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Abstract Anadaptive dynamic surface control (DSC)
scheme is proposed for the multi-input multi-output
attitude control of near-space hypersonic vehicles
(NHV). The proposed control strategy can improve the
control performance of NHV despite uncertainties and
external disturbances. The proposed controller com-
bines dynamic surface control and radial basis function
neural network (RBFNN) and is designed to control the
longitudinal dynamics of NHV. The DSC technique is
used to handle the problem of “explosion of complex-
ity” inherent to the conventional backstepping method.
RBFNN is used to approximate the unknown nonlin-
ear function, and a robustness component is introduced
in the controller to cancel the influence of compound
disturbance and improve robustness and adaptation of
the system. Simulation results show that the proposed
strategy possesses good robustness and fast response.
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List of symbols

α The angle of attack (rad)
β The side slip angle and the roll angle (rad)
γ The flight path angle (rad)
CD Drag coefficient
CL Lift coefficient
CT Thrust coefficient
D Drag (lbf)
H The altitude (ft)
Iyy Moment of inertia (slug ft2)
L Lift (lbf)
Myy Pitching moment (lbf ft)
M Mass (slug)
μ The angle of bank (rad)
q The pitch rate (rad/s)
r̄ Radial distance from Earth’s center (ft)
T Thrust (lbf)
V The velocity (ft/s)
r The yaw rate (rad/s)
p The roll rate (rad/s)

1 Introduction

The near-space hypersonic vehicle (NHV) is a novel
aerospace aircraftwith an important role inmilitary and
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civil applications due to lower launch cost, maintain-
ability, speed of redeployment and reusability. Effec-
tive control of the NHV remains a critical challenge of
the system’s design: the near-space hypersonic vehicle
dynamics are severely nonlinear, time-varying, highly
uncertain, strongly coupled, and suffers external distur-
bances from changes in the fight environment, propul-
sion systemperturbation, atmospheric turbulence,wind
gust, friction disturbances and others. Robust design of
the NHV flight controller is a challenging problem [1–
7]. A near-space hypersonic vehicle model cannot be
accurately determined and the aerodynamic pressure,
aerodynamic heating, and thermoelastic dynamics are
difficult to precisely measure or estimate in such envi-
ronment. For example, in the second flight of HTV-2 in
2011, the investigation from the Engineering Review
Board (ERB) found that larger than anticipated por-
tions of the vehicle’s skin peeled from the aerostructure,
and the resulting gaps created strong, impulsive shock
waves around the vehicle as it travelled at nearly 13,000
miles per hour, causing the vehicle to roll abruptly. The
severity of the continued disturbances finally exceeded
the vehicle’s ability to recover [8].

Recently, the NHV technique is more attentions to
address this problem. Various control strategies have
been proposed. In [1], an adaptive neural tracking con-
trol schemewas developed for theNHVwith stochastic
disturbances. In [9], an NDI-based L1 adaptive control
scheme was designed for a generic hypersonic vehi-
cle model with input gain uncertainty and input dis-
turbances. In [10], second-order fast terminal sliding
mode control design based on LMI for a class of non-
linear uncertain systems and its application to chaotic
systems. A variable domain fuzzy control approach for
theNHVwas present in [11]. Xu et al. designed amulti-
input/multi-output adaptive sliding controller for the
longitudinal dynamics of a generic hypersonic vehi-
cle [12]. In [13], an adaptive dynamic surface control
(DSC) scheme was proposed for the NHV with input
saturation using a Nussbaum disturbance observer. In
[14], robust flight control schemes were introduced for
the hypersonic vehicle with uncertainties and exter-
nal disturbances using a disturbance observer and neu-
ral networks. Jiang et al. [15] addressed the problem
of integrated robust fault estimation and accommo-
dation in discrete-time T–S fuzzy systems. Fu et al.
[16] investigated the sliding mode control with uni-
directional auxiliary surfaces for the NHV. A second-
order dynamic terminal sliding mode control scheme

was proposed for the hypersonic vehicle in [17]. Du
et al. [18] presented the functional link network (FLN)
control method for the NHV with dynamic thrust and
parametric uncertainties. Wang et al. [19] proposed a
novel T–S fuzzy tracking control method for the reen-
try attitude tracking problem of a reusable launch vehi-
cle. Feedback linearization has been used for controller
design of the NHVwith uncertain parameters and input
constraints [20]. Saleh et al. [21,22] presented a novel
adaptive global nonlinear sliding surface for a class
of disturbed nonlinear dynamical systems. In [23], an
adaptive super-twisting global nonlinear sliding mode
tracker control was developed for n-link rigid robotic
manipulators. It is safe to say that robust flight control
of the NHV is a challenging problem.

In the control strategies, mentioned above backstep-
ping control has been an important tool for nonlinear
system analysis and control. Several applications of
the backstepping method have been presented over the
past few decades [24,27]. However, due to the repeated
differentiation of virtual controls, the backstepping
approach suffers from“strict-feedback” and “explosion
of complexity” issues [28,29]. Strict-feedback form
means that the ith dynamic equation of a system with
dimension n can only be dependent on the state vari-
ables x1 to xi+1, and the state variable xi+1 serves as
an input only in the i th dynamic equation [28]. Fur-
thermore, in backstepping control one has to compute
several time derivatives of virtual inputs to design the
controller. The number of time derivatives increases
with the dimensions of the plant to be controlled: this
is called “explosion of complexity”, which is caused
by the successive differentiation of certain nonlinear
functions.

In this paper, the dynamic surface control method is
used to handle the “explosion of complexity” by incor-
porating a first-order filter of the synthetic virtual con-
trol input in flight control, and the adaptive controller is
constructed by combining the dynamic surface control
technique with a robustness item. This addresses con-
troller design issues related to both parametric model
uncertainty and external disturbances.

The main contributions of the proposed method rel-
ative to the state of the art are:

(1) An adaptive robust backstepping controller design
is proposed for the near-space hypersonic vehicle,
in the presence of time-varying uncertainties and
external disturbances.
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Robust adaptive dynamic surface control 1111

(2) To eliminate differentiation of the virtual control
laws, an adaptive dynamic surface control scheme
is used for the control of the longitudinal dynamics.
This has also been applied to the tracking control
of the attitude angle of the NHV.

(3) A radial basis function neural network is used to
approximate the unknown compound disturbance,
while a robustness item is introduced into the virtual
controller to cancel the influence of the compound
disturbance and improve robustness and adaptation
of the overall system.

The paper is organized as follows: In Sect. 2, a
mathematical model of the longitudinal dynamics of
the NHV is derived, and the input/output feedback lin-
earization is stated. Section 3 describes the robust con-
troller design of the longitudinal dynamics of the NHV
and the design of the dynamic surface controller com-
bining the radial basis function neural network and
robustness item. The stability analysis is in Sect. 4.
Simulation results that illustrate the effectiveness of
the proposed approach are presented in Sect. 5 and the
conclusion is in Sect. 6.

2 Problem formulation

2.1 Mathematical model of the NHV

The model adopted in the paper was developed by
NASA Langley Research Center [11]. The longitudi-
nal dynamics of the NHV are given by the following
model:

V̇ = T cosα − D

M
− μ sin γ

r̄2
(1)

γ̇ = L + T sin α

MV
− (μ − V 2r̄) cos γ

V r̄2
(2)

Ḣ = −ż = V sin γ (3)

α̇ = q − γ̇ (4)

q̇ = Myy

Iyy
(5)

where T = q̂ SCT, D = q̂ SCD, L = q̂ SCL, Myy =
q̂ c̄[CM (α) + CM (δe) + CM (q)], V is the velocity, γ

the flight path angle, H the altitude, α the angle of
attack, and q the pitch rate.

2.2 Input/output linearization

Input/output feedback linearization is an important
method used in nonlinear control, subject to satisfying
the relative degree condition. In this method, nonlinear
MIMO systems can be transformed into linear form by
using Lie derivatives to define a nonlinear coordinate
transformation that renders the system linear:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ = f (x) +
m∑

i=1
gi (x)ui

y1 = h1 (x)
...

ym = hm (x)

(6)

where f (x), g (x), and h (x) are sufficiently smooth
functions. For the input/output linearization transfor-
mation, the Lie derivative can be expressed as

y(ri )
i = Lri

f (hi ) +
m∑

k=1

Lgk [Lri−1
f (hi )]uk (7)

where ri is the relative degree. If ri satisfies the follow-
ing condition:

r1 + r2 + · · · + rm ≤ n (8)

the nonlinear system (6) can only be partially lin-
earized. For NHVs, the linearized model is developed
by repeated differentiation of V and H as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V̇ = T cosα−D
M − μ sin γ

r̄2

V̈ = 1
M WT

1 ẋ

V (3) = 1
M

(
WT
1 ẍ + ẋ T Ω2 ẋ

)
(9)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ḣ = V sin γ

Ḧ = V̇ sin γ + V γ̇ cos γ

H (3) = V̈ sin γ + 2V̇ γ̇ cos γ − V γ̇ 2 sin γ + V γ̈ cos γ

H (4) = V (3) sin γ + V γ (3) cos γ + 3V̈ γ̇ cos γ

−3V̇ γ̇ 2 sin γ + 3V̇ γ̈ cos γ

−3V γ̇ γ̈ sin γ − V γ̇ 3 cos γ

(10)

where x = [
V γ α λ H

]T , γ̈ = πT
1 ẋ , γ (3) = πT

1 ẍ +
ẋ TΠ2 ẋ . Then
⎧
⎨

⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = f + Gu

(11)

where x1 = h (x) = [
V Ḣ

]T
, x2 = [

V̇ Ḧ
]T
,

x3 =
[

V (3)
0 H (4)

0

]T
, f =

[
V (3)
0 H (4)

0

]T
, G =

[
b11 b12 b13
b21 b22 b23

]

, u = [λcom δe δa]T The detailed

expressions for W1, Ω2 and Π2 are given in
“Appendix”.
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3 Design of the NHV dynamic surface control

Due to the complexity of the flight environment, such as
time-varying strong airflow, its effect on rudders, actu-
ators, and other fuselage components, etc., the uncer-
tainties and external disturbances must be considered
in controller design.

Consider the hypersonic vehicle dynamic longitudi-
nal model (12),
⎧
⎨

⎩

ẋ1 = x2 + Δ1 (x̄1, t)
ẋ2 = x3 + Δ2 (x̄2, t)
ẋ3 = f (x̄3) + G (x̄3) u + Δ3 (x̄3, t)

(12)

Δi (x̄i , t) are the compounded disturbances, which
includes the uncertainty and external disturbances.

In this paper, the control objective is to select a vec-
tor that forces the velocity V and altitude H to track

a desired command yr (t) = [
Vr (t) Ḣr (t)

]T
, t ≥ 0.

To design the adaptive DSC for the system given by
Eq. (12), the following assumptions and lemmas are
required:

Assumption 1 For the parameter perturbation and
external disturbance Δi (x̄i , t), there exist unknown
positive constants Di , such that ‖Δi (x̄i , t)‖ ≤ Di (i
= 1, 2, . . ., m).

Since RBFNN can provide a good approximation
function to an arbitrary accuracy, it is here proposed to
approximate the nonlinear unknown continuous func-
tion Δi (x̄i , t).

The RBFNN is defined as follows:

u = WTϕ (X, μ̄, σ ) (13)

Where X ∈ ΩX ∈ RN is the input to the neural net-
work, μ̄ is the center of the Gaussian basis function,
μ̄ = [

μ̄T
1 , · · · , μ̄T

l

]T
, σi is the width of the Gaussian

basis function σ = [σ1, · · · , σl ]T , and ϕ = [ϕi ]l×1 is
the Gaussian basis function:

ϕi (X, μ̄, σ ) = exp

[
−(X − μ̄i )

T (X − μ̄i )

σ 2
i

]

(14)

i = 1, · · · , l.
The neural network defined above can approximate

any continuous function with arbitrary precision on the
compact set ΩX , therefore:

Δ(X) = W ∗Tϕ∗ (X, μ̄∗, σ ∗)+ ε (X) (15)

where ε (X) denotes the approximation error of the
neural network and satisfies εH > 0.

Assumption 2 For the input X ∈ ΩX , there exists an
optimal constant weight W ∗, ‖ε (X)‖ ≤ εH , such that
‖W ∗‖F ≤ W̄ , where W̄ > 0.

In this section, the backstepping control is presented.
TheDSC design procedure includes three steps to yield
the control law u. The design procedure is as follows:

Step 1 Considering Eq. (12):

ẋ1 = x2 + Δ1 (x̄1, t)

We define

w1 = x1 − yr (16)

where yr is the reference command. The time
derivative of Eq. (16) is

ẇ1 = x2 + Δ1 (x̄1, t) − ẏr (17)

For Eq. (17), there exists an ideal control law
x∗
2

x∗
2 = −(−ẏr + k1w1 + W ∗T

1 ϕ1(x̄1) + ε1) (18)

where k1 > 0 is a design parameter, Ŵ1 is the
estimated value of W ∗

1 , and W̃1 = Ŵ1 − W ∗
1

is the weight estimation error. Since x∗
2 is not

available, the actual virtual controller x2d is

x2d = −(−ẏr + k1w1 + Ŵ T
1 ϕ1(x̄1) + v1) (19)

where v1 is a robust term and is defined as

v1 = w1ε1H

‖w1‖ + 1
(20)

The adaptive law of Ŵ1 is designed as

˙̃W 1 = ˙̂W 1 = Γ1ϕ1(x̄1)w
T
1 − η1Γ1Ŵ1 (21)

where η1 > 0 is the design parameter, and
Γ1 = Γ T

1 > 0 is the constant matrix to
be designed. In the conventional backstepping
method, the tracking error is defined as:

w2 = x2 − z2 (22)

which yields:

ẇ2 = x3 + Δ2 (x̄2, t) − ż2 (23)

The second subsystem of the virtual control
law is obtained similarly:

ẋ3d =∂x3d
∂xT1

ẋ1 + ∂x3d
∂xT2

ẋ2 + ∂x3d

∂Ŵ1

˙̂W 1 + ∂x3d

∂Ŵ2

˙̂W 2

+ ∂x3d
∂yTr

∂ ẏr + ∂x3d
∂ ẏTr

ÿr + ∂x3d
∂ ÿTr

yr
(3)

(24)
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Robust adaptive dynamic surface control 1113

This illustrates how the backstepping method
has brought the problemof “explosion of com-
plexity”. In [30,31], it is proposed that a first-
order filter is used to estimate the virtual con-
trol law, so that the conventional backstepping
method can be used without derivation of the
virtual control law. Therefore, before calculat-
ing the virtual control law of the second sub-
system, we define the new state variable z

τ2 ż2 + z2 = x2d , z2(0) = x2d(0) (25)

where τ2 is a time constant that can be used
to approximate the virtual control law with
the estimated value from the filter, effec-
tively avoiding the complex calculation prob-
lem from the backstepping method.

Step 2 From the second subsystem, we have

ẇ2 = ẋ2 − ż2 = x3 + Δ2(x̄2) − ż2

The ideal control law x∗
3 is

x∗
3 = −(−ż2 + k2w2 + w1 + W ∗T

2 ϕ2(x̄2) + ε2)

(26)

Because we cannot get x∗
3 , the virtual con-

troller x3d for x∗
3 is

x3d = −(−ż2 + k2w2 + w1 + Ŵ T
2 ϕ2(x̄2) + v2)

(27)

where Ŵ2 is the estimated value of W ∗
2 . The

adaptive law of Ŵ2 is designed as

˙̃W2 = ˙̂W2 = Γ2ϕ2(x̄2)w
T
2 − η2Γ2Ŵ2 (28)

where η2 > 0 is the design parameter, and
Γ2 = Γ T

2 > 0 is the design constant matrix.
v2 is a robustness term, defined as follows:

v2 = w2ε2H

‖w2‖ + 1
(29)

Toestimate x3d , the low-orderfilter is designed
as:

τ3 ż3 + z3 = x3d , z3(0) = x3d(0) (30)

where τ3 is a time constant.
Step 3 Consider the third subsystem

ẋ3 = f (x̄3) + G (x̄3) u + Δ3 (x̄3, t)

ẇ3 = ẋ3 − ż3 = G(x̄3)u + f (x̄3) + Δ3(x̄3, t) − ż3 (31)

To eliminate the influence of the uncertainty
Δ3(x̄3, t), one can use:

Δ3(x̄3, t) = W ∗T
3 j3(x̄3) + ε3 (32)

where ‖ε3‖ ≤ ε3H , ε3H > 0, and x̄3 is the
input to the RBF neural network. In this con-
text, it is clearly difficult to calculate the ideal
controller u∗:

u∗ = −G(x̄3)
−1( f (x̄3) − ż3 + k3w3

+w2 + W ∗T
3 ϕ3 + ε3) (33)

Instead, we propose the controller u

u = −G(x̄3)
−1( f (x̄3) − ż3 + k3w3

+w2 + Ŵ T
3 ϕ3 + v3) (34)

where Ŵ3 is the estimated value of W ∗
3 . The

adaptive law of Ŵ3 is designed as

˙̃W3 = ˙̂W 3 = Γ3ϕ3(x̄3)w
T
3 − η3Γ3Ŵ3 (35)

where η3 > 0 is the design parameter, and
Γ3 = Γ T

3 > 0 is the design constant matrix.
v3 is a robustness term defined as follows:

v3 = w3ε3H

‖w3‖ + 1
(36)

4 Stability analysis

To analyze the stability of the closed-loop system, the
robust adaptive control of the hypersonic vehicle based
on the dynamic surface can be shown as follows:

Theorem 1 For the closed-loop system Eq. (12), the
virtual control laws from Eqs. (19), (27), and the con-
trol law given by Eq. (34), the robust control laws are
designed as Eqs. (20), (29) and (36) and the adaptive
laws are designed as Eqs. (21), (28) and (35). With
appropriately designed parameters ki ,Γ i , ηi , the sys-
tem is uniformly bounded.

Proof Consider the Lyapunov function candidate

L (t) = 1

2

3∑

i=1

(
wi

Twi + tr
(
W̃ T

i Γi
−1W̃i

))

+1

2

2∑

i=1

yTi+1yi+1 (37)

Differentiating L (t), we obtain

L̇ (t) =
3∑

i=1

(
wT
i ẇi + tr

(
W̃ T

i Γ i
−1 ˙̂Wi

))

+
2∑

i=1

yTi+1 ẏi+1 (38)
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1114 N. He et al.

Using Eqs. (16), (22), and (25), it follows that

wT
1 ẇ1 = wT

1 w2 − k1w
T
1 w1 − wT

1 W̃
T
1 ϕ1(x̄1)

+wT
1 y2 + wT

1 ε1 − wT
1 v1

Due to

wT
1 ε1 − wT

1 v1 ≤ ∥
∥w1

∥
∥ ε1H − wT

1
w1ε1H

‖w1‖ + 1

= ‖w1‖ ε1H

‖w1‖ + 1
≤ ε1H

By Young’s inequality, we have

wT
1 ẇ1 ≤ (2 − k1)‖w1‖22 + 1

4
‖w2‖22 + 1

4
‖y2‖22

+ ε1H − wT
1 W̃

T
1 ϕ1(x̄1)

(39)

��
Similarly

wT
2 ẇ2 ≤ (2 − k2)‖w2‖22 + 1

4
‖w3‖22 + 1

4
‖y3‖22

+ ε2H − wT
2 W̃

T
2 ϕ2(x̄2)

(40)

and

wT
3 ẇ3 ≤ −k3‖w3‖22 + ε3H − wT

3 W̃
T
3 ϕ3(x̄3) (41)

The system’s boundary error is described as

yi+1 = zi+1 − x(i+1)d (42)

according to the first-order filter

τi+1 żi+1 + zi+1 = x(i+1)d , zi+1 (0) = x(i+1)d(0)

(43)

we have

żi+1 = − yi+1

τi+1
, i = 1, ..., n − 1 (44)

then

ẏ2 = ż2 − ẋ2d = ż2 + k1ẇ1 + ˙̂WT
1 ϕ1(x̄1)

+ Ŵ T
1

∂ϕ1(x̄1)

∂ x̄1
− ÿr + v̇1

= − y2
τ2

+ B2(w1, w2, y2, Ŵ1, yr , ẏr , ÿr )

(45)

where B2(w1, w2, y2, Ŵ1, yr , ẏr , ÿr ) is a continuous
function. Therefore:

yT
2
ẏ2 ≤ − y2T y2

τ2
+ B2‖y2‖2

≤ − y2T y2
τ2

+ ‖y2‖22 + 1

4
B2

2

(46)

Similarly,

yT
3
ẏ3 ≤ − y3T y3

τ3
+ B3‖y3‖2

≤ − y3T y3
τ3

+ ‖y3‖22 + 1

4
B3

2

(47)

From Eq. (38) we obtain:

L̇ (t) ≤ (2 − k1)‖w1‖22 + 1

4
‖w2‖22 + 1

4
‖y2‖22 + ε1H

− wT
1 W̃

T
1 ϕ1(x̄1) + (2 − k2)‖w2‖22

+ 1

4
‖w3‖22

+ 1

4
‖y3‖22 + ε2H − wT

2 W̃
T
2 ϕ2(x̄1) − k3||w3||22

+ ε3H − wT
3 W̃

T
3 ϕ3(x̄3)

+
3∑

i=1

tr
(
W̃ T

i Γ i
−1 ˙̂Wi

)

+
2∑

i=1

yTi+1 ẏi+1

=(2 − k1) ‖w1‖22 + (2
1

4
− k2) ‖w2‖22

+ (
1

4
− k3) ‖w3‖22

+
3∑

i=1

εi H +
3∑

i=1

tr(−ηi W̃
T
i Ŵi )

+
2∑

i=1

(−‖yi+1‖22
τi+1

+ 1
1

4
‖yi+1‖22 + 1

4
B2
i+1)

where k1 = 2 + α0, k2 = 21
4 + α0, k3 = 1

4 + α0,

1
τi+1

= 11
4 + α0, α0 = min

i=1,2,3

(
ηi

2λmax(Γ
−1
i )

)

, and α0 is

a positive real number.

L̇ (t) ≤
3∑

i=1

⎛

⎝−α0 ‖wi‖22 +
3∑

i=1

tr(−ηi W̃
T
i Ŵi )

⎞

⎠

+
3∑

i=1

εi H

+
2∑

i=1

(

−
∥
∥yi+1

∥
∥
2
2

τi+1
+ 1

1

4

∥
∥yi+1

∥
∥
2
2 + 1

4
B2
i+1

)

≤
3∑

i=1

(

−α0 ‖wi‖22 − 1

2
ηi tr(W̃

T
i W̃i )

)

+
3∑

i=1

(

εi H + 1

2
ηi ||W∗

i ||2F
)
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Robust adaptive dynamic surface control 1115

Fig. 1 Response curves of
the NHV under adaptive
DSC controller. a The
attack angle α curve. b The
sideslip angle β curve. c
The bank angle μ curve. d
The roll rate p curve. e The
pitch rate q curve. f The yaw
rate r curve
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Fig. 1 continued
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+
2∑

i=1

(

−
∥
∥yi+1

∥
∥
2
2

τi+1
+ 1

1

4

∥
∥yi+1

∥
∥
2
2 + 1

4
B2
i+1

)

≤ − 2α0L(t) +
3∑

i=1

(

εi H + 1

2
ηi ||W∗

i ||2F
)

+
2∑

i=1

(
1

4
B2
i+1

)

(48)

Let ρ =
3∑

i=1

(
ε1H + 1

2ηi ||W ∗
i ||2F

)+
2∑

i=1

( 1
4 B

2
i+1

)

Then

L̇ (t) ≤ − 2α0L(t) + ρ (49)

��
which completes the proof.
Note In Theorem 1, the tracking error converges to a

residual set that can be made arbitrarily small by prop-
erly choosing the design parameters. In the next step,
we will prove each subsystem is stable.

Select the Lyapunov function of the first subsystem:

V1 = w1
Tw1

2
+ 1

2
tr
[
W̃ T

1 Γ −1
1W̃1

]
(50)

Taking the time derivative of V1

V̇1 = w1
T ẇ1 + tr

[
W̃ T

1 Γ −1
1

˙̃W 1

]

= w1
T (x2 − ẏr + Δ1 (x̄1, t)) + tr

[
W̃ T

1 Γ −1
1

˙̃W 1

]

= w1
T (x2d + w2 + y2 − ẏr + Δ1 (x̄1, t))

+ tr
[
W̃ T

1 Γ −1
1

˙̃W 1

]

≤ −k1w1
Tw1 − 1

2
η1tr

[
W̃ T

1 W̃1

]

+ 1

2
η1
∥
∥W ∗∥∥2

F + ε1H + w1
Tw2 + wT

1 y2

Then

V̇1 ≤ −ρ1V1 + w1
Tw2 + w1

T y2 + C1

‖w1‖ ≤
√

2L(0) + 2C

ρ
, ‖y2‖ ≤

√

2L(0) + 2C

ρ

V̇1 ≤ −ρ1V1 + 2

(

2L(0) + 2C

ρ

)

+ C1

= −ρ1V1 + C ′
1 (51)

So it can be inferred that:

V̇ =
3∑

i=1

V̇i =
3∑

i=1

(−ρi Vi + C ′
i ) ≤ −ρV + C
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Fig. 2 Response curves of
the NHV with different
methods. a The attack angle
α curve. b The sideslip
angle β curve. c The bank
angle μ curve. d The roll
rate p curve. e The pitch rate
q curve. f The yaw rate r
curve
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Fig. 2 continued
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5 Simulation study

In this section, the proposed robust adaptive dynamic
surface control strategy is applied to the NHV atti-
tude dynamics model. Simulation results are presented
to illustrate the effectiveness of the proposed robust
control scheme. The initial conditions for the sim-
ulation of a near-space hypersonic vehicle are cho-
sen as: V0 = 2100 m/s, H0 = 27 km, ΔV = 30
m/s, ΔH = 60 m, and k1 = k2 = k3 = 3,
X = [

V
/
104, H

/
105, Vc

/
104, Hc

/
105, α, γ

]T
is

chosen as the input sample. The center of the Gaus-
sian basis function is b1 = 4, b2 = 3, b3 =
2, the width is c1 = [0.2; 0.3; 0.2; 0.3; 0.1; 0.1],
c2 = [0.2; 0.3; 0.2; 0.3; 0.1; 0.1], c3 = [2.1; 3; 2.1; 3;
0.1; 0.1], Γ1 = diag [10], Γ2 = diag [10], Γ3 =
diag [8]. The torque disturbance is 1 × 105 · [sin(5t),
sin(5t), sin(5t)]T N m.

The robust adaptive dynamic surface scheme was
implemented for the NHV including disturbance and
uncertainty characteristic typical of hypersonic condi-
tions. The corresponding simulation results are shown
in Figs. 1 and 2. Figure 1 shows the effect of both
disturbance and non-disturbance. Attitude control con-
verges rapidly to the desired flight attitude states with-
out disturbance. A minor stochastic fluctuation occurs

due to the effects of the disturbances. These results
illustrate that the proposed approach has better robust
performance. Figure 2 shows the response curves of
the NHV with different methods. It is clear from Fig.
2 that the proposed control law makes the system sta-
ble, and the response of all three attitude angles track
the desired objectives well. This figure also shows that
the proposed adaptive dynamic surface approaches to
the origin faster than the adaptive neural control scheme
offered in [1]. The simulation results illustrate the effec-
tiveness of the proposed method.

6 Conclusions

The backstepping control method based on a robust
adaptive dynamic surface has been presented to address
the convergence speed and performance of the NHV
altitude control system. As the order of the longitudi-
nal control system increases, the computational com-
plexity increases. A RBFNN is used to approximate
unknown nonlinear disturbances, and a robustness term
is introduced in the virtual controller to eliminate the
influence of composite interference on the system and
to improve robustness and adaptability. The uniformly
asymptotical convergence of all closed-loop signals
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has been guaranteed by Lyapunov analysis. Satisfac-
tory attitude tracking performance has been illustrated
in simulations. DSC holds promise for NHV control
applications and could also be used in other uncer-
tain strict-feedback nonlinear systems in the presence
of input saturation, output constraints, and unknown
external disturbances.
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Appendix

Thedetailed expressions of the vectorsW1 andmatrices
Π2, Ω2 are:

WT
1 = 1

M

⎡

⎢
⎢
⎢
⎢
⎣

TV cosα − DV

−Mg cos γ

−T sin α − Dα

Tλ cosα

Th cosα − Dh − Mgh sin γ

⎤

⎥
⎥
⎥
⎥
⎦

(A-1)

Ω2 = [
w21 w22 w23 w24 w25

]
(A-2)

where

w21 =

⎡

⎢
⎢
⎢
⎢
⎣

TVV cosα − DVV

0
−TV sin α − DVα

TVλ cosα

−DVh

⎤

⎥
⎥
⎥
⎥
⎦

(A-3)

w22 = [
0 Mg sin γ 0 0 − gh cos γ

]T
(A-4)

w23 =

⎡

⎢
⎢
⎢
⎢
⎣

−TV sin α − DαV

0
−T cosα − Dαα

−Tλ sin α

−Th sin α − Dαh

⎤

⎥
⎥
⎥
⎥
⎦

(A-5)

w24 = [
TλV cosα 0 − Tλ sin α Tλλ cosα 0

]T
(A-6)

w25 =

⎡

⎢
⎢
⎢
⎢
⎣

ThV cosα − DhV

−Mgh cos γ

−Th sin α − Dhα

Thλ cosα

Thh cosα − Dhh − Mghh sin γ

⎤

⎥
⎥
⎥
⎥
⎦

(A-7)

π1 = [
π11 π12 π13 π14 π15

]T
(A-8)

where

π11 = (LV + TV sin α) V − (L + T sin α)

MV 2 + g cos γ

V 2

(A-9)

π12 = g sin γ

V
(A-10)

π13 = Lα + T cosα

MV
(A-11)

π14 = Tλ sin α

MV
(A-12)

π15 = Lh + Th sin α

MV
− gh cos γ

V
(A-13)

Π2 = [
π21 π22 π23 π24 π25

]
(A-14)

where

π21

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(LVV +TVV sin α)
MV − 2(LV +TV sin α)

MV 2 + 2(L+T sin α)

MV 3 − 2g cos γ

V 3

− g sin γ

V 2

LVα+TV cosα
MV − Lα+T cosα

MV 2

TVλ sin α
MV − Tλ sin α

MV 2

LVh+TVh sin α
MV − Lh+Th sin α

MV 2 + gh cos γ

V 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A-15)

π22 =
[

− g sin γ

V 2

g cos γ

V
0 0

gh sin γ

V

]T

(A-16)

π23 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

LαV +TV cosα
MV − Lα+T cosα

MV 2

0
Lαα−T sin α

MV
Tλ cosα
MV

Lαh+Th cosα
MV

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A-17)

π24 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

TλV sin α
MV − Tλ sin α

MV 2

0
Tλ cosα
MV

Tλλ sin α
MV

Tλh sin α
MV

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A-18)

π25 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

LhV +ThV sin α
MV − Lh+Th sin α

MV 2 + gh cos γ

V 2

gh sin γ
V

Lhα+Thα sin α+T cosα
MV

Thλ sin α
MV

Lhh+Thh sin α
MV − ghh cos γ

V

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A-19)
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