if the FEs
is completed. Table 7 shows results of all algorithms
regarding the mean number of FEs, the CPU time and
the success rate obtained in 30 independent runs.

In all test functions, the C-Jaya algorithm required
the fewest number of FEs and as a consequence the
least computational effort. Equally, the proposed algo-
rithm reached 100% success rate for fourteen test func-
tions, whereas the best among the other algorithms, i.e.,
TLBO algorithm, obtained the same result for twelve
benchmark functions. Moreover, C-Jaya requires less
CPU time for all test functions except for f1, f3, f6 and
f9 functions which is ranked second best. It is worth

(a) (b)

Fig. 13 Average ranking of comparative algorithms by Friedman test (a) and Friedman aligned test (b) for 30-dimensional problems
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(a) (b)

Fig. 15 Average ranking of comparative algorithms by Friedman test (a) and Friedman aligned test (b) for 100-dimensional problems

noting here that the original Jaya algorithm failed in
all test problems, which reflects its weakness in global
search. Thanks to the modifications introduced in Jaya,
the obtained algorithm presents high efficiency and
robustness.

To get a deep insight into the convergence perfor-
mance of the C-Jaya algorithm and to make a fair
comparison for high-dimensional problems,CPU times
required by the studied algorithms were computed to
achieve the first acceptable solution (Table 7). Regard-
ing CPU time, C-Jaya algorithm is the most effective
at finding the first acceptable solution for 14 from 16
benchmark functions. Moreover, TLBO algorithm is
the second most effective, in attaining the first accept-
able solution for 13 from 16 benchmark functions.
Besides, the proposed algorithm is the best performing
regarding CPU time in almost all test functions. Fur-
thermore, it is observed from results that PSO, HS and
Jaya algorithms fail to attain an acceptable solution for
all test functions. Moreover, DE and ABC algorithms
reach an acceptable solution for only one benchmark
function.

5.5.3 Statistical analysis

To statistically quantify the performance of the algo-
rithms used in the experiments, Friedman, Friedman
aligned and Quade tests were performed based on stan-
dard errors of means. Figures 15 and 16 present the
ranking of considered algorithms according to these
tests. It is obvious from these histograms that C-Jaya is
ranked first among all comparative algorithms. These
results confirm the ability of the proposed algorithm
for solving optimization problems.

Fig. 16 Average ranking of comparative algorithms by Quade
test for 100-dimensional problems

We can, therefore, conclude that the proposed C-
Jaya has better-searching ability, robustness and effi-
ciency for handling engineering design problems and
that its performance surpasses all comparative algo-
rithms.

6 Conclusion

In this work, we proposed a new chaotic Jaya algo-
rithm that mitigates premature convergence problem
of the original Jaya algorithm. Three new search equa-
tions were implemented to enhance the search abilities
of the Jaya algorithm. Moreover, after investigating its
chaotic behavior, the proposed 2D cross chaotic map
was embedded in the original Jaya algorithm with the
aim of improving both its exploration and exploitation
abilities. It is worth mentioning that the modifications
incorporated in Jaya algorithm maintained its simplic-
ity and control parameter-free property. Experimen-
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tal results based on unimodal and multimodal bench-
mark functions prove that the proposed chaotic Jaya
algorithm (C-Jaya) outperforms the original one. Also,
comparing the results with other well-known optimiza-
tion algorithms, i.e., PSO, DE, HS, ABC and TLBO,
proves the predominance of the proposed C-Jaya con-
cerning solution accuracy and speed convergence as
well as nonparametric statistical tests.
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Appendix A: The proof of chaos for G(x)

Definition 1 (Discrete chaos of Devaney) Consider a
discrete dynamical system in the following form:

yi+1 = g(yi ), g : J → J, y0 ∈ J (6)

g(x) is chaotic if the following conditions are satisfied
[12].

(1) Sensitive to initial conditions

∃ � > 0, ∀ y0 ∈ J, ω > 0, ∃ n ∈ N , z0 ∈ J

|y0 − z0| < ω ⇒ ∣∣gn(y0) − gn(z0)
∣∣ > �. (7)

(2) Topological transitivity

∀ J1, J2 ∈ J, ∃ y0 ∈ J1, n ∈ N , gn(y0) ∈ J2.
(8)

(3) Density of periodic points in J Let K = {k ∈ J |∃
n ∈ N : gn(k) = k} be the set of periodic points
of g. Therefore, K is dense in J : K = J .

Definition 2 Let f : I → I and g : J → J be maps.
f and g are topologically conjugated if there exists a
homeomorphism h : I → J that makes h ◦ f = g ◦ h.
Theorem Let f : I → I and g : J → J be conjugate
via h. If f is chaotic on I , then g is chaotic on J .

Proof (1) (Sensitive to initial conditions) Let f have
sensitivity constant α. Let I = [ω0, ω1]. Assume
α < ω1 − ω0. Consider the function |h(x + α)

− h(x)| where x ∈ [ω0, ω1 − α]. This function
has minimum value λ as it is continuous and posi-
tive. So, h maps intervals of length α to intervals of

length at least λ. We assume that g has sensitivity
constant λ. Let x0 ∈ J and B be an open inter-
val about x0. Therefore, h−1(B) is an open interval
about h−1(x0). By sensitive to initial conditions,
there is y0 ∈ h−1(B) and m > 0 which satisfy∣∣ f m (

h−1(x0)
) − f m(y0)

∣∣ > α. Then,

∣∣∣h (
f m

(
h−1(x0)

))
− h

(
f m(y0)

)∣∣∣
= ∣∣gm(x0) − gm (h(y0))

∣∣ > λ.

(2) (Topological transitivity) Let A and B be open
subintervals of J . So, h−1(A) and h−1(B) are open
subintervals of I (h is a continuous function). As
f is topologically transitive, there is x0 ∈ h−1(A)

that fulfills f n(x0) ∈ h−1(B) for some n. There-
fore, h(x0) ∈ A and gn (h(x0)) = h ( f n(x0)) ∈
B.

(3) (Density of periodic points) Let A be an open
subinterval of J and consider h−1(A) ⊂ I . Since
periodic points of f are dense in I , there is a peri-
odic point x ∈ h−1(A) of period m. We have
g ◦ h = h ◦ f , so gm (h(x)) = h ( f m(x)) = h(x).
Therefore, h(x) is a periodic point of period m in
A and periodic points are dense in J .
According to the definition of chaos Devaney [12],
g is chaotic on J .

��
It is known that φ(θ) = 5θ is chaotic [12] under the

unit circle mapping S1 → S1, so φ is sensitive to initial
value, topologically transitive and dense in S1.

Considering h(θ) = cos θ , we have G ◦ h =
16 cos5 θ − 20 cos3 θ + 5 cos θ = cos(5θ) = h ◦ φ.
So G is conjugated to φ in y ∈ J = [−1, 1]. Thus, as
φ is chaotic on S1, then G is chaotic on J = [−1, 1].

A.1 The randomness proof of G(x)

Because functionG(x) = 16x5−20x3+5x is aCheby-
shev polynomial of degree 5 (T5(x) = cos(5θ), x =
cos θ), so its invariant density is

ρG(x) = 1

π
√
1 − x2

, −1 < x < 1 (9)

A.1.1 The auto-correlation proof

It is known that
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x̄ =
∫ 1

−1
xρG(x)dx

x=sin u=
∫ π

2

−π
2

sin u
1√

1 − sin2 u
cos udu = 0.

Considering x = cos u and τ is the iterative times of
G(x). We have Gτ (x) = cos(5τu). When τ = 0,

CG(τ ) =
∫ 1

−1
xρG(x)Gτ (x)dx − x̄2

=
∫ 1

−1
x

1

π
√
1 − x2

Gτ (x)dx − x̄2 = 0.

When τ = 0,

CG(0) =
∫ 1

−1
xρG(x)G0(x)dx − x̄2

=
∫ 1

−1
x2

1

π
√
1 − x2

dx − x̄2

x=cos u=
∫ 0

π

cos2 u
1

π
√
1 − cos2 u

× (− sin u)du

= 1

π

∫ π

0

1 + cos(2u)

2
du = 0.5.

Therefore, auto-correlation function of G(x) is:

CG(τ ) =
{
0.5 if τ = 0

0 if τ = 0
(10)

The auto-correlation function ofG(x) shows that when
the iterative times τ = 0, the time sequences generated
by G(x) are independent.

A.1.2 The cross-correlation proof

Considering x = cos u and τ is the iterative times of
G(x). We have Gτ (x) = cos(5τu).

rrG(τ ) =
∫ 1

−1

∫ 1

−1
x0G

τ (x1)ρx0(x0)ρx1(x1)

dx0dx1 − x̄2

x0=cos u0=
x1=cos u1

∫ 0

π

∫ 0

π

cos u0 cos(5
τu1)

× 1

π
√
1 − cos2 u0

1

π
√
1 − cos2 u0

×(− sin u0)(− sin u1)du0du1

= 1

π2

∫ π

0

∫ π

0
cos u0 cos(5

τu1)du0du1

= 1

π2

∫ π

0
cos u0du0

∫ π

0
cos(5τu1)du1

= 1

π2 [sin u0]
π
0

[
sin(5τu1)

5τ

]π

0
= 0

Therefore, the cross-correlation function is given by

rrG(τ ) = 0 (11)

The result given in Eq. (11) shows that time sequences
produced by G(x) with different initial values have no
relation to each other at any time. According to the
above characteristics, the average value of G(x) and
the cross-correlation are 0, so the probability statistical
characteristic is the same as the white noise and thus
G(x) function can be used as an ideal chaotic sequence
generator.

A.2 The proof of the equal probability of the
pseudo-random sequence

When G(x) is iterated, a chaotic sequence is produced
as follows: g0, g1, . . . , gp = G(xp−1) where p is an
integer. The chaotic range V = [−1, 1] is divided into
M subdomains vi , i = 0, 1, 2, . . . , M − 1. With vi =
(ti , ti+1) for i = 0, 1, . . . , M − 1. Here, ti is defined
by Eq. (12)

ti = − cos

(
i

M
π

)
, i = 0, 1, 2, . . . , M − 1 (12)

The initial conditions (x0, y0) of the cross chaotic
map are used to generate a value of chaotic sequence{
gp

}∞
p=1.

Definition 3 Mapping S : V → 0, 1, . . . , M − 1,
xp → i = sk , xp ∈ vi , p = 0, 1, . . ., where sp is
described as Eq. (13), so the N phase pseudo-random
sequence

{
sp

}∞
p=0 distributes in the N subdomains pro-

portionally.

sp =
{⌊

(1 − arccos(gp)/π) × M
⌋

, ifgp ∈ [−1, 1] ,

M − 1, if gp = 1

(13)
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Proof According to Eqs. (9) and (13), the probability
of element i appearing in

{
sp

}∞
p=0 is:

Prob(i) =
∫ ti+1

ti
ρ(x)dx = 1

M

��
Obviously

{
sp

}∞
p=0 obeys uniform distribution.
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