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Abstract Joint clearance and flexible links are two
important factors that affect the dynamic behaviors of
planar mechanical system. Traditional dynamics stud-
ies of planar mechanism rarely take into account both
influence of revolute clearance andflexible links,which
results in lower accuracy. And many dynamics studies
mainly focus on simple mechanism with clearance, the
study of complex mechanism with clearance is a few.
In order to study dynamic behaviors of two-degree-
of-freedom (DOF) complex planar mechanical system
more precisely, the dynamic analyses of the mechani-
cal system with joint clearance and flexibility of links
are studied in this work. Nonlinear dynamic model of
the 2-DOF nine-bar mechanical system with revolute
clearance and flexible links is built by Lagrange and
finite element method (FEM). Normal and tangential
force of the clearance joint is built by the Lankarani–
Nikravesh and modified Coulomb’s friction models.
The influences of clearance value and driving velocity
of the crank on the dynamic behaviors are researched,
including motion responses of slider, contact force,
driving torques of cranks, penetration depth, shaft cen-
ter trajectory, Phase diagram, Lyapunov exponents and
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Poincarémap of clearance joint and slider are both ana-
lyzed, respectively. Bifurcation diagrams under differ-
ent clearance values and different driving velocities of
cranks are also investigated.The results show that clear-
ance joint and flexibility of links have a certain impact
on dynamic behavior of mechanism, and flexible links
can partly decrease dynamic response of the mechani-
cal system with clearance relative to rigid mechanical
system with clearance.

Keywords Planar mechanical system · Dynamic
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1 Introduction

The planar mechanical system will be more faster and
lighter in the future and need for higher operational pre-
cision [1,2]. Deformation of the members increased
under inertia load, which causes the error between
real motion and ideal motion. Elasticity of component
has a relatively high influence on precision and stabil-
ity of the mechanical system. The traditional method
of considering the component as a rigid body cannot
meet the requirements of modern machinery. Thus,
elastic deformation of the links cannot be avoided in
the process of movement, and the flexibility of the
links should be considered in the dynamic study. As
we all know, due to some errors appearing in man-
ufacturing and assembling, existence of clearance is
unavoidable, it has a negative influence on dynamic
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performances of mechanical system, and the clear-
ances of the joints are main reason of instability and
vibration. Impact at the clearance joint would cause
vibration, fatigue, and noise, the contact force reduces
lifetime, and performance and operational accuracy of
mechanism generally results in a different response
from desired response. Hence, in order to research
the dynamic behavior of the planar mechanical system
more precisely, the dynamic analysis of the mechani-
cal system with clearance and flexible links should be
investigated.

In the recent decades, many studies have been devel-
oped to research the influences of clearance joint on
dynamic behaviors of rigid mechanical system [3–6].
However, many previous works mainly focused on the
dynamics of a simple mechanism. Erkaya et al. [7]
researched influences of the clearances on the noise
and the vibration characteristics of the mechanical sys-
tem. Clearance of revolute joint has been regarded
as the massless virtual link, the continuous contact
mode between bearing and shaft in joint connection
is adopted. Muvengei et al. [8] investigated dynamic
characteristics of planar rigid crank-slider mechanism
owing to two revolute joints clearance. The influences
on dynamic behavior of mechanism and nine simulta-
neous motion modes of two clearance joints are also
researched. Megahed et al. [9] introduced the influence
of revolute clearance joint on the dynamic character-
istics of the slider-crank mechanism. The slider-crank
mechanism with one and two clearance are both con-
sidered and studied. Bai et al. [10] studied the dynamic
performances of a planar mechanism contain revolute
clearance joints by adopting a computational method.
Contact force model is built by adopting a novel-
type nonlinear contact force model, and the modified
Coulomb friction model is utilized to think about fric-
tion influence. Tan et al. [11] built the equations of
motion of a slider-crank mechanism with single clear-
ance joint and two revolute clearance joints by using the
Newton–Euler method with improved Coulomb fric-
tion force model and modified contact force model.
Baumgarte stabilization method has been utilized to
heighten stability of numerical. Wang et al. [12] pro-
posed a non-penetration method of frictional contact
to model revolute clearances of a rigid slider-crank.
Marques et al. [13] proposed the new method to build
spatial joints with axial and radial clearance of the rigid
slider-crank mechanism. Newton–Euler method is uti-
lized to model dynamic equation. Varedi et al. [14]

put forward an optimization approach based on PSO to
decrease the undesirable influences of revolute clear-
ance joints for a slider–crank mechanism. Yaqubi et
al. [15] analyzed nonlinear dynamic behaviors of the
rigidmechanism by Poincarémaps and bifurcation dia-
grams and developed a control scheme providing con-
tinuous contact in revolute clearance joints in order to
obtain a more stable dynamic performance. Rahma-
nian et al. [16] investigated nonlinear dynamic perfor-
mance of the rigid slider-crank mechanism containing
the clearance. Dynamic equations are derived in con-
sideration of clearance joint, which exists between con-
necting rod and end slider. Bifurcation diagrams are
researched with changing clearance values under vari-
ous driving speed. Flores [17] introduced and analyzed
the general method of dynamic modeling and analysis
of multi-rigid body system containing multiple revo-
lute clearance joints. The nonlinear characteristics of
crank-slider mechanism are studied by phase diagrams
and Poincaré maps.

So far, most previous studies rarely considered the
effect of joint clearance and flexible links together on
dynamic behaviors of mechanical system, and mainly
concentrate upon the dynamics of the simple mecha-
nism. Erkaya et al. [18] researched conventional and
compliant mechanism with clearance joints and com-
pare the impact of revolute clearance joint. Pseudo-
rigidbody model of the slider-crank has been built. For
various clearance sizes and operating velocity, dynamic
behaviors of the slider-crank are analyzed by using
ADAMS.Chen et al. [19] discussed impact of the clear-
ance value, driving velocity, link flexibility on dynamic
behavior of the slider-crank mechanism by experiment
and ADAMS. Erkaya et al. [20] discussed dynamics
of the spatial partly compliant slider–crank mecha-
nism with revolute joint clearance. Results indicated
that clearances bring about chaotic phenomenon on
dynamic exports of the spatial slider–crankmechanism.
Marques et al. [21] conducted a research on dynamic
behavior of the spatial four bars mechanism contain-
ing spherical clearances. The mechanism with spheri-
cal clearance has been taken as the object to research
the impacts of different clearance values, different fric-
tion force models and different friction coefficients.
Abdallah et al. [22] discussed dynamic performances
of slider-crank mechanism contain flexible links and a
multiple revolute joint clearances. The model of the
mechanism of the simulation test is carried out by
the ADAMS software. Erkaya et al. [23] researched
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dynamic behaviors of the four bars mechanism con-
taining revolute clearance and flexible links, clearance
exists in joint has been taken as the virtualmassless rod.
Yang et al. [24] proposed a novel method of calculation
for the dynamic performance study of mechanism with
revolute clearances joints by using vector form intrinsic
FEM. Li et al. [25] carried out a numerically research
on dynamic behavior of mechanism contain multiple
revolute clearance joints and studied the influence of
harmonic drive and flexible components on dynamic
performance of the planar slider–crank with various
locations of one joint clearance and two joint clear-
ances. Erkaya et al. [26] conducted both experimen-
tal and numerical analysis to study the influences of
revolute clearance joint for rigid mechanism and flex-
ible mechanism. Yaqubi et al. [27] analyzed nonlinear
dynamic behaviors and control of a slider-crank mech-
anism considering the influences of clearance joint and
flexible link. In order to keep continuous contact, con-
trol scheme has been presented. Themotion state of the
connecting rod is also studied by the Poincare map and
the bifurcation diagram. Wang et al. [28] discussed the
nonlinear dynamics characteristics of a planar mecha-
nism consider flexibility of links and revolute clearance
joint in the research. The bifurcation diagrams, phase
diagrams, and Poincaré map of the slider-crank mech-
anism are also studied systematically.

On basis of the previous studies, the effects of
clearance joint and flexible body on dynamic behavior
are independently investigated rather than being con-
sidered simultaneously in the same mechanism. The
effects of clearance joint and flexible links on nonlin-
ear dynamic behavior are rarely investigated. The study
objects are mainly focus on simple mechanisms, and a
few studies on complexmechanism [29]. Therefore, the
aim of this paper is to study the dynamic behaviors of 2-

DOF complex planar mechanical system with revolute
clearance joint and flexible links, thus analyzing and
forecasting the dynamic behavior of multi-link mech-
anism and multi- degree-of-freedom mechanism. The
dynamic behavior of ideal rigid mechanism, the rigid
mechanismwith clearance, and the flexible mechanism
with clearance are also compared with each other in
this paper. The arrangements of the article are as fol-
lows. In Sect. 2, model of joint clearance and contact
force of joint clearance are both built. In Sect. 3, rigid
body dynamics model of the 2-DOF nine-bar mecha-
nism considering clearance is set up. In Sect. 4, nonlin-
ear dynamic model of the 2-DOF nine-bar mechanical
system with revolute clearance and flexible linkages is
built by Lagrange and FEM. In Sect. 5, the influences
of clearance value and driving velocity on dynamic
behaviors have been researched. Dynamic responses
are researched thoroughly, and nonlinear characteris-
tics of the mechanism with revolute clearance and flex-
ible links are studied by phase diagram, Poincaré map,
Lyapunov exponent, and bifurcation diagram.

2 Modeling of joint clearance and contact force

A planar revolute clearance joint is shown in Fig. 1a.
The radii of the bearing and the shaft are R1 and R2.
R1 − R2 is used as the value of clearance r . The shaft
and bearing could move relative to each other uncon-
strained owing to the revolute clearance. These might
lead to randomness of mechanism. Therefore, there are
three different modes of the shaft, which are as follows:
the free flight, the impact, and the continuous contact
mode, as shown in Fig. 1b.

It is remarkable that the contact force consist of the
normal contact force Fn and the tangential contact force
Ft between the shaft and bearing, as shown in Fig. 2a.

Fig. 1 a Revolute joint
with clearance, bModes of
the journal motion inside
the bearing
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Fig. 2 a Joints contact
force, b Revolute joint with
clearance

F = Fn + Ft ,

⎧
⎨

⎩

δ < 0, F = 0 free flight mode
δ = 0, F �= 0 continuous contact mode
δ > 0, F �= 0 impact mode

(1)

Here δ is the penetration depth between the shaft and
the bearing as depicted in Fig. 2b and is given as

δ = e − r (2)

where e represents value of clearance vector between
shaft center and bearing center, e = √

x2 + y2. x and
y represent displacement of shaft inside bearing in X
direction and Y direction, as shown in Fig. 2b.

The L-N normal contact force as a nonlinear vis-
coelasticmodel, it iswell conformity to and experimen-
tal outcome, and it is suitable for the general mechani-
cal contact collision question with high recovery coef-
ficient, especially for the relatively small energy dissi-
pation in the process of collision. Therefore, it is more
efficient while the recovery coefficient is close to unity.
This model not only involves the energy loss in colli-
sion process, but also considers the material properties,
local elastic deformation, and velocity of collision, etc.
This model is widely applied to the dynamic studies
of the mechanical multiple body system with clear-
ance thanks to simplicity of its contact force model,
the resulting ease of calculation, applicability to the
impact in mechanical multi-body system, fast conver-
gence and straightforward for numerical integration
algorithm [30,31].

Fn = K δn + Dδ̇ (3)

where K represents generalized stiffness parameter,
relying on physical properties of contact surfaces and

its geometry, D represents hysteresis damping coeffi-
cient, and n is a constant, relying on contact surface’s
material characteristics.

K = 4

3(σ1 + σ2)

√
R1R2

R1 + R2
(4)

where σ1 and σ2 are σ1 = 1−ν21
E1

, σ2 = 1−ν22
E2

, ν1 and ν2
are Poisson’s ratio of bearing and shaft, respectively.
E1 and E2 represent elastic modulus of bearing and
shaft. The radius is negative for the concave surfaces
and positive for the convex surface.

Hysteresis damping coefficient is expressed as

D = 3(1 − c2e )

4
δn (5)

Fn = K δn
[

1 + 3(1 − c2e )

4

δ̇

δ̇∗

]

(6)

where δ̇ is penetration velocity, δ̇ = x ẋ+y ẏ√
x2+y2

. δ̇∗ rep-

resents the initial impact velocity, if δ (tn) δ (tn+1) ≤
0,δ (tn) < 0 and δ (tn+1) > 0, the penetration velocity
at tn+1 moment is δ̇∗.

It is also known that, when tangential velocity is
near to zero, the numerical definition of the original
Coulomb’s frictionmethod is very difficult, then amod-
ifiedCoulomb’s frictionmethodproposedbyAmbrosio
can be written as follows [32]

Ft = −c f cd FN
vt

|vt | (7)

where c f is friction coefficient, cd represents the
dynamic correction coefficient, and
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Fig. 3 Schematic diagram of mechanism with single clearance joint

cd =
⎧
⎨

⎩

0, |vt | < v0
|vt |−v0
v1−v0

, v0 ≤ |vt | ≤ v1

1, |vt | > v1

(8)

where v0 and v1 are the given bounds for the tangential
velocity.

The contact force of the revolute pair with clearance
can be expressed as

f = Fnn + Ft t = [ fx fy]T (9)

where fxand fyrepresent component of contact force
of the shaft to the bearing in the X and Y direction,
respectively.

3 Rigid body dynamic model of 2-DOF nine-bar
mechanism with clearance

A2-DOFnine-barmechanism is composed of nine sec-
tions which are the frame, crank 1, link 2, link 3, crank
4, rocker 6, triangular panel 7, link 8 and slider 9. Link
5 is a part of the frame. The DOF of mechanism is two,
the crank 1 and the crank 4 are driven by two motors,
respectively. The schematic diagram of 2-DOF nine-
bar mechanism is shown in Fig. 3a.

The crank 1 and link 2 are connected through the
revolute clearance joint. The schematic diagram of 2-
DOF nine-bar mechanism with clearance is shown in

Fig. 3b. Local enlargement of clearance joint is also
shown in Fig. 3b. Motion pairs of the mechanism are
made up of revolute pairs and translational pair, and
the number of revolute pair of themechanism is largest.
Therefore, it ismore representative to study the revolute
clearance of the mechanism.

It’s remarkable that a revolute clearance joint intro-
duces two additional DOFs which contain horizontal
and vertical displacements of center of shaft correspond
to bearing center. Generalized coordinates of the rigid
mechanism are selected as follows: x, y, θ1, θ4.

According to the Lagrange equation, the dynamic
model of nine-bar mechanism with revolute clearance
is given by

d

dt

(
∂T

∂ q̇ j

)

− ∂T

∂q j
+ ∂U

∂q j
= Q j ( j = x, y, 1, 4)

(10)

where T,U, Q j represent kinetic energy, potential
energy and general force, respectively.

q j is generalized coordinate.

3.1 Kinetic energy of mechanism with revolute
clearance

The expression of the kinetic energy of the 2-DOFnine-
bar mechanism can be expressed as
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T = 1

2

9∑

i=1
i �=1,4,5,6

miv
2
si + 1

2

9∑

i=1
i �=5,9

Ji θ̇
2
i (11)

From Eq. (11), the kinetic energy of the 2-DOF nine-
bar mechanism is given by

T = 1

2
J11θ̇

2
1 + 1

2
J22θ̇

2
2 + 1

2
J33θ̇

2
3 + 1

2
J44θ̇

2
4 + 1

2
J55θ̇

2
6

+ 1

2
J66θ̇

2
7 + 1

2
J77θ̇

2
8 + 1

2
m9 Ṡ

2
9

+ 1

2
m2(ẋ

2 + ẏ2) + m2L1θ̇1(ẏ cos θ1 − ẋ sin θ1)

+m2L1Ls2 cos(θ1 − θ2)θ̇1θ̇2

+m2Ls2θ̇2(ẏ cos θ2 − ẋ sin θ2)

+m3L4Ls3 cos(θ3 − θ4)θ̇3θ̇4

+m7L6Ls71 cos(θ6 − θ7 − β)θ̇6θ̇7

+m8L6L72 cos(θ6 − θ7 − β12)θ̇6θ̇7

+m8L6Ls8 cos(θ6 − θ8)θ̇6θ̇8

+m8L72Ls8 cos(θ7 + β12 − θ8)θ̇7θ̇8 (12)

where J11 = J1 + m2L2
1, J22 = J2 + m2L2

s2, J33 =
J3 + m3L2

s3, J44 = J4 + m3L2
4, J55 = J6 + m7L2

6 +
m8L2

6, J66 = J7 + m7L2
s71 + m8L2

72, J77 = J8 +
m8L2

s8, Ji is inertia moment of member i , mi is the

mass of member i , Lsi represents distance from center
ofmass of linkage to front hinge, θi and S9 represent the
rotation angle of each member and the displacement
of slider 9, when the mechanism contains clearance,
respectively. θ̇i and Ṡ9 represent angular speed of each
component and velocity of slider 9, while mechanism
contain clearance.

3.2 Potential energy of mechanism with revolute
clearance

The potential energy of the 2-DOFnine-barmechanism
is written as

U =
9∑

i=1
i �=5

migxsi (13)

where xsi is centroid coordinate in X direction of com-
ponent i .

3.3 Generalized force of mechanism with revolute
clearance

The generalized force of 2-DOF nine-bar mechanism
with clearance can be expressed as

Q j =
9∑

i=1
i �=5

(

Fi
∂ri
∂q j

+ Mi
∂θi

∂q j

)

(14)

where Fi is equivalent force and Mi is external torque
acting on body i , respectively. ri is the position vector
of component i .

The general force can be expressed as

⎧
⎪⎪⎨

⎪⎪⎩

Qx = Ft R2a1 − fx
Qy = Ft R2a2 − fy
Q1 = M1 + Ft R2 − fx L1 sin θ1 + fy L1 cos θ1
Q4 = M4 + Ft R2

(15)

where Ft represents tangential contact force of bearing
acting on the shaft of revolute clearance joint, respec-
tively. fx and fy represent contact force of shaft acting
on the bearing of revolute clearance joint in theX andY
direction, respectively.M1,M4 represent driving torque
of crank 1 and crank 4, respectively.

Equations (12), (13) and (15) are brought into the
Eq. (10), and the second-order nonlinear differen-
tial equations (Eq. 16) with variable coefficients are
derived. Through MATLAB programming, Runge–
Kutta method of the MATLAB is adopted to calculate
differential equations

{
ẍ = f1(t, x, y, ẋ, ẏ)
ÿ = f2(t, x, y, ẋ, ẏ)

(16)

4 Elastic dynamic model with clearance by
Lagrange and FEM

The position constraint of the hinge joint is relieved
due to the existence of the clearance, so that the elastic
members linked by the clearance pair is independent.
The constraint action at the hinge is achieved by con-
straining force that is equivalent to external force act-
ing on component and could be obtained from Sect. 2.
Taking the 2-DOF nine-bar mechanism as an object,
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Fig. 4 Beam unit and unit generalized coordinate

elastic dynamic model is built by adopting Lagrange
and FEM.

4.1 Model of beam element

Structural diagram of beam unit is shown in Fig. 4.
x̄oȳ is rotating coordinate. Lateral displacement and
longitudinal displacement of beam unit at any point can
be expressed by W (xi , t) and V (xi , t), respectively.

{
W (xi , t) = NT

i Aui
V (xi , t) = NT

i Bui
(17)

where ui is generalized coordinate vector for unit, and

ui = [
u1 u2 u3 u4 u5 u6

]T

{
Ni A = [

0 μ2 μ3 0 μ5 μ6
]T

Ni B = [
μ1 0 0 μ4 0 0

]T (18)

where μ1 = 1 − ē, μ2 = 1 − 3ē2 + 2ē3, μ3 =
li

(
ē − 2ē2 + ē3

)
, μ4 = ē, μ5 = 3ē2 − 2ē3

μ6 = li
(
ē3 − ē2

)
, ē is relative coordinates of beam

element, ē = xi/li . li is the unit length.

4.2 Dynamic model of beam element

4.2.1 Kinetic energy of beam element

Assuming that each element’s mass is concentrated
on the axis, kinetic energy of beam element can be
expressed as

Ek = 1

2

∫ li

0
ρ Ā

[(
dWa (xi , t)

dt

)2

+
(
dVa (xi , t)

dt

)2
]

dx

(19)

where ρ represents density of beam unit. Ā repre-
sents cross-sectional area of beam unit. Wa (xi , t) and

Va (xi , t), respectively, represent absolute lateral dis-
placement and absolute longitudinal displacement of
beam element at any point.

{
Wa (xi , t) = Wr (xi , t) + W (xi , t)
Va (xi , t) = Vr (xi , t) + V (xi , t)

(20)

where Wr (xi , t) and Vr (xi , t) are rigid motion dis-
placement in x̄ and ȳ direction.

Simplifying Eq. (19), then,

Ek = 1

2
u̇Tiam̄i u̇ia (21)

where m̄i represents mass matrix of uint, u̇ia is abso-
lute velocity, u̇ia = u̇ir + u̇i ,u̇ir is velocity of rigid ele-
ment, it can be obtained through the dynamic model of
the rigid body with clearance, u̇i represents first-order
derivative of unit generalized coordinate ui .

m̄i =
∫ li

0

[
ρ Ā

(
NT
i ANi A + NT

i B Ni B

)]
dx (22)

4.2.2 Deformation energy of beam element

When the beam element happen elastic deformation,
the element is subjected to the axial force and the
bending moment. The total deformation energy of unit
includes bending, the compression and the tension
deformation energy.

Ep = 1

2

∫ li

0
E I

(
∂2W (xi , t)

∂x2

)2

dx

+1

2

∫ li

0
E Ā

(
∂V (xi , t)

∂x

)2

dx (23)

where E is elasticity modulus. I represents inertia
moment of cross section.

Simplifying Eq. (23), we can get

Ep = 1

2
u̇Ti k̄i u̇i (24)

where k̄i is stiffness matrix of unit.

k̄i = E Ā
∫ li

0
Ṅ T
i A Ṅi Adx + E I

∫ li

0
N̈ T
i B N̈i Bdx (25)
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Fig. 5 Triangular panel

4.2.3 Dynamic equations of beam element

Equations (21) and (24) are put into the Lagrange equa-

tion d
dt

(
∂Ek
∂ u̇i

)
− ∂Ek

∂ui
+ ∂Ep

∂ui
= f̄e, the dynamic model

of beam element in rotating coordinate system could
be expressed as

m̄i üi + k̄i ui = fa + pa + qa (26)

where fa is the generalized external force array of every
unit, containing the contact force due to the revolute
clearance joint. pa represents force array of contact
element caused by connecting beam element. qa rep-
resents rigid inertial force array, and qa = − m̄üir ,üir
is acceleration of rigid element contain joint clearance,
üi is second-order derivative of unit generalized coor-
dinate ui .

In order to assemble unit’s dynamic equations into
the system’s dynamic equation, a new generalized
coordinate array of the unit Uie has been introduced,

Uie = [
U1 U2 · · · U6

]T
. The relationship between

Uie and generalized coordinates ui of unit can be
expressed

ui = RiUie (27)

where Ri is the coordinate transformation matrix.
Dynamic equation of beamelement in absolute coor-

dinate system is as follows

m̃i Üie + c̃i U̇ie + k̃iUie = fe (28)

where m̃i = RT
i m̄i Ri , c̃i = 2RT

i m̄i Ṙi , k̃i = RT
i m̄i

R̈i + RT
i k̄i Ri , fe = RT

i fa + RT
i pa + RT

i qa .

4.3 Dynamic equations of system

Crank is treated as the cantilever beam, and slider is
used as a rigid member. As shown in Fig. 5, triangu-

lar panel 7 could be divided into three parts, that are
L71,L72 and L73. Crank 1, link 2, link 3, crank 4, L71,
L72, L73, rocker 6 and link 8 are, respectively, divided
into n1,n2,n3,n4,n5,n6,n7,n8 and n9 units. Their cor-
responding generalized coordinates obtained by con-
straint condition are U 1,U 2,U 3,U 4,U 5,U 6,U 7,

U 8and U 9, respectively.

U1 = [
U1(2)1U1(2)2U1(2)3U1(2)4U1(2)5U1(2)6 · · ·
U1(n1)1U1(n1)2U1(n1)3U1(n1)4U1(n1)5U1(n1)6

]T

U2 = [
U1(n1)4U1(n1)5U2(1)3U2(1)4U2(1)5U2(1)6 · · ·
U2(n2)1U2(n2)2U2(n2)3U2(n2)4U2(n2)5U2(n2)6

]T

U4 = [
U4(2)1U4(2)2U4(2)3U4(2)4U4(2)5U4(2)6 · · ·
U4(n4)1U4(n4)2U4(n4)3U4(n1)4U4(n4)5U4(n4)6

]T

U3 = [
U3(n4)4U3(n4)5U3(1)3U3(1)4U3(1)5U3(1)6 · · ·
U3(n3)1U3(n3)2U3(n3)3U2(n2)4U2(n2)5U3(n3)6

]T

U5 = [
U2(n2)4U2(n2)5U73(1)3U73(1)4U73(1)5U73(1)6 · · ·
U73(n5)1U73(n5)2U73(n5)3U73(n5)4U73(n5)5U73(n5)6

]T

U6 = [
U2(n2)4U2(n2)5U73(1)3U71(1)4U71(1)5U71(1)6 · · ·
U71(n6)1U71(n6)2U71(n6)3U71(n6)4U71(n6)5U71(n6)6

]T

U7 = [
U73(n5)4U73(n5)5U73(m5)6U72(1)4U72(1)5U72(1)6 · · ·
U72(n7)1U72(n7)2U72(n7)3U71(n6)4U71(n6)5U71(n6)6

]T

U8 = [
U71(n6)4U71(n6)5U6(1)3U6(1)4U6(1)5U6(1)6 · · ·
U6(n8)1U6(n8)2U6(n8)3U6(n8)6

]T

U9 = [
U73(n5)4U73(n5)5U8(1)3U8(1)4U8(1)5U8(1)6 · · ·
U8(n9)1U8(n9)2U8(n9)3U8(n9)4U8(n9)6

]T

The system generalized coordinate arrayU consists of
U 1 · · ·U 9, the relationship between Uie and general-
ized coordinates U of system is written as

Uie = BiU (29)

where Bi is coordinate harmony matrix.
The dynamic equation of the system is as follows

MÜ + C̄U̇ + KU = Fe (30)

where M = ∑Ne
i=1 B

T
i m̃i Bi , K = ∑Ne

i=1 B
T
i k̃i Bi , F =

∑Ne
i=1 B

T
i fe, C = ∑Ne

i=1 B
T
i c̃i Bi + ζ1M + ζ2K , ζ1 and

ζ2 are damping scale coefficients,Ne is total quantity
of units.
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Table 1 Dimensions and mass properties for the 2-DOF nine-bar mechanism

Component Crank 1 Link 2 Link 3 Link 4 Link 5 Link6 Triangular panel 7 Link 8 Slider 9

Length (m) L1 L2 L3 L4 L5 L6 L71 L72 L73 L8 —

0.045 0.326 0.497 0.095 0.430 0.230 0.045 0.326 0.497 0.095

Ls1 Ls2 Ls3 Ls4 — Ls6 Ls7 Ls8

0.023 0.163 0.249 0.048 0.115 0.147 0.168

Mass (kg) 0.148 0.805 0.603 0.265 — 0.581 4.334 0.827 0.801

Table 2 Moment of inertia for the 2-DOF nine-bar mechanism

Component Crank 1 Link 2 Link 3 Link 4 Link6 Triangular
panel 7

Link 8

Moment of inertia
(kg· m2)

2.382 × 10−4 8.001 × 10−3 1.337 × 10−2 1.210 × 10−3 1.212 × 10−2 3.802 × 10−3 8.663 × 10−3

Table 3 Clearance joints’ parameters

Designed parameter R1(mm) Ce E1, E2(Gpa) υ1, υ2 v1(m/s) v0(m/s) C f

Parameter value 15 0.9 200 0.3 0.001 0.0001 0.01

4.4 Numerical solution of dynamic equation

The dynamic equation (Eq. 30) is a strongly cou-
pled and strongly nonlinear differential equations. In
this paper, the Newmark algorithm and fourth-order
Runge–Kutta method are utilized to solve dynamic
equations. The concrete solution process is as follows:

(1) Rigid dynamic model of mechanism with clear-
ance is solved by fourth-order Runge–Kutta
method, and the displacement, velocity, acceler-
ation of the each component and the contact force
generated by the clearance revolute joint on the
first time step are obtained.

(2) The relevant quantities obtained in step (1) are
brought into elastic dynamic model. The elastic
deformation, inertia force, and inertia moment of
each component brought about by elastic deforma-
tion are calculated by Newmark algorithm.

(3) The inertia force and the moment of inertia caused
by the elastic deformation motion are taken into
step (1), and the relative quantities in the next inte-
gral step are solved.

(4) Step (1)–(3) are repeated for the next operation,
and then the whole movement of the system is got
finally.

5 Simulations and results

5.1 System parameters of 2-DOF nine-bar mechanism

The system parameters for the 2-DOF nine-bar mech-
anism are shown in Tables 1, 2 and 3.

5.2 The influence of different friction model on
dynamic response

In this section, the driving speeds of two cranks are
set as ω1 = − 2.5π (rad/s) , ω4 = 2.5π (rad/s), the
clearance of joint is both set as 0.5 mm. In order
to study difference between the friction models, the
effects of modified Coulomb friction model and LuGre
model on the dynamic response of rigid body mech-
anism are both studied, containing driving torques
and acceleration of slider. By using LuGre model
on 2-DOF nine-bar mechanism, friction force of
clearance is considered not to have a discontinu-
ity at zero slip speed, it is capable of capturing the
Stribeck and stiction effects [32,33]. From Figs. 6, 7
and 8, it is shown that, the effects of modified
Coulomb friction model and LuGre model on mech-
anism dynamics for this mechanism are principally at
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Fig. 6 Acceleration of slider a modified Coulomb friction model; b LuGre model

Fig. 7 Driving torque of crank 1 a modified Coulomb friction model; b LuGre model

Fig. 8 Driving torque of crank 4 a modified Coulomb friction model; b LuGre model

the same, time point of collision is in general agree-
ment. There are some differences in the peak mag-
nitude of dynamic response, when the LuGre model

is used, the peak magnitude of dynamic response
is higher than that of modified Coulomb friction
model.
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Fig. 9 Displacement of slider, a clearance = 0.05 mm; b clearance = 0.5 mm

Fig. 10 Velocity of slider a clearance = 0.05 mm; b clearance = 0.5 mm

5.3 The influence of clearance value on dynamic
behavior

5.3.1 The influence of clearance value on dynamic
response

The influence of the clearance values on dynamic
behavior of the 2-DOF nine-bar mechanism is studied
in this section. The crank 1 and crank 4 are modeled
as a driving component with the rotate speed of ω1 =
−2π (rad/s) , ω4 = 2π (rad/s), respectively. Clearance
value is regarded as 0.05 and 0.5 mm. The kinematic
characteristics of slider are shown in Figs. 9, 10 and 11,
which contain displacement, velocity and acceleration
of end slider. The driving torque of the crank 1 and the
crank 4 is displayed in Figs. 12 and 13. Contact force,
penetration depth and shaft center trajectory curve of
clearance joint are shown in Figs. 14, 15 and 16.

With regard to the rigid mechanism contain clear-
ance joint, the magnitude of the dynamic response of
the mechanism is obviously higher than that of mech-
anism do not have clearance, and the fluctuation influ-
ences the mechanism’s accuracy and stability. Accord-
ing to Figs. 9 and 10, the displacement and velocity
of the slider are less influenced and close to the ideal
state. As shown in Figs. 11, 12 and 13, the acceleration
of slider and driving torques of two cranks are suscep-
tible to the clearance and produce greater vibration.
From Figs. 11, 12, 13 and 14, the time point of the
acceleration and driving torques vibration is approxi-
mately the same as vibration of the contact force at the
revolute clearance joint.

Comparing with two different clearance values, the
dynamic response of large clearance value is deteri-
orated severely than small clearance value, the peak
value of the dynamic response of the larger clearance
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Fig. 11 Acceleration of slider, a clearance = 0.05 mm; b clearance = 0.5 mm

Fig. 12 Driving torque of crank 1, a clearance = 0.05 mm; b clearance = 0.5 mm

Fig. 13 Driving torque of crank 4, a clearance = 0.05 mm; b clearance = 0.5 mm

value is much larger than the low clearance value, and
thevibration ismore strong, it canbe confirmed through
velocity, acceleration of slider, contact force, and driv-

ing torques curves. As shown in Fig. 16a, b, which cor-
respond toFig. 15a, b, there aremore free flightmotions
in shaft center trajectory with larger clearance, its shaft
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Fig. 14 Contact force of the clearance joint, a clearance = 0.05 mm; b clearance = 0.5 mm

Fig. 15 Penetration depth, a clearance = 0.05 mm; b clearance = 0.5 mm

Fig. 16 Shaft center
trajectory, a clearance =
0.05 mm; b clearance = 0.5
mm
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Fig. 17 Phase diagram in X direction of clearance joint, a clearance = 0.05 mm; b clearance = 0.5 mm

Fig. 18 Phase diagram in Y direction of clearance joint, a clearance = 0.05 mm; b clearance = 0.5 mm

center trajectory more chaos, so the collision is more
serious than the low clearance value.

As seen from Figs. 9, 10, 11, 12, 13, 14, 15 and 16,
it is a clear difference between flexible and rigid mech-
anism outputs. For flexible mechanism with revolute
clearance, the peak value of contact force of flexible
mechanism at revolute clearance joint is small than the
rigid mechanism. The proper elastic deformation of the
links could assimilate energy and reduce the separa-
tion times between the elements of joint, which makes
vibration of the slider acceleration and driving torques
of cranks decrease obviously, peak value of the driving
torques of cranks are same decreased, the mechanism’s
stability and accuracy are both enhanced. As shown in
Fig. 16a, b, center trajectory of flexible mechanism is
close to ideal state, and the free flight motion is obvi-
ously reduced. It is same to Fig. 15a, b, the penetration
depth of flexiblemechanism is also improved than rigid
one. The flexible link in the mechanism with clearance

joint has a more obvious effect on alleviating vibration
characteristic compared to the mechanism with rigid
mechanism with clearance joint. The main reason is
that the elastic link can properly absorb the vibration
due to the clearance and make the dynamic response of
the mechanism tends to be stable.

5.3.2 The influence of clearance value on nonlinear
characteristics

It is well known that mechanism with clearance joint
and flexible links is a typical nonlinear dynamical sys-
tem; the chaotic phenomena and the bifurcation exist
in mechanical system, and then chaos phenomena and
bifurcation analysis should be researched. When the
clearance value is 0.05 mm, the phase diagrams of the
X and Y directions at the revolute clearance joint are
shown in Figs. 17a and 18a. When the clearance size
of joint is 0.5 mm, the phase diagrams of the X and Y
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Fig. 19 Poincaré map in X direction of clearance joint, a clearance = 0.05 mm; b clearance = 0.5 mm

Fig. 20 Poincaré map in Y direction of clearance joint, a clearance = 0.05 mm; b clearance = 0.5 mm

directions at the revolute clearance joint are shown in
Figs. 17b and 18b. As can be seen from Figs. 17 and 18,
when clearance is 0.05 and 0.5mm, phase diagrams are
both chaotic and disordered, so they are all in the state
of the chaos. From Figs. 17 and 18, when clearance
value of joint increases, phase of mechanism becomes
more and more disorder, and phase diagrams have the
trend of expansion, chaos phenomenon existed in the
joint is more obvious.

Figures 19 and 20 show the Poincaré maps of the
mechanism with clearance and flexible rods when the
clearance value are 0.05 and 0.5 mm, respectively. As
can be seen from Figs. 19 and 20, the Poincaré maps is
chaotic, each point is scattered in the diagrams, the
mapping points are not repeated, which shows that
mechanism has no periodic solution, and the mecha-
nism is in chaos. Comparedwith Figs. 19 and 20, while
the size of clearance increases, the Poincaré map has

an expansion trend, and chaos phenomenon increases
obviously.

The Lyapunov exponent can be used effectively as
a strong criterion for determining whether system is
in chaos. When largest Lyapunov exponent (LLE) is
less than zero, system is in periodic motion. When
LLE is greater than zero, system corresponds to chaotic
motion.

Lyapunov exponents of clearance joint are shown in
Figs. 21 and 22, while clearance value is 0.05 and 0.5
mm. From Figs. 21 and 22, when clearance value is
0.05 mm, the LLE in X and Y direction are C 0.0111
and 0.0656, when clearance size is 0.5 mm, the LLE in
X and Y direction are 0.4226 and 0.1088. Because the
LLE are all greater than zero, so the mechanism is in
chaos.

In order to further develop impact of revolute joint
clearance on dynamic behavior, the bifurcation behav-
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Fig. 21 Lyapunov exponent in X direction of clearance joint, a clearance = 0.05 mm; b clearance = 0.5 mm

Fig. 22 Lyapunov exponent in Y direction of clearance joint, a clearance = 0.05 mm; b clearance = 0.5 mm

ior is observed with the change in clearance values.
The clearance sizes ranged from 0.01 to 0.5 mm are
selected to research bifurcation phenomena. The bifur-
cation diagrams with varying clearance values in X and
Y direction of elastic mechanism with joint clearance
are shown in Fig. 23a, b, respectively. With increase
in clearance value of joint, chaotic phenomenon of
clearance joint is more serious, the mechanism is more
unstable.According to above study, clearance of joint is
the important element to affect the responses of mech-
anism.

The phase diagram, Poincaré map, Lyapunov expo-
nent and bifurcation diagram of slider are shown in
Figs. 24, 25, 26 and 27. It can be seen from phase dia-
gram that, when clearance value is 0.5 mm, the phase
diagram of the end slider is more larger than the phase

diagram of the end slider while the clearance value is
0.05mm. It can be known fromLyapunov exponent and
Poincaré map that, the Poincaré map of clearance value
0.05 and 0.5 mm are all independent points, the LLE
of the clearance value 0.05 and 0.5 mm are − 0.0221
and − 0.0135, which are all less than zero, so it can be
judged that the slider is in periodic motion. According
to Figs. 23 and 27, when clearance size changed from
0.01 to 0.5 mm, although the motion state of the clear-
ance joint is changed from periodic motion to chaotic
motion shown in Fig. 23, but the end slider’s motion
state is always in periodic motion shown in Fig. 27.
Because of the stable region of mechanism with single
clearance is larger, so slider is not sensitive to chaos
phenomenon.
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Fig. 23 Bifurcation diagram of clearance joint with varying clearance. a Poincaré map in X direction. b Poincaré map in Y direction

Fig. 24 Phase diagram of slider, a clearance = 0.05 mm; b clearance = 0.5 mm

Fig. 25 Poincaré map of slider, a clearance = 0.05 mm; b clearance = 0.5 mm
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Fig. 26 Lyapunov exponent of slider, a clearance = 0.05 mm; b clearance = 0.5 mm

Fig. 27 Bifurcation diagram of slider with varying clearance

5.4 The influence of driving speeds of the cranks on
dynamic behavior

5.4.1 The influence of driving speed of crank on
dynamic response

The speed of crank 1 and the speed of crank 4 are
same in value and opposite in direction. Two groups
of the driving speed of the crank 1 and the crank 4
are researched, that are ω1 = − 0.5π (rad/s) , ω4 =
0.5π (rad/s) and ω1 = − 2.5π (rad/s) , ω4 = 2.5π
(rad/s). The clearance value is set as 0.5mm.The veloc-
ity and the acceleration of slider are depicted in Figs. 28
and 29. The driving torque of crank 1 and crank 4 are
shown in Figs. 30 and 31. Contact force and shaft center
trajectory curve of clearance joint is shown in Figs. 32
and 33.

From Fig. 28, while the driving speeds of cranks
are ω1 = − 0.5π (rad/s) and ω4 = 0.5π (rad/s), the

velocity curve with clearance basically conforms to
the ideal state, and when the driving speed are ω1 =
− 2.5π (rad/s)and ω4 = 2.5π (rad/s), the speed curve
has obvious vibration. From Figs. 29, 30, 31 and 32,
it could be seen that peak magnitude of acceleration
of slider, the driving torques of cranks and the contact
force at clearance joint all increase significantly with
increase in driving speeds. Because driving velocity
is larger, collision between shaft and bearing is more
severe, so the dynamic response will produce greater
fluctuation and peak value. As shown in Fig. 33, when
driving speeds of the driving cranks are high, the shaft
center trajectory appears more free flight state and is
very chaotic. When the driving speed of driving cranks
are low, the shaft center trajectory is in the continuous
contact state.

From Figs. 28, 29 30, 31, 32 and 33, it can know
that, characteristics of the kinematic and the dynamic
for rigid mechanism and flexible mechanism are quite
different. The effect of the flexible rods are quite vis-
ible. When driving speeds are ω1 = − 0.5π (rad/s)
and ω4 = 0.5π (rad/s), the dynamic behavior of elas-
tic mechanism with clearance are almost same as the
dynamic response in the ideal state, there is a small
distinction. And especially for the high driving veloc-
ity, influences are more visible. The peak value of
the dynamic behaviors of the flexible mechanism with
clearance is smaller than that of the rigid mechanism
with clearance. And the shaft center trajectory of the
elastic mechanism is also improved. The flexibility
of components improve dynamic behaviors of mecha-
nism. The flexible links behave as a spring and damper
to assimilate the energy caused by clearance joint, and
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Fig. 28 Velocity of slider a ω1 = − 0.5π (rad/s) , ω4 = 0.5π (rad/s); b ω1 = − 2.5π (rad/s) , ω4 = 2.5π (rad/s)

Fig. 29 Acceleration of slider a ω1 = − 0.5π (rad/s) , ω4 = 0.5π (rad/s); b ω1 = − 2.5π (rad/s) , ω4 = 2.5π (rad/s)

Fig. 30 Driving torque of crank 1. a ω1 = − 0.5π (rad/s) , ω4 = 0.5π (rad/s); b ω1 = − 2.5π (rad/s) , ω4 = 2.5π (rad/s)
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Fig. 31 Driving torque of crank 4. a ω1 = − 0.5π (rad/s) , ω4 = 0.5π (rad/s); b ω1 = − 2.5π (rad/s) , ω4 = 2.5π (rad/s)

Fig. 32 Contact force, a ω1 = − 0.5π (rad/s) , ω4 = 0.5π (rad/s); b ω1 = − 2.5π (rad/s) , ω4 = 2.5π (rad/s)

Fig. 33 Shaft center
trajectory a
ω1 = − 0.5π (rad/s) , ω4 =
0.5π (rad/s); b
ω1 = − 2.5π (rad/s) , ω4 =
2.5π (rad/s)
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Fig. 34 Phase diagram in X direction of clearance joint. a ω1 = − 0.5π (rad/s) , ω4 = 0.5π (rad/s), b ω1 = − 2.5π (rad/s) ,

ω4 = 2.5π (rad/s)

Fig. 35 Phase diagram in Y direction of clearance joint. a ω1 = − 0.5π (rad/s) , ω4 = 0.5π (rad/s), b ω1 = − 2.5π (rad/s) ,

ω4 = 2.5π (rad/s)

reduce the vibration frequency and vibration ampli-
tude.

5.4.2 The influence of driving speed on nonlinear
characteristics

When driving speeds are ω1 = − 0.5π (rad/s) ,

ω4 = 0.5π (rad/s), the phase diagrams of the X
and Y directions at the revolute clearance joint of
flexible mechanism are shown in Figs. 34a and 35a.
When driving speeds are ω1 = − 2.5π (rad/s) , ω4 =
2.5π (rad/s), the phase diagrams of the X and Y direc-
tions at the revolute clearance joint of flexible mecha-
nism are shown in Figs. 34b and 35b. Their correspond-

ing Poincaré maps are shown in Figs. 36 and 37. And
Lyapunov exponents are shown in Figs. 38 and 39.

From Figs. 34, 35, 36, 37, 38 and 39, when driving
speeds are ω1 = − 0.5π (rad/s) , ω4 = 0.5π (rad/s),
the phase diagrams in X and Y direction of clear-
ance joint are both closed curve, the Poincaré maps
in X and Y direction of clearance joint are both an
independent point, the LLE in X and Y direction of
clearance joint are − 0.0026 and − 0.0187, which are
both less than zero, so they are all in periodic motion.
From Figs. 34, 35, 36, 37, 38 and 39, when the driving
speeds are ω1 = − 2.5π (rad/s) , ω4 = 2.5π (rad/s),
the phase diagrams in X and Y direction of clear-
ance joint are both disorderly curve, mapping point

123



1030 X. Chen et al.

Fig. 36 Poincaré map in X direction of clearance joint. a ω1 = − 0.5π (rad/s) , ω4 = 0.5π (rad/s), b ω1 = − 2.5π (rad/s) ,

ω4 = 2.5π (rad/s)

Fig. 37 Poincaré map in Y direction of clearance joint. a ω1 = − 0.5π (rad/s) , ω4 = 0.5π (rad/s), b ω1 = − 2.5π (rad/s) ,

ω4 = 2.5π (rad/s)

Fig. 38 Lyapunov exponent in X direction of clearance joint. a ω1 = − 0.5π (rad/s) , ω4 = 0.5π (rad/s), b ω1 = − 2.5π (rad/s) ,

ω4 = 2.5π (rad/s)
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Fig. 39 Lyapunov exponent in Y direction of clearance joint. a ω1 = − 0.5π (rad/s) , ω4 = 0.5π (rad/s), b ω1 = − 2.5π (rad/s) ,

ω4 = 2.5π (rad/s)

Fig. 40 Bifurcation diagram of clearance joint with varying driving speed. a Poincaré map in X direction. b Poincaré map in Y direction

of the Poincaré maps in X and Y direction of clear-
ance joint are scattered, and mapping points do not
repeat each other, the LLE in X and Y direction of
clearance joint are 0.6890 and 0.1868, which are both
greater than zero. It shows that the mechanism has
no periodic solution and the joint with clearance is in
chaotic.

The bifurcation diagrams of revolute clearance joint
in X and Y direction with varying driving speed of
cranks are shown in Fig. 40a, b. It can be drew from
the diagrams that, when the interval of driving speed
of crank 4 is [0.5π, 1.6π ] (rad/s) ,and corresponding
driving speed of crank 1 is [− 0.5π,− 1.6π ] (rad/s) ,

the mechanism is in a periodic state. The driving speed
of crank 4 starts from 1.65π (rad/s)(The driving speed
of crank 1 starts from− 1.65π (rad/s)), with increase in

crank velocity, the chaos at the clearance joint becomes
more and more serious.

The driving speeds of the crank 1 and the crank 4 are
considered asω1 = − 0.5π (rad/s) , ω4 = 0.5π (rad/s)
and ω1 = − 2.5π (rad/s) , ω4 = 2.5π (rad/s), respec-
tively. The phase diagram, Poincaré map, Lyapunov
exponent and bifurcation diagram of slider are shown
in Figs. 41, 42, 43 and44. When the driving speeds are
ω1 = − 0.5π (rad/s) , ω4 = 0.5π (rad/s), the phase
diagramof the slider is a closed curve, while the driving
speeds are ω1 = − 2.5π (rad/s) , ω4 = 2.5π (rad/s),
the phase diagram of end slider occurs obvious fluc-
tuations. The corresponding Poincaré maps are shown
in Fig. 42, which are both independent points. Corre-
sponding Lyapunov exponents are shown in Fig. 43, its
LLE are − 0.0106 and − 0.0021, which are both less
than zero. Therefore, the motion state of end slider is
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Fig. 41 Phase diagram of slider, a ω1 = − 0.5π (rad/s) , ω4 = 0.5π (rad/s); b ω1 = − 2.5π (rad/s) , ω4 = 2.5π (rad/s)

Fig. 42 Poincaré map of slider, a ω1 = − 0.5π (rad/s) , ω4 = 0.5π (rad/s); b ω1 = − 2.5π (rad/s) , ω4 = 2.5π (rad/s)

Fig. 43 Lyapunov exponent of slider. a ω1 = − 0.5π (rad/s) , ω4 = 0.5π (rad/s); b ω1 = − 2.5π (rad/s) , ω4 = 2.5π (rad/s)

periodicmotion. According to Figs. 34b, 35b, 36b, 37b,
38b and 39b, although clearance joint is in chaos, the
slider is not in chaotic motion. According to Fig. 44,

it can be observed that slider is all in periodic motion.
Comparedwith Figs. 40 and 44, when clearance joint is
chaotic, slider is not necessarily to do chaotic motion.
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Fig. 44 Bifurcation diagramof sliderwith varying driving speed

The reason is that the stable region of mechanism with
single clearance is larger. The single clearance has less
effect on the chaotic state of the end slider.

6 Conclusions and future works

Based on previous studies, the effects of clearance joint
and flexible body on dynamic behavior are indepen-
dently investigated rather than being considered simul-
taneously in the same mechanism. Nonlinear dynamic
behavior of 2-DOF nine-barmechanismwith clearance
in flexible system is studied in this paper. The nonlin-
ear dynamic model of 2-DOF nine-bar mechanical sys-
tem with revolute clearance and flexible links is built
by Lagrange and FEM combining with Lankarani–
Nikravesh and modified Coulomb’s friction models.

On basis of the numerical simulations, it could be
concluded that there are sizeable changes in mechani-
cal response owing to the influence of clearance. Main
functional parameters were researched in this work,
namely, the clearance value and the driving velocities
of cranks. The fluctuation of the dynamic response all
increase with the clearance value under the same driv-
ing speed.Comparedwith lowdrivingvelocity, the high
driving speed exhibits a more deteriorated response of
mechanism. With the increase in clearance size and
driving speeds of cranks, peak magnitude of slider
acceleration, the contact force at the clearance joint
and driving torque of cranks are all increased, stability
of the mechanism has also weakened.

For the case of flexibility of links, flexible links can
partly decrease dynamic response of the mechanical
system with clearance relative to rigid mechanical sys-

temwith clearance, the peak magnitude of acceleration
of slider, the contact force at the clearance joint and the
driving torque of cranks decreased obvious, the shaft
trajectories at rigid mechanism is much more chaotic
than that of flexible mechanism, dynamic response of
flexible mechanismwith clearance is closer to the ideal
state than that of rigidmechanismwith clearance. Flex-
ibility of rod has a damping effect for the mechanism.
The main reason is that the flexible links can properly
absorb the vibration due to the clearance and make the
dynamic response of the mechanism tends to be stable.

It can be observed that flexible system with revolute
clearance joint iswell known as nonlinear dynamic sys-
tem, and it exhibits a chaotic response under the certain
conditions. In this paper, the nonlinear characteristics
of elasticmechanismswith clearances are studied com-
prehensively and systematically. The phase diagrams,
Poincaré portraits, Lyapunov exponents, and bifurca-
tion diagrams of the clearance joint are researched.
Under the same driving velocity of cranks, chaos of
clearance joint becomes more and more serious with
the increase in the clearance value. Under the same
clearance value, with the increase in driving speeds of
cranks, the motion state of clearance joint gradually
changes from the periodicmotion to the chaoticmotion.
Nonlinear characteristics of slider are also researched.
It is shown that, because of the stable region of mecha-
nism with single clearance is larger, although the joint
with clearance is in chaos, slider isn’t in chaoticmotion.
In future works, Friction, wear, experimental work in
the flexible mechanism with multiple clearances could
be investigated, and this work will be also extended to
the 3D models.
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