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Abstract The inerter is a two-terminal mechanical
element that produces forces directly proportional to
the relative acceleration between these terminals. The
linear behaviour of this element has already been
described in the literature. In this work, the nonlinear
effects of the geometrical arrangement of the inerter
are investigated in terms of vibration isolation and com-
pared to the traditional arrangement. The analysis com-
prises the use of harmonic-balanced method applied
to the exact equation, as well as approximations for
low amplitude and high amplitude. Numerical analysis
is used to complement the investigation. Comparison
with classic vibration isolators shows possible bene-
fits for high frequency regimes. The effects from the
geometrical nonlinearity vanish when the amplitude of
motion is large.
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1 Introduction

The classical isolator consisting a parallel combina-
tion of a linear spring and viscous damper supporting a
lumped mass has been the foundation for the study of
vibration transmissibility in mechanical systems. There
are registers of patents on the study of mechanical iso-
lators from the beginning of the twentieth century [3,7].

Nonlinear isolators are considered to obtain low
amplitude response in a wide range of excitation fre-
quencies. Ibrahim [13] presented a comprehensive
review of many designs of nonlinear vibration isolators
which were developed prior to 2008, including applica-
tions for vibro-impact, chaotic regimes and stochastic
excitation.

Nonlinear absorbers were also extensively explored.
An absorber using cubic nonlinear stiffness attached to
the main mass was presented by Roberson [22]. A sim-
ilar concept with only nonlinear term was formalised
as a Nonlinear Energy Sink (NES), as the one stud-
ied by Vakakis [32]. Similar absorbers with nonlinear
damping were studied as well [28]. Sapsis et al. [23]
have discussed types of nonlinear attachments includ-
ing spring and damper elements that work in a similar
way to the proposal of this paper.

The concept of transmissibility (displacement or
force) is generally used to describe the performance of
an isolator, which is often represented in the frequency
domain considering both the external excitation and
system response as harmonic functions.
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In 2002, Smith [25] proposed the synthesis of a
mechanical device that reacted with forces directly
proportional to the relative acceleration of its termi-
nals. However, it is known that there are other simi-
lar mechanical elements which were developed prior
to 1997 and presents similar behaviour to the Smith’s
inerter, for instance, the ones presented by Flannelly
[6] and Goodwin [10].

The inerter can be composed of hydraulic or pneu-
matic elements [31], with concentrated masses and
levers [36], and also by a combination of pinion, rack,
gears and inertia fly wheel [26].

The inerter device has several types of applications
such as vibration isolator in hydraulic mounting of
motors [31,37], in passive and active vehicle suspen-
sions [27], in civil engineering substituting the tuned
mass damper with the benefit of a lower weight [9], in
mechanical steering compensator of high performance
motorcycles [5], in aircraft landing gear controlling
shimmy vibration [16,35], in railways improving the
performance of train suspension systems [33], among
others.

Papageorgiu and Smith [20,21] and Gonzalez Buelga
et al. [9] have investigated using experimental tests the
nonlinearity effects on two types of inerters, such as
friction.

Backlash, unwanted gaps have also been reported
as important nonlinear phenomenon present in inert-
ers [19,38]. Wang and Su [33,34] studied the effects
of blacklash, elastic effect and friction nonlinearities
applied to automotive suspension, indicating that the
performance was slightly degraded by inerter nonlin-
earities, although overall suspension performance with
a nonlinear inerter was still superior to traditional sus-
pension system.

Nonlinear geometrically arranged elements have
been considered previously, the concept of snap-
through mechanism to provide the conditions HSLDS
(high-static low-dynamic stiffness) has been consid-
ered in many works [2,4,12,15,24]. Tang and Brennan
[30] studied the vibration transmissibility characteris-
tics of geometrically arranged viscous damper. Sun et
al. [29] have also considered the case of geometrically
nonlinear damping using velocity n-th power damper.

This paper presents an analysis of a vibration iso-
lator with an inerter with geometrical nonlinearity.
Many applications of vibration isolators have operating
angles presenting this type of geometrical nonlinearity,
and the effect of an inerter in this arrangement is not
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well understood. The analysis comprises the exact solu-
tion, as well as approximations for low amplitude and
high amplitude.

The paper is organised as follows. Section 2 presents
the mathematical modelling, including the exact and
two approximated equations of the system. In Sect. 3,
the full equation of motion and the two approximations
are analysed using the method of harmonic balance,
showing the free response, frequency response and sta-
bility of the periodic response for relative and absolute
displacement. In Sect. 4, a detailed numerical analysis
is performed, illustrating parameter sensitivity in time
domain, phase planes and basins of attraction. Section 5
presents the study conclusions.

2 Mathematical modelling

The system considered in this work is illustrated in Fig.
1, which consists of a traditional mass—spring—damper
model subjected to base excitation, and an added inerter
elements mounted with horizontal arrangement, with
one end attached to the moving base and the other end
attached to the mass. The mass is restricted to move
only in the vertical direction and the horizontal forces
acting on the mass are not cancelled due to the symmet-
ric configuration of the inerters and are not considered
in this analysis. For comparison, the usual arrangement
with the inerter in a vertical configuration is shown in
Fig. 2.

The equation of motion for the system presented in
Fig. 1 is obtained in terms of the relative displacement

L

m ta
b2 b2

k c
tzo
Fig. 1 Representation of the mass—spring—damper system with
an inerter in horizontal arrangement

Fig. 2 Representation of I I~
the mass—spring—damper m
system with an inerter in

bcak l c

vertical arrangement
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Fig. 3 Illustration of an inerter mechanism consisting of a rack
and pinion

7 = x — X0, where x and x( are the displacements of
the mass and the base, respectively. The dynamic force
equilibrium given by

mi = —kz — ¢t — 2 fp——m (1)
L%+ 22

in which m is the lumped mass, k is the spring stiffness,
c is the viscous damping coefficient and f} is the inerter
force produced along its axis. The parameter L is the
length of the inerter mechanism attached to the base
and the mass.

An illustrative example of an inerter is shown in
Fig. 3, which consists of a rack and pinion mechanism
with a case. The two terminals of the inerter have accel-
erations x| and X». According to ref. [25], the force
acting on this mechanism is proportional to the rela-
tive acceleration, given by f, = b (X» — X1), where b
is the inertance, which is a function of the mass and
geometric parameters of the rack/pinion elements.

The rightmost term in Eq. 1 (Z /VLE+ 12> repre-
sents the vertical decomposition factor of the inerter
force acting on the mass m and the overdots represent
differentiation with respect to time . It is assumed that
on the the equilibrium position (x = 0), the inerter is
arranged horizontally. When the mass m moves up and
down, it stretches the inerter device by a length

A=VL>+z2-1L, 2)

The relative acceleration between the endpoints of
the inerter is obtained by differentiating Eq. 2 twice
with respect to time, and the force on the inerter is
given by multiplying the acceleration by the inertance
coefficient b, which gives

b (24 2%) L? + 2%
fb =3 372 ) (3)
2 (L2+22)Y

Substituting Eq. 3 into Eq. 1, the equation of motion
is obtained as

272, 4
2L+ z2
| 519 .
( +M—(L2+z2)2)z+ Ewoz

5 22 2
+ <a)0 + M—(Lz n 22)2> z
= —5y, “)

in which u = b/m is the inertia ratio (non dimen-
sional), wy = +/k/m is the natural frequency and
& = 2muwy is the damping factor. The last two param-
eters are related to the single degree of freedom mass—
spring—damper system, used here for convenience of
the analysis (note that wg and & are not the natural fre-
quency and damping factor of the systems in Figs. 1
and 2).

Considering the non dimensional time T = wyt, such
that zZ = wpz’, with 7/ = dz/d, and also considering
that the system is subject to harmonic base excitation
of the form xg = X cos (wt), where w is the excitation
frequency, Eq. 4 is rewritten as

272 4
7L+ 2 . ,
(14ner ) v

N
o272 )°
= 92X0 cos (£21), ®))

in which £ = w/wy is the frequency ratio. The final
form of the equation of motion is obtained by dividing
Eq. 5 by the length L, giving

h2 2
1 ——— | h"+260"+ | 1 — | h
( +u(1+h2)> +2§ +( +M(1+h2)2>

= [22)20 cos (£21), (6)

inwhich h = z/L is anormalised relative displacement
and Xo = X(/L is a normalised base displacement.

2.1 Approximated equations for high and low
amplitudes

Analysing Eq. 6, for a value of > 0, it is possible to
obtain two limiting approximations. The first approx-
imation is obtained considering low values of the rel-
ative displacement #, such that the denominator terms
can be approximated as 1 + h% ~ 1, providing
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(1 ) 1"+ 260+ (14 )
= 22X, cos (27), (7)

Equation 7 will be refereed to as LA (Low Amplitude)
approximation. This equation is still nonlinear, where
the nonlinearity influences the inertia forces and the
elastic forces. The term (1+uh’ 2)h does not have a sig-
nificant effect on the system dynamics when the mass
is at its maximum displacement or close to the equilib-
rium position, because the displacement and velocity
have 90° phase shift. Consequently, when the displace-
ment is maximum, the velocity is zero and vice-versa.

One interesting observation is that, except for a non-
linear stiffness term, this system is similar to the equa-
tion defining the single mode of a uniform cantilever
beam carrying an intermediate lumped mass and rotary
inertiadescribed by [11] and [17]. These results are also
similar to the nonlinear oscillator proposed by [1] when
the exponent p = 1.

The second approximation occurs when /% is large.
In this situation, the term 1442 &~ h2, and the equation
of motion becomes linear with a change in the inertia
force

A+ p) b +26h +h = 22X cos (27), (8)

Equation 8 will be refereed to as HA (high amplitude)
approximation. This equation represents the case of a
mass supported by the linear combination of spring—
damper—inerter in parallel configuration (Fig. 2). This is
an interesting result which shows that the nonlinearity
of the system vanishes for large relative displacements.

3 First-order harmonic balance solution

In this section, the equations of motion, exact (Eq. 6)
and approximated LA (Eq. 7) and HA (Eq. 8) are anal-
ysed using the method of harmonic balance. Consid-
ering firstly the exact equation (Eq. 6), which can be
modified by multiplying the left- and right-hand sides
by the term (1 + h2)2, this way, eliminating the rational
terms, it is possible to write

((1 + D2 4 k(1 + h2)> B 4260 (1 + h%)>
+ ((1 +h%)2 4 uh’z) h

= 22X cos (21)(1 + h?)?. )
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In this format, Eq. 9 is used in the following section
together with Egs. 7 and 8 to obtain expressions for the
oscillatory frequency as a function of the displacement
amplitude.

3.1 Backbone curves of free vibration response

The first investigation is carried out considering the
case of free motion ()A(o = 0). Assuming that the
response can be written as a harmonic function of the
form h(t) = H cos (@), where @ = 21 + ¢. Calcu-
lating the first and second derivatives of this expression
and replacing the respective terms in Eq. 9, allows to
obtain an equation in terms of sine and cosine multi-
plicands, and their higher-order harmonics.

Cicos (D) + S;sin (@) 4+ Czcos (3P) + S3sin (3P)

+ Cs5cos (5P) + Sssin (5&) = 0. (10)

By neglecting the higher-order harmonics, there are
two equations which are factors of cos (@) and sin (@).
Solving the cosine equation (C; = 0) for £2 gives the
expression for the oscillatory frequency as a function
of the relative displacement H, written as

_( S5H*+12H* +38

1/2
11
(5u+5)H4+(4/L+12)H2+8> » (D

carrying out a similar procedure for equation (Eq. 7),
the oscillatory frequency as a function of the displace-
ment H is given by

) 1/2
$2 = (m) ’ 12

the last case is for Eq. 8, which is linear and has a fixed
frequency, given by

1 1/2
°=(r) "

Equations 11, 12 and 13 describe the oscillatory fre-
quency as a function of the amplitude, known as back-
bone curves. These curves have been plotted for arange
of displacement amplitudes and are shown in Fig. 4.

As shown in Fig. 4, Eqs. 11 and 12 agree well for
small values of displacement (less than one). For higher
values of the displacement, Eq. 11 approximates to
Eq. 13, which confirms the assumptions adopted in
Sect. 2.1.
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Fig.4 Backbone curves of oscillatory frequency §2 as a function
of H with u = 0.3. Thin blue line—exact equation; thick red
line—low amplitude approximation; dashed line — high ampli-
tude approximation. (Color figure online)

3.2 Free motion: phase plane

The phase plane (displacement/velocity) also helps to
understand the behaviour described by Eqgs. 4, 7 and
8. For this, the viscous damping element has been
neglected and numerical simulations considering ini-
tial conditions and free motion were performed. The
results are shown in Figs. 5, 6 and 7 for three differ-
ent initial conditions, Fig. 5 (Ao, h{)) = (5,0), Fig. 6
(ho, hy) = (2,0), Fig. 7 (ho, hy) = (0.1, 0).

The results shown in Fig. 5 consider large displace-
ment, and it is possible to note the difference between
the trajectories in the phase plane obtained by the exact
equation and the LA approximation when displacement
is far from zero. In contrast, the exact equation and HA
equation agree well unless for values of displacement
close to zero.

By reducing the amplitude of the initial displace-
ment, the trajectories on the phase plane given by the
exact equation are approximated to the results defined
by LA approximation, as shown in the sequence of
Figs. 6 and 7. The low amplitude solution also reaches
the correct maximum amplitude because of the initial
conditions given to system.

3.3 Frequency response

The proposal of this section is to describe the behaviour
of system due to harmonic excitation. The initial anal-

Velocity

—6 —4 -2 0 2 4 6
Displacement

Fig. 5 Trajectories on the phase plane for exact equation (thin
blue line), LA approximation (thick red line) and HA approxi-
mation (dashed line) with initial conditions (A, h/o) = (5,0).
(Color figure online)

Velocity
(=}

V)

Displacement

Fig. 6 Trajectories on the phase plane for exact equation (thin
blue line), LA approximation (thick red line) and HA approxi-
mation (dashed line) with initial conditions (%, h6) = (2,0).
(Color figure online)

ysis is described using LA approximation. Typically,
in this type of analysis, for the excitation of the form
.sz(o cos (§£271) described in Eq. 7, it is assumed a
motion of the form (1) = H cos @, with @ = 21t+¢.
Replacing this expression in Eq. 6 and keeping only the
fundamental frequency terms in cosine and sine, it is
obtained:

2
<1 —? (1 + %)) H cos (21 + ¢)

—26QH sin (21 + ¢) = 22Xgcos (271).  (14)
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—0.05

—0.10

—0.10 —0.05 0.00 0.05 0.10

Displacement

Fig. 7 Trajectories on the phase plane for exact equation (thin
blue line), LA approximation (thick red line) and HA approxi-
mation (dashed line) with initial conditions (k¢, hé) = (0.1, 0).
(Color figure online)

Expanding the trigonometric functions, such that the
terms in the right- and left-hand side are balanced, Eq.
14 is split in two equations in terms of sine and cosine,
such as

2
(1 —? (1 + %)) H = 2>Xpcos(¢), (15)

—260QH = 2% Xy sin (), (16)

In the free motion case ()A(O = 0),using Eq. 15 and solv-
ing it for £2, it is possible to obtain the backbone curve
for the resonance frequency as a function of the rela-
tive displacement H. The response to harmonic base
excitation is obtained by summing the square of Egs.
15 and 16, which results in a polynomial equation in
terms of H

/’L294

HS + pu2? (92 — 1) H*

2 A
+ (452:22 + (1 - 92) ) H>— 2*%2 =0,

(17)
or in terms of £2
H\? .
<H2 (1 + MT) - X%) !
H2
+ (—2112 (1 + %) +4E% + H2) 22
+H?* =0, (18)

Equation 17 is a sextic equation in H, but can be con-
verted to a cubic equation, allowing to obtain three roots
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Mag. Rel. Transmissibility

0.0 0.5 1.0 1.5 2.0
Non dimensional Frequency ()

Fig. 8 Magnitude of the relative transmissibility (|H/ Xo|) as a
function of frequency varying the inertia ratio u = 0.1, 0.2, 0.3,
with &€ = 0.01 and Xg = 0.1

which may be of interest. Similarly, Eq. 18 is a bi-
quadratic equation in £2 and can be solved for the roots
of interest.

3.4 Results obtained by using the harmonic balance
method: approximated model

The magnitude of H was obtained by solving the poly-
nomial equation (Eq. 17) for values of £2, usingé = 0.1
and Xo = 0.1. Three values of inertia ratio L Were com-
pared and are shown in Fig. 8. This figure illustrates
effect similar to a softening spring, in which the reso-
nance frequency is reduced by increasing the amplitude
of motion, but instead, this reduction is due to the influ-
ence of the inertia ratio.

The detailed behaviour of the relative transmissibil-
ity is shown in Fig. 9. The low and high frequency
asymptotes are equal to the asymptotes of the linear
system. The backbone curve is calculated using Eq. 12.
The inner part of the curve (red dashed line) represents
unstable periodic motion.

The two black dots (a) and (b) are, respectively, the
jump-up and jump-down frequencies. The jump-up fre-
quency can be obtained from the solutions of Eq. 18,
making d$§2/d H = 0 and solve for 2, to obtain

21/2M1/3f(é/6

4= 19)

N N 1/2°
(3MX0 + 2u2/3X(1)/3)

The respective magnitude for the jump-up frequency is
given by
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Fig. 9 Magnitude of the relative transmissibility (| H/ XOQ as a
function of frequency and some of its defining features. Xo =
0.1, » =0.3,£ =0.01

1

X0\’
|Hol = — | (20)
m

Obtaining an expression for the jump-down fre-
quency seems to be more difficult using the same
strategy, since it produces a relatively long analytical
expression. Therefore, an approximation for the jump-
down frequency was obtained from the solutions of Eq.
17, making dH /d§2 = 0, to obtain

Q= 2 \/§ (\/270?0 _ 25), @1

Xo\ H

Equation 21 is not exactly the portion of the frequency
response where the slope is vertical (90°), instead, it
corresponds to the resonance peak where the slope is
ZerO0.

The respective magnitude for the jump-down fre-
quency is also a long analytical expression which
depends on the amount of damping and due to prac-
tical reasons is not presented here. Nevertheless, it can
be obtained substituting the expression for £2;, in the
solution of Eq. 17.

3.5 Absolute displacement
So far, the analysis of transmissibility has been based

on the study of relative displacement, but in practice,
it is interesting to consider the absolute displacement

" — Spring-Damper

- - Spring-Damper-Inerter
10! = LA approximation

1073

Mag. Disp. Transmissibility (X)

1074
107" 10° 10" 102

Non dimensional Frequency ({2)

Fig. 10 Comparison of absolute displacement magnitudes with
base excitation for mass—spring—damper, mass—spring—damper-
inerter and proposed system, considering § = 0.01, u = 0.3 and
Xo=03

transmissibility. This can be calculated considering the
magnitude and phase of the relative transmissibility,
given by

X = \/ H2 + X2 +2H X cos (¢), (22)
= at < 4642 ) (23)
¢ =~ o ) )

Using Eq. 22, the absolute displacement is plotted
in Figs. 10 and 11 and compared to two other linear
systems. In these figures, the thin red line corresponds
to the absolute displacement transmissibility of the tra-
ditional mass—spring—damper system; the black dashed
line, represents the displacement transmissibility of the
mass—spring—damper—inerter (shown in Fig. 2) and the
thick blue line represents the results obtained using
Eq. 22. The transmissibility of the linear systems is
given in “Appendix C”.

The difference between Figs. 10 and 11 is the ampli-
tude of the base displacement Xo.

Figures 10 and 11 show the frequency response,
comparing the proposed system to the classical mass—
spring—damper and the mass—spring—damper with inerter
in vertical configuration. The resonance peak is simi-
lar to a softening stiffness system, as consequence of
the geometrical arrangement. The anti-resonance in the
frequency response is a characteristic of isolators with
an inerter element, also the high frequency asymptote
is a drawback when the inerter is used. For the system
under study, with the inerter in horizontal arrangement,
the anti-resonance is shifted to a higher frequency, and
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—
o,
o

—  Spring-Damper
== Spring-Damper-Inerter

H
<

= LA approximation

=
<L

Mag. Disp. Transmissibility (X)

107! 10° 10! 10?
Non dimensional Frequency (2)

Fig. 11 Comparison of absolute displacement magnitudes with
base excitation for mass—spring—damper, mass—spring—damper—
inerter and proposed system, considering § = 0.01, © = 0.3 and
X0=0.6

the response at high frequencies is reduced to lower
amplitudes. As the amplitude of base displacement
(Xo) is increased, the resonance peak is shifted to the
left.

3.6 Results obtained by using the harmonic balance
method: exact model

So far, the transmissibility of the system described by
the approximated equation could be obtained using
the harmonic balance method, resulting in analytical
expressions such as those described by Egs. 15 and 16.
When considering the exact model described by Eq. 9,
itbecomes difficult to obtain analytical expressions that
define the transmissibility as a function of frequency.
To overcome this issue, the procedure to obtain the
transmissibility function for the exact system was also
developed considering that #(t) = H cos (). Replac-
ing this term in Eq. 9, results in expression in terms of
the multiplicands cos (§£27) and sin (§£27) and higher-
order harmonics. Neglecting the higher-order harmon-
ics results in the set of nonlinear equations:

P cos (¢p) + Ppsin (¢p) + P3cos 2¢) = 0, 24)
P> cos (¢p) — Py sin (¢p) — P3sin (2¢) = 0, 25)
in which the terms P;, P>, P3 are functions of H and
are described in “Appendix A”. Equations 24 and 25

can be solved numerically with the unknowns H and
¢ for each frequency.

@ Springer
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Fig. 12 Comparison of the relative transmissibility con-
sidering the exact equation for base displacement Xo =
0.025, 0.05,0.075,0.1. (with the respective resonance peaks
from right- to left-hand side). Results were normalised to base
displacement Xo=0.1

When solving Egs. 24 and 25 numerically, there is
the necessity of initial guess for H and ¢. For some fre-
quency ranges, there may exist more than one solution,
which makes necessary to solve these equations for
different initial guesses. These equations were solved
using the Python—Scipy library [14] and the fsolve
function, which consists of a modification of Powell’s
Hybrid Method for finding the roots of N-nonlinear
equations.

Figure 12 shows the relative transmissibility obtained
using this procedure for different values of base
displacement Xo. The values of base displacement
adopted were )A(o = 0.025,0.05,0.075,0.1 and the
respective resonance peaks moving from the right to
the left-hand side as the base displacement increases.
This behaviour is similar to line defining the backbone
curve defined in Eq. 11 and shown in Fig. 4.

Figures 13 and 14 show a comparison of the trans-
missibility for the proposed system considering the
exact equation with the classical mass—spring—damper
system and the mass—spring—damper and inerter in ver-
tical configuration. The difference between Figs. 13
and 14 is the amplitude of the base displacement Xo,
respectively, }20 = 0.3 and }A(o =0.6.

In Fig. 13, it is possible to observe that the transmis-
sibility of the proposed system has some advantages for
specific frequency ranges when compared to the other
two systems. The high frequency amplitude has some
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Fig. 13 Comparison of the absolute transmissibility consider-
ing the exact equation, the mass—spring—damper and the mass—
spring—damper—inerter isolators. Xo = 0.3, u = 0.3, § = 0.01

—
(=]
)

+ Exact System
— Spring-Damper
- - Spring-Damper-Inerter

—
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(=]
=3

Mag. Abs. Transmissibilty
2 2

H
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10! 10° 10! 102
Non dimensional Frequency (£2)

Fig. 14 Comparison of the absolute transmissibility consider-
ing the exact equation, the mass—spring—damper and the mass—
spring—damper—inerter isolators. Xo = 0.6, u = 0.3, £ = 0.01

benefits when compared to the mass—spring—damper—
inerter in vertical configuration isolator.

The results shown in Fig. 14 present a similar
behaviour, with a slight change in the anti-resonance
frequency.

The results of these figures show that there may be
some advantage of using the inerter in horizontal con-
figurations depending on the amplitude of the base exci-
tation and the frequency range of interest.

4 Stability of the periodic response

The conditions leading to jumps in the frequency
response, which are defined by the jump-up and jump-
down frequencies, are important in the analysis of non-
linear systems since these conditions produce unde-
sired behaviour of a vibration isolator. The analysis of
the regions of instability can be obtained considering
perturbation in the periodic response, defined by

h(t) =u(t) +e(r) = Ucos (£271) + e(7), (26)

in which u is a solution of the differential equation and
e is a small perturbation parameter. Replacing Eq. 26
for the free motion case into Eq. 7 gives

(1 + o (u+ e)z) (u”"+e")+26 (' +¢)
+ (1 o+ e/)z) (U +e)=0, 27)

expanding Eq. 27, and reminding that u (1) is a solution
(1 + mﬂ) W’ 280 + (1 + W’z) =0,  (28)

replacing Eq. 28 into Eq. 27, results in

A+ pud)e” + pQue + > " + ")
+28¢ + (1 + pu'He
+u@u'e + P +e) =0, (29)
assuming e(t) = Asin (£21) + B cos (£21) and, since
e is a small parameter, the higher-order terms can

be neglected (A, B2, AB, A’B, AB?, . . ), allowing to
rewrite Eq. 29 as

[(1 — 2%+ %uuz) A+ 25:213] c0s (£27)

+ [(1 -2+ %Mm) B-— ZSQA] sin (21) = 0,
(30
the parameters A and B are small but nonzero; there-

fore, Eq. 30 can be rearranged in two equations in terms
of sine and cosine terms and put in the matrix form,

1 - 22 (1+3uU?) 2682 A
—26Q2 1-22(1+5uU%) | [B

0
-2
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Rel. Displacement

oo
I3

0.6 0.7 0.8 0.9 1.0 1.1

Non Dimensional Frequency (2)

Fig. 15 Relative displacement and stability region obtained by
harmonic balance method. X¢ = 0.1, © = 0.3, & = 0.01 (LA
approximation)

for nonzero A and B, the determinant of Eq. 31 provides
the equation which defines the regions of instability

3“294 Ut —2u0? (1 - .(22) U? 4482022
4 (1 - 92)2 —0, (32)

among the four solutions of Eq. 32 in terms of U, two
are of interest, which can be plotted as a function of the
frequency in Fig. 15. The red areas define the regions
where the system is subject to jumps.

4.1 Stability of the periodic response: exact model

Carrying out a similar procedure for the exact model,
the equivalence of Eq. 32 is given by

TyU® + ToU® + WU* + LU? + Ty = 0, (33)
this equation can also be written as a function of £2 as
Wa2* + Wa22 + Wo = 0, (34)

and the terms 7; and W; are given in “Appendix B”.
Solving any of Egs. 33 or 34 allows to obtain the region
of instability of the periodic response. In the case of
the exact system equation, the regions of instability are
plotted in Fig. 16

As it is possible to observe in Fig. 16, the regions of
instability differ from the results shown in Fig. 15. For

@ Springer

3.0
25
2.0
15
1.0

0.5 '\
/

0.80 0.85 0.90 0.95 1.00
Non dimensional Frequency (2)

Relative Displacement

Fig. 16 Relative displacement and stability region obtained by
harmonic balance method. u = 0.3, § = 0.01. Two values of
base displacement were used Xo = 0.05, 0.025, (exact equation)

values large values of base displacement, the displace-
ment curves do not cross the red regions and the system
does not present jumps. In the case of the two curves
shown in this figure, the jump-down frequency is coin-
cident with the top part of the instability region. The
jump-up frequency is not coincident, mainly because
of the approximations described in Sect. 4.

5 Numerical analysis

In the previous sections, the relative and absolute trans-
missibility functions were calculated using the method
of harmonic balance and considering the exact and
approximated equations of motion. In this section, a
detailed analysis is performed using numerical integra-
tion. For this, an implementation in C-language using
the GNU-GSL library [8] was used. The method for
numerical integration chosen was the explicit Runge—
Kutta—Fehlberg (4, 5) method. In some cases, parallel
computation using the multiprocessing module [18] in
Python programming language was used.
Recalling the full equation of motion written as

1+ ia h' +2eh + 1+ n h
Mo n Havn?
= 22X cos (£27) (35)

and the usual choice of state variables as ¢; = h and
g2 = I, the state equations are given by
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4= (36)
-1
2 (1+h2)

h/2
(2"3 + <1 +Mm) h

— 22X, cos (m)) (37)

The first investigation was performed by integrating
Eqs. 36 and 37 in the frequency range £2 = [0.8, 1.2]
using small incremental steps in frequency. The numer-
ical integration was performed with the system initially
at rest for a time 7 = 2000. Only a small portion at
the end of each time history was considered to reduce
the influence of transient behaviour. The amplitude of
the steady state was then recorded. This procedure was
repeated for different values of base displacement Xo
and is shown in Fig. 17.

Itis possible to observe in Fig. 17 that increasing the
base motion amplitude, the resonance peak is shifted
to the left in the frequency axis. There are values of
base displacement that produces discontinuities in the
frequency response, for instance when Xo = 0.1. By
further increasing the base displacement, the disconti-
nuities tend to disappear and the resonance peak tends
to a fixed value which is in agreement with what was
described in the previous sections.

X, =0.01

X, = 0.025
X, =0.05
R Xo=0.1
\ \\ Xy =025
A ) Xo=05

ik Xo=10

Mag. Rel. Transmissibility

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.720
Non dimensional Frequency (£2)

Fig. 17 Magnitude of the relative transmissibility |H/ Xol for
different values of base displacement (X¢), using © = 0.3 and
£ =0.02

10?

down

102 R

n n n
0.905 0.910 0.915 0.920

10!

Mag. Rel. Transmissibility

0.8 0.8 090 095 1.00 1.05 1.10 1.15 1.20
Non dimensional Frequency (£2)

Fig. 18 Magnitude of the relative transmissibility (|H/ X o))
obtained by frequency sweep up and sweep down. Results were
obtained for Xg = 0.1, u = 0.3 and & = 0.01. The detail shows
the frequency range with co-existing solutions

5.1 Evolution of basins of attraction

In the previous section, it was shown that there is a
range of X for which the response has two co-existing
solutions. For example, Fig. 18 shows the overlapping
solutions between the up and down jumps. These co-
existing solutions are low and high amplitude limit
cycles. These limit cycles at £2 = 0.91 are shown in
Figs. 19, 20.

The basins of attraction of these two periodic attrac-
tors were calculated and are shown in Fig. 21, in which
the yellow area is the basin of the high amplitude limit
cycle, and the dark area is the basin of the small ampli-
tude limit cycle. Figure 22 shows the evolution of the
basins as the inertance ratio p is varied, showing that
larger p results in larger probability of finding larger
amplitude response.

6 Final remarks

This work presented a study on the dynamic behaviour
of a vibration isolator consisting of a mass supported
by linear spring and a viscous damper in combination
with an inerter in horizontal arrangement.

It has been shown that the equation of motion for
this system has two approximating conditions, one for
low amplitude of motion and one of high amplitude of
motion.

The harmonic balance method was used to obtain
approximated solutions for the relative and absolute
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Fig. 19 a Time history and b steady-state response on the phase plane for excitation frequency 2 = 0.91 with 2o = 0 and h, = — 4.0,
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Fig. 20 a Time history and b steady-state response on the phase plane for excitation frequency £2 = 0.91 with kg = 2 and hj; = — 4.0
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Fig. 21 a Basins of attraction for 2 = 0.91, © = 0.3, & = 0.01 and Xo = 0.1, where the yellow area represents the high amplitude
limit cycle and the dark area represents the small amplitude limit cycle; b zoom region
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Fig. 22 Effect of the mass ratio (u) on the basins of attraction.

The last figure on the bottom right shows the ratio between the
low and high amplitude limit cycles as a function of the mass
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displacement transmissibility, showing that, depend-
ing on the frequency range and amplitude of the base
excitation, the proposed system can have benefits when
compared to the traditional spring—damper and spring—
damper—inerter in vertical arrangement isolators.

An interesting observation about the nonlinearity in
this system is that it vanishes when the amplitude of
motion becomes high, so that there is a limited ampli-
tude range where the nonlinearity plays important role
in the system response.

The last section of the paper presented a numeri-
cal analysis showing that the system may exhibit two
different co-existing limit cycles, one large and one
smaller, both period-1. The basins of attraction suggest
that increasing the value of inertance makes the system
more likely to exhibit large amplitude limit cycle.

A Polynomial terms
The polynomial terms defining Eqgs. 24 and 25:

P :—é((ﬂ—l-l).Qz—l)HS

% ((1u+3)92 ) H?
+(1-2%)H (38)
P, = i (sQHS +A4EQH + SmH) (39)
Py = }1 (221* +222H?) % (40)

B Polynomial terms: stability

The polynomial terms defining the stability Eqs. 33 and
34:

125

64

1 125

— (1082 — 125 — 125) 22+ = (41
+32< & ® ) ter @D

T8 — (M +2u+1)!24

Te = % (slﬂ 20 + 15) 4

+ (28 —10u—15) 22+ 2 (42)
— % (3M +33u +43) 24
+ i (245 —3Bu— 84) 22 +1 43)

@ Springer

—Qu+6) 2%+ (ssz—m— 12) 22416 (44)

To = Q% + (452 _ 2) 2241 (45)

1
Wy = (125u 42501 + 125) Us

64
5, 15\
2 top+ = \U
+ (2“ + 10p + 2)
to (48M 4528 + 672)
+ Qu+6)U*+1 (46)
1
Wa= o (105 125 — 125)
+ (252 —10p — 15) Us

1 2 4
+7 (24§ —33#—84) U

T (8g2 —ou— 12) U? 4482 — 1 (47)

125 15 21
Wo = —U? U+ _U*+6U% +1 48
0="1 + = 5 + 5 —+ + (48)

C Absolute transmissibility of linear systems

The absolute transmissibility of a linear spring—mass—
damper system is given by

1+ j2£82
T = T o 49)
1— 02+ j2(82
10?
e Exact System
Spring-Damper
o 10! == Spring-Damper-Inerter
Z
Z
il -1
& 10
%
= 1072
ib
= 10
104

10! 10° 10! 102
Non dimensional Frequency (£2)

Fig.23 Comparison of the absolute transmissibility considering
the exact equation, the mass—spring—damper, the mass—spring—
damper—inerter isolators and a system with an auxiliary TMD.
Xo=03,0=0.3,£=0.01
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The absolute transmissibility of a linear spring—

mass—damper—inerter system of Fig. 2 is given by

1 — %+ j2ER

T = (50)

1—(1+ )%+ j2ER

D Comparison with tuned mass damper (TMD)

To complement the analysis described in this paper,
a comparison of the proposed system with the tuned
mass damper is shown in Fig. 23. In this analysis, the
natural frequency of the auxiliary system was tuned in
the same resonance frequency of the primary system.
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