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Abstract Modern methods of nonlinear dynamics
including time histories, phase portraits, power spec-
tra, and Poincaré sections are used to characterize the
stability and bifurcation regions of a cantilevered pipe
conveying fluid with symmetric constraints at the point
of contact. In this study, efforts aremade to demonstrate
the importance of characterizing the system at the arbi-
trarily positioned symmetric constraints rather than at
the tip of the cantilevered pipe. Using the full nonlinear
equations of motion and the Galerkin discretization, a
nonlinear analysis is performed. After validating the
model with previous results using the bifurcation dia-
grams and achieving full agreement, the bifurcation
diagram at the point of contact is further investigated
to select key flow velocities of interest. In addition to
demonstrating the progression of the selected regions
using primarily phase portraits, a detailed comparison
is made between the tip and the point of contact at
the key flow velocities. In doing so, period doubling,
pitchfork bifurcations, grazing bifurcations, sticking,
and chaos that occur at the point of contact are found
to not always occur at the tip for the same flow speed.
Thus, it is shown that in the case of cantilevered pipes
with constraints, more accurate characterization of the
system is obtained in a specified range of flow veloci-
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ties by characterizing the system at the point of contact
rather than at the tip.

Keywords Cantilevered pipe · Bifurcations · Nonlin-
ear dynamics · Chaos · Symmetric constraint · Point
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1 Introduction

Research in thefieldof discontinuousnonlinear dynam-
ical systems has received a lot of attention in the last
few decades [1–7]. Because of their interesting linear
and nonlinear dynamic behaviors, cantilevered pipes
conveying fluid have become a great topic of research.
Since the early 1950s, many researchers have studied
variations of the seemingly straightforward applica-
tion through modifying and introducing several new
parameters to the system, such as motion-limiting con-
straints. As such, this topic has remained of interest in
an extensive list of applications in which proper char-
acterization of the stability of the system holds great
importance. Applications of cantilevered pipes convey-
ing fluid can include micro-/nano-fluid devices, which
hold as promising candidates in drug delivery [8–11],
oil pipelines, whose constraints are present at a larger
scale [12,13], mechanical pumps [14], components in
reactor systems [15], and more. In each of these sys-
tems, a full understanding of the dynamic stability
should be considered.
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Variations of the cantilevered pipe systems have
been considered to include both linear and nonlinear
springs [16–18], an additional tip-mass [19], and the
impacting force in which nonlinear aspects were con-
sidered, most notably in [20–25]. In these works, sig-
nificant contributions and variations were made to the
original system, leading to contributions in nonlinear
dynamics. In studying cantilevered pipes, both 2-D
(planar) and 3-D vibrations have been considered by
researchers.

For both 2-D and 3-D analyses of cantilevered pipes,
Païdoussis and his collaborators are known to have
made the most extensive contributions [10,16,18–31].
Other contributions were made by Tang and Dow-
ell [32], in which they studied the buckling of a can-
tilevered pipe and its nonlinear response. The system
composed of a pipe with an inset steel strip and equi-
spaced magnets on either side. It was shown that once
the flowvelocity exceeded a threshold of fluttering at its
buckled state, chaotic motions could arise. In the work
of Païdoussis, variations were made to involve motion-
limiting constraints. It was shown that for sufficiently
high flow velocities, chaotic oscillations occur, both
theoretically and experimentally. To validate theoreti-
calmodelswith experiments, a cubic spring, or trilinear
model was utilized to represent the wall force in con-
junction with the full nonlinear equations of motion. In
a 3-D analysis of the cantilevered pipe, Païdoussis et
al. [17], the 3-D nonlinear dynamics of the previously
mentioned pipe were investigated. The cantilevered
pipe was additionally constrained by arrays of two of
four linear springs or a single spring at an arbitrary
point along the length. In theoretical and experimental
studies, it was shown that the system can lose stability
by planar flutter or divergence. In addition, 2-D or 3-
D periodic, quasiperiodic, or chaotic oscillations could
occur.

In different studies, various types of bifurcations
were shown to occur. In this analysis, it is partic-
ularly interesting to consider grazing bifurcations.
The grazing bifurcations of limit cycles is common
discontinuity-induced bifurcations which takes place
when a periodic orbit reaches a boundary tangentially
with zero speed [33]. Noting that analysis is being done
at the point of contact, it is expected that grazing will
occur between thewall and the pipe. In general, grazing
bifurcation has been found in cantilever beams [34–40],
spring-mass systems [41–45], mechanical structures
such as the bump-stop in awheel suspension systemof a

vehicle [46], and tapping force atomicmicroscopy [47].
In addition, possible grazing bifurcations can exist in
aeroelastic systems with a freeplay nonlinearity in the
flap or pitch degree of freedom [48–54]. When impact
problems are present, grazing-sliding bifurcations are
most commonly considered in which abrupt changes
in stability are found [55,56]. In this work, the sliding
bifurcation, though often found in impact problems,
is not considered because of the finite stiffness in the
force representation. However, greater detail on sliding
bifurcations can be found in [55]. It should be men-
tioned that the generalization of the grazing bifurca-
tions in dynamic systems with sliding motion in the
boundary is the grazing-sliding bifurcation [57]. In
an effort to understand whether or not grazing bifur-
cations should be considered in this work, the work
of researchers investigating the presence of grazing-
sliding bifurcations in forced oscillators with dry fric-
tion were reviewed [58–64].

The purpose of this work is to demonstrate the
importance of studying a cantilevered pipe conveying
flow with symmetric constraints at the point of contact
rather than at the tip. In doing so, a nonlinear analysis is
performed using bifurcation diagrams, time histories,
phase portraits, power spectra, and Poincaré sections.
Emphasis is placed on determining key flow speeds
using the bifurcation diagramat the point of contact and
making comparisons with the same flow speeds at the
tip in order to study the inherent differences between the
two. In Sect. 2, the nonlinear equations of motion are
presented and discretized using theGalerkinmethod. In
Sect. 3, validation with previous works is shown, along
with the selection of the keyflow speeds. In Sect. 4, pro-
gressions of phase portraits are presented at the point
of contact to show the onset of grazing bifurcations in
the system. In the remaining sections, comparisons are
made between the tip and point of contact and final
conclusions are drawn.

2 Nonlinear equations of motion and discretization
of a constrained cantilevered pipe conveying fluid

As shown in Fig. 1, the system under consideration
is composed of a tubular beam of length L , cross-
sectional area A, mass per unit lengthmt , flexural rigid-
ity EI, and Kelvin-Voight damping η. In addition to the
properties of the beam, the conveyed fluid has mass per
unit length m f and flows with constant axial velocity
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Fig. 1 A schematic representation of a cantilevered pipe con-
veying fluid with symmetric constraints

V . At its resting state, it is assumed that gravity acts in
the positive X -axis and when in motion is constrained
to the (X,Y ) plane. When the considered pipe is in
motion, it is constrained bymotion-limiting constraints
at Y = Sb with a symmetric gap of Yb3.

Following theworkofSemler et al. [20], inwhich the
equation of motion for the cantilevered pipe was first
derived, later to include the presence of the symmetric
constraints [23], the nonlinear equation of motion of
the cantilevered beam with symmetric constraints is
written as [25]:

EI(Y iv + ηẎ iv) + 2m f V Ẏ ′ + m f V
2Y ′′

− (mt + m f )g(L − S)Y ′′ + (mt + m f )Ÿ

+ 2m f V Ẏ ′Y ′2
[
m f V

2 − 3

2
(mt + m f )g(L − S)

]

+ 1

2
(mt + m f )gY

′3+EI(Y ivY ′2+4Y ′′′Y ′′Y ′+Y ′′3)

−Y ′′
⎡
⎣

L∫
S

(
2m f V Ẏ ′Y ′ + m f V

2Y ′′Y ′

+
ρ∫
0

(mt + m f )(Ẏ
′2 + Y ′Ÿ ′)dε

⎞
⎠ dρ

⎤
⎦

+Y ′
S∫
0

(mt + m f )(Ẏ
′2 + Y ′Ÿ ′)dρ

+ F(Y )δ(S − Sb) = 0 (1)

where ρ and ε are dummy variables for S in integra-
tion. (Ẏ ) and (Y ′) denote differentiation with respect
to time, t , and position along the beam’s centerline,
X , respectively. In addition, as presented in Eq. (1),
F(Y ) is a representation of the force created from the
motion-limiting constraints and δ(S − Sb) denotes the
Dirac delta function. The following relationships are
defined for nondimensional analysis as:

s = S

L
, y = Y

L
, τ =

(
EI

mt + m f

) 1
2 t

L2 ,

ξ =
(

EI

mt + m f

) 1
2 η

L2 ,

u =
(m f

EI

) 1
2
i tV L, γ = mt + m f

EI
L3g,

mr = m f

mt + m f
, f (y) = F(Y )L3

EI
(2)

In the nondimensional form, (Ẏ ) and (Y ′)denote dif-
ferentiation with respect to τ and s. Note that nonlinear
terms are present in Eq. (1) and are removed by pertur-
bation technique [20]. Substituting the nondimensional
terms fromEq. (2) and removing the nonlinear terms by
perturbation technique in Eq. (1), the following equa-
tion is obtained as:

ÿ + ξ ẏiv + 2u
√
mr ẏ

′ + yiv + y′′ [u2 − γ (1 − s)
]

+ γ y′ + 2u
√
mr ẏ

′y′2

+ y′′y′2
[
u2 − 3

2
γ (1 − s)

]

+
(

−1

2
y′3 + 3y′′′y′′y′ + y′′3

)

− y′′
⎡
⎣

1∫
s

(−γ y′2 + 2u
√
mr ẏ

′y′

+ u2y′′y′ + y′′′y′′) dρ]

− y′′
⎡
⎣

1∫
s

ρ∫
0

(ẏ′2 − 2u
√
mr ẏ

′′y′

− y′′′y′ [u2 − γ (1 − ε)
] + yiv y′′)dεdρ

]
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+ y′
s∫
0

(
ẏ′2 − 2u

√
mr ẏ

′′y′ − y′′′y′ [u2 − γ (1 − ρ)
]

+ yiv y′′) dρ + f (y)δ(s − sb) = 0 (3)

To approximate Eq. (3) as an infinite set of ordinary
differential equations, thereby discretizing the system,
the Galerkin method is employed. Therefore, utilizing
the cantilever beam eigenfunctionsφi (s) and the gener-
alized coordinates qi (τ ), y(s, τ ) can be approximated
by:

y(s, τ ) =
N∑
i=1

φi (s)qi (τ ) (4)

When substituting Eq. (4) back into equation (3),multi-
plying byφi (s), and integrating from0 to 1, one reaches
the form:

q̈i + [
Cij + u

√
mr (Cu)ij

]
q̇ j

+
[
Kij + u2(Ku)ij + γ (Kg)ij

]
q j

+ [
Mijkl

]
q̇ j q̇kql + [

u
√
mr (Nijkl)

]
q̇ j q̇kql

+
[
Pijkl + u2(Pu)ijkl + γ (Pg)ijkl

]
q jqkql

+ f

(
N∑
z=1

φz(sb)qz(τ )

)
φi (sb) = 0 (5)

In this study, the mass ratio mr and the gravitational
relationship remain constant, so Eq. (5) is rewritten as:

q̈i + [
Cij + u(Cu∗)ij

]
q̇ j +

[
K ∗
ij + u2(Ku)ij

]
q j

+ [
Mijkl

]
q̇ j q̇kql +

[
u(N∗

ijkl)
]
q̇ j qkql

+
[
P∗
ijkl + u2(Pu)ijkl

]
q jqkql

+ f

(
N∑
z=1

φz(sb)qz(τ )

)
φi (sb) = 0 (6)

Referring to Eq. (6), all constants are provided as:

Cij =
1∫
0

ξ jλ
4
jφ jφids = δijξiλ

4
i (7)

K ∗
ij =

1∫
0

(
λ4jφ j + γ

(
(s − 1)φ′′

j + φ′
j

))
φids (8)

(Cu∗)ij = 2
√
mr

1∫
0

φ′
jφids (9)

(Ku)ij =
1∫
0

φ′′
j φids (10)

Mijkl =
1∫
0

⎛
⎝φ′

l

s∫
0

φ′
kφ

′
j dρ − φ′′

l

1∫
s

ρ∫
0

φ′
kφ

′′
j dεdρ

⎞
⎠φids

(11)

N∗
ijkl = 2

√
mr

1∫
0

⎡
⎣φ′

l

⎛
⎝φ′

kφ
′
j −

s∫
0

φ′
kφ

′′
j dρ

⎞
⎠

−φ′′
l

1∫
s

⎛
⎝φ′

kφ
′
j −

ρ∫
0

φ′
kφ

′′
j dε

⎞
⎠ dρ

⎤
⎦φids

(12)

P∗
ijkl =

1∫
0

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ′
l

[
φ′′
k

(
3φ′′′

j + φ′
j

{
3
2 γ [s − 1]

})

− 1
2φ′

kφ
′
j +

s∫
0

(
φ′
kφ

′′′
j {γ [1 − ρ]} + λ4kφkφ

′′
j

)
dρ

]

+ φ′′
l

[
φ′′
k φ′′

j −
1∫
s

(
φ′′
k

{
φ′′′
j − γφ′′

j

}

+
ρ∫
0

{
φ′
kφ

′′′
j

[
γ (1 − ε)

] + λ4kφkφ
′′}dε

)
dρ

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

φids

(13)

(Pu)ijkl =
1∫
0

⎧⎨
⎩−φ′

l

s∫
0

φ′
kφ

′′′
j dρ + φ′′

l

[
φ′
kφ

′
j

−
1∫
s

⎛
⎝φ′

kφ
′
j −

ρ∫
0

φ′
kφ

′′′
j dε

⎞
⎠ dρ

⎤
⎦
⎫⎬
⎭φids (14)

The reason for presenting Eq. (6) and its constants in
Eqs. (7–14) as shown is to allow for the predetermina-
tion of all coefficients, such that each coefficient may
have a physical meaning in the analysis of the system.
Note that the provided form of the constants differs
from the work of Païdoussis and Semler [25]. In doing
so, the system only depends on the value of u for all
other fixed parameters, thereby saving significant com-
putation time. Themodel is then rewritten in state space
form as:

{
ṗ
q̇

}
=

[
−
∑
I

C −
∑
0

K

]{
p
q

}
+ {NL(p, q)} (15)

where
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∑
C = C + u(Cu∗) and∑

K = K + u2(Ku) + γ (Kg) (16)

The position and velocity are then expressed as:

y(s, τ ) =
N∑
i=1

φi (s)qi (τ ), ẏ(s, τ ) =
N∑
i=1

φi (s)pi (τ )

(17)

Referring again to the work of Païdoussis et al. [24] for
the experimentally derived damping forces, the log-
arithmic decrements for the first 4 modes are δ1 =
0.0028, δ2 = 0.0081, δ3 = 0.144, and δ4 = 0.144.

The damping is then determined using ξi = δiλ
2
i

π
, where

Fig. 2 Forcing function that represents the symmetric wall con-
straints with κ3 = 5.6 × 106 and yb3 = 0.044

λi are the eigenvalues for the different modes of the
beam.

Finally, considering the nonlinear force, again pre-
sented by Païdoussis and Semler [25], a modified tri-
linear spring model for the wall is considered as:

f (y) = κ3

{
y − 1

2
(|y + yb3| − |y − yb3|)

}3

(18)

Figure 2 gives a representation of the forcing function
with κ3 = 5.6 × 106 and yb3 = 0.044.

3 Validation and point of contact bifurcation
region selection

Proper characterization of this system arises from
selecting the most appropriate point of observation,
such that more accurate results may be obtained.While
using the tip as the observation point is practical exper-
imentally, it may not be the best way to characterize the
overall stability of the cantilevered pipe. This is con-
cluded because the observed instabilities, bifurcations,
or chaos can originate at the point of contact rather than
the tip.

The validationwith thework of Païdoussis and Sem-
ler [25] is shown in Fig. 3a, in which the obtained
results yield full agreement at the tip. Parameters used
that are separate from the forcing function include
mr = 0.213, sb = 0.65, and γ = 26.75. The ini-
tial value of u = 8.2 is used with the initial condition
q1(0) = 0.002, and all other initial conditions equal

Fig. 3 Bifurcation diagrams of the cantilevered pipe conveying flow at with symmetric constraints at a the tip and b the point of contact
with κ3 = 5.6 × 106, yb3 = 0.044, and sb = 0.65
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to zero. After that, the value of u is increased and the
previous final condition is used as the next initial condi-
tion. This is done again to reduce computation time and
more accurately represent the experimental setup. In
Fig. 3b, the bifurcation diagram is presented at the point
of contact for the same previously listed parameters. It
can easily be seen that discontinuities and jumps that
were not present in the tip model have become appar-
ent at the point of contact. In addition, better trends are
found regarding the interaction between the pipe and
the symmetric constraining wall.

After validating results through the bifurcation dia-
gram, relevant flow speeds are selected at which the
system is changing behavior or bifurcation are occur-
ring. The point in which the pipe first touches the wall
is neglected because the nonlinearity in the wall does
not result in an additional effect from the first graz-
ing, other than decreasing the rate of the limit cycle

Table 1 Selection of critical flow speeds when studying the
point of contact and their apparent region identification

Region identification Velocity (u)

Pitchfork 9.004

1st Period doubling 9.068

Chaotic double centering 9.125

Single center separation 9.313

Quasi periodic expansion 9.552

Chaotic breakdown 9.574

Chaotic double centering 9.582

Sticking 9.657

amplitude increase. Each of the remaining regions are
then selected with their apparent identification and are
presented in Table 1. It is immediately apparent that
there are several regions that would be overlooked this
system were studied at the tip instead of the point of
contact. Each region will be explained in greater detail
in later sections.

4 Progressions of the bifurcations at the point of
contact using phase portraits

Before making the direct comparisons between the
point of contact and the tip, progressions of several
regions’ phase portraits are provided to better under-
stand the system as the flow speed increases. Results
shown in this section are only for the point of contact.
While performing nonlinear analysis and characteriza-
tion at the point of contact using time histories, power
spectra, phase portraits, and Poincaré sections is pos-
sible, phase portraits have been presented to qualita-
tively characterize the systems, particularly in regions
in which grazing is present. For example, the third
region is selected after the system apparently loses the
effect of the pitchfork bifurcation at u = 9.125. The
fourth region is immediately after the chaotic region
where the system transitions back to the period halving
region at u = 9.313. The seventh region is selected at
u = 9.582 right at the system begins to fully make con-
tact with both walls. Finally, the last region is selected
to further characterize the grazing bifurcation.

Fig. 4 Phase portraits of the transition after the period doubling bifurcation becomes chaotic at the point of contact with a flow speed
of a u = 9.125 and b u = 9.126

123



Insights on the point of contact analysis and characterization 1267

Fig. 5 Phase portraits of the transition after going from two centers at a u = 9.312 to one at b u = 9.313

Fig. 6 Phase portraits of the wall grazing at a u = 9.582 and b u = 9.583

As shown in Fig. 4, there is a transition occurring
right after the period doubling bifurcation in which the
system becomes chaotic. Before this region, the system
oscillates about only one center, at which u = 9.125.
Then, when u = 9.126, the system alternates between
the two centers. This is due to the grazing bifurcation
that is observable on the interior of the phase portrait
in Fig. 4a. When the system is no longer impacting the
wall, it loses its identity and can then change center.
This does not always happen due to the chaotic nature
of the system, but before this critical grazing point takes
place, this change does not occur at all.

In Fig. 5, the bifurcation presented is the counterpart
to the double-center bifurcation in which it changes
behavior from two centers back to a single center. This
is likely due to a crossing over of the maximum value

of the low impact side with the minimum value of the
high impact side. This bounding of the opposite center
leads to a more predictable trajectory that is selected
from initial conditions. As the centers move further
away from each other, this further reinforces the period
halving bifurcations.

The next bifurcation of interest is after the system
begins to become excited enough to again graze against
the wall, shown in Fig. 6. When this occurs, the system
again loses its predictable trajectory and begins to fully
impact both walls in a broadband chaotic motion. This
broadband motion is just a chaotic oscillation between
the two established orbits. Since the depth of the impact
into the wall is variable, the presence of grazing again
does not indicate an immediate shift but rather an even-
tual one given enough time. The higher the flow veloc-
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Fig. 7 Phase portraits of the sticking phenomenon at a u = 9.656 and b u = 9.657

ity is increased, the deeper the impact and thus an
increased chance of switching centers will occur.

Eventually, the center transition to a point in which
they are deep into the wall. This will lead to the stick-
ing phenomena and change of behavior, as shown in
Fig. 7. Looking at the tip, the system would seem to
exhibit random behavior, but studying the point of con-
tact clearly shows the system is trying to converge.

5 Comparisons of the bifurcations at the tip and
point of contact

After qualitatively studying the phase portraits of sev-
eral key regions, a more detailed analysis is performed
to include time histories, power spectra, phase por-
traits, and Poincaré sections. It should be noted that
each region has been named from the initial identifi-
cations from the bifurcation diagrams. The results will
show the significant differences between system char-
acterization and analysis at the tip versus the point of
contact.

5.1 Pitchfork bifurcation

In the first selected region at the flow velocity at which
the pitchfork bifurcation occurs, there is little quali-
tative difference between the phase portraits and time
histories, as shown in the plotted curves in Fig. 8. This
is due to the motion being dominated by a single mode.
Since there is only one mode being expressed, the tip is
just a scaled representation of the impact point. Using

a trilinear wall, the drift does not occur until much later
after the initial contact. Note that the results shown in
Fig. 8 correspond the apparent pitchfork bifurcation
occurring at u = 9.004.

5.2 1st Period doubling

At period doubling critical flow speed, shown in Fig. 9,
there is the appearance of the period two superhar-
monic frequency. On the low impact side, the initial
valuewhere the bifurcation occurs stays themean value
though the entire period doubling process. It only starts
to changeonce the system loses the enforced single cen-
ter. This could mean that the system is staying periodic
but with very high periodicity and the grazing being the
catalyst for chaotic motion. Again, the power spectra,
phase portraits, and Poincaré maps all have very sim-
ilar appearances when scaled but this changes as the
period doubling occurs. This means that it is occurring
in a different mode shape resulting in the differences
between the tip and point of contact.

5.3 Chaotic double centering

For the double-center bifurcation critical flow speed,
it can be clearly seen that grazing occurs, as shown
in Fig. 10. Once there is a trajectory that has a zero
velocity and does not make contact with the wall, the
system loses the wall influenced center. It will then
take a trajectory similar to the unconstrained until it
reestablishes contact with a wall. This means that with
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Fig. 8 Nonlinear dynamic analysis showing region 1 pitchfork
bifurcation at u = 9.004 with f = 4.0687 for the a point of con-
tact time history and point of contact power spectrum, b point of

contact phase portrait, c point of contact Poincaré section, d tip
time history and tip power spectrum, e tip phase portrait, and f
tip Poincaré section

Fig. 9 Nonlinear dynamic analysis showing region 2 first period
doubling bifurcation at u = 9.068 with f = 4.2341 for the a
point of contact time history and point of contact power spec-

trum,b point of contact phase portrait, c point of contact Poincaré
section, d tip time history and tip power spectrum, e tip phase
portrait, and f tip Poincaré section
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Fig. 10 Nonlinear dynamic analysis showing region 3 chaotic
section with double center at u = 9.125 with f = 4.3948 for
the a point of contact time history and point of contact power

spectrum, b point of contact phase portrait, c point of contact
Poincaré section, d tip time history and tip power spectrum, e tip
phase portrait, and f tip Poincaré section

trajectories very close to the wall it is more likely to
keep the same center rather than switch. Another note
is the phase portraits are beginning to change relative
to each other as a result of the other modes gaining
amplitude. This is seen as inminor changes in the power
spectra and phase portraits, but it is most evident in
the Poincaré section. The difference can be described
from the larger amplitude of the doubled mode being
expressed in the tip more.

5.4 Single center separation

At this bifurcation, the system reestablishes a single
center. This is due to the maximum of the low impact
trajectory not reaching theminimum of the high impact
trajectory. Looking at the tip, an overlap in the phase
portraits that is not present at the point of contact is
seen, as depicted in Fig. 11.

5.5 Quasi periodic expansion

While the system is undergoing this bifurcation, it is
noted that at the trajectories clearly separating while
away from the wall and are compact inside the wall,

which can be seen in Fig. 12. This expansion is likely
from the addition of a new frequency from a secondary
Hopf bifurcation. Initially, it has no common factors
with the primary frequency leading to the quasiperi-
odic nature. As the amplitude of the second frequency
increases, it changes until it becomes factorable by the
frequency of the primary oscillation.When this occurs,
it changes from quasiperiodic to period-n, in this case
period-5.

5.6 Chaotic breakdown

In this section, the chaotic breakdown occurs right after
the second, secondary period doubling. This appears
to happen because on the rebound side two trajecto-
ries overlap along the zero velocity axis. The overlap-
ping of the trajectories, while at a zero velocity causes
a breakdown of periodicity of the system resulting in
jumps between known periodic orbits. The intersection
of trajectories occurs before but never along the zero
axis. At the tip, the corresponding trajectories from the
period doubling cross each other along a different axis
rather than the zero velocity axis. The onset of break-
down is therefore easier to predict while observing the
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Fig. 11 Nonlinear dynamic analysis showing region 4 single
center separation at u = 9.331 with f = 5.1641 for the a point
of contact time history and point of contact power spectrum,

b point of contact phase portrait, c point of contact Poincaré
section, d tip time history and tip power spectrum, e tip phase
portrait, and f tip Poincaré section

Fig. 12 Nonlinear dynamic analysis showing region 5 quasi
periodic expansion at u = 9.553 with f = 6.7070 for the a point
of contact time history and point of contact power spectrum, b

point of contact phase portrait, c point of contact Poincaré sec-
tion with, d tip time history and tip power spectrum, e tip phase
portrait, and f tip Poincaré section
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Fig. 13 Nonlinear dynamic analysis showing region 6 chaotic
breakdown at u = 9.574 with f = 6.6972 for the a point of con-
tact time history and point of contact power spectrum, b point of

contact phase portrait, c point of contact Poincaré section, d tip
time history and tip power spectrum, e tip phase portrait, and f
tip Poincaré section

Fig. 14 Nonlinear dynamic analysis showing region 7 chaotic
double centering at u = 9.582 with f = 6.7232 for the a point
of contact time history and point of contact power spectrum, b

point of contact phase portrait, c point of contact Poincaré sec-
tion with, d tip time history and tip power spectrum, e tip phase
portrait, and f tip Poincaré section with f = 6.7232
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Fig. 15 Nonlinear dynamic analysis showing region 8 sticking
at u = 9.657 with f = 8.0074 for a point of contact time history
and point of contact power spectrum, b point of contact phase

portrait, c point of contact Poincaré section, d tip time history
and tip power spectrum, e tip phase portrait, and f tip Poincaré
section

point of contact rather than the tip. This is demonstrated
in Fig. 13.

5.7 Chaotic double centering

Again, it can be observed that a double-center bifurca-
tion occurs as a result of grazing. For the time history,
it is extended further than shown in the earlier com-
parison because a grazing bifurcation does occur later
in the history, as shown in Fig. 14. This shows that
the initial grazing causes a trajectory change that then
results in a deeper impact on the grazed wall which
then leads to the change of center. As before, the graz-
ing only indicates that a change of center can occur
and as the flow velocity further increases the change
becomes more frequent. This bifurcation is very obvi-
ous when making observations at the point of contact,
whereas at the tip the centers are so close to each other
that it is less obvious as to the source of the phenomena.

5.8 Sticking

As the center moves inside the wall, the point of con-
tact converges toward its associated center within the

wall, as presented in Fig. 15. It will then bounce out
and make contact with the opposing wall. As soon as
the rebound out does not have enough velocity to make
contact with the opposite wall, then the system will
stick. This motion is essentially impossible to observe
at the tip as the sticking for this case has the tip actu-
ally near the resting location and continues to move for
higher values of u, as seen in Fig. 3a. Another benefit
toward looking at the point of contact is the fairly obvi-
ous location of the centers. In Fig. 15d, it can be seen
that the tip converges to a point and then drift upwards
in a non-oscillatory manner, while in the impact loca-
tion it does not change when the sticking occurs.

6 Conclusions

In this work, it was shown that the sources of bifurca-
tions in a cantilevered pipe conveying fluid with sym-
metric constraints are more accurately identified when
analyzed at the point of contact versus the tip. When
the tip is studied rather than the point of contact, key
behaviors at critical flow speeds that give a lot of infor-
mation about the stability of the system cannot be prop-
erly characterized. For this reason, the system should
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be studied at the point of contact. After validating the
model at the tip with previous works, key flow speeds
were selected using the bifurcation diagram at the tip.
Progressions of key bifurcations at the point of contact
were shown qualitatively with phase portraits, in which
grazing bifurcations were identified. Once studying
these regions qualitatively, further comparisons were
made between the tip and the point of contact using
modern methods of nonlinear dynamics such as time
history, power spectra, phase portraits, and Poincaré
maps. The results further emphasized the importance
of studying the point of contact for continuous beam
systems with motion-limiting constraints.
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