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Abstract For the purpose of fault detection and isola-
tion for leader–follower multi-agent systems with dis-
turbances, a sliding-mode observer is designed using
local information and suitable auxiliary information
received from neighbor agents. By means of the
observer, each agent can estimate the overall state of
follower agents even if they are not directly connected.
Then, using the relative output estimations, a residual
vector is developed to detect and isolate the fault occur-
ring on any follower agent of the leader–followermulti-
agent systems. By the end, numerical simulations are
employed to verify the effectiveness of the theoretical
results.
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1 Introduction

In the past decade, multi-agent systems have been
attracted considerable attention; more results can be
seen in [1–4] and references therein. With the increas-
ing scale and complexity of multi-agent systems, the
requirement for system reliability is becoming impor-
tant and urgent. In practice, multi-agent systems are
vulnerable to faults and attacks resulted from the net-
work because of the distributed topology and the lack of
centralized entity. The fault or the attack occurring on
any agent might not only affect the agent itself but also
jeopardize the entire system. Consequently, the subject
of fault detection and isolation (FDI) of multi-agent
systems is becoming a very important and promising
area. The centralized solutions to tackle FDI problems
cannot be directly used in multi-agent systems as the
result of the lackof the centralized entitymonitoring the
overall system state. Therefore, distributed FDI strate-
gies should be proposed to carry out the FDI for the
multi-agent systems.

For the past few years, the topics on distributed FDI
have been received great attention and obtained fruitful
results [5–13]. Despite the urgent need of distributed
FDI for multi-agent systems, there are few contribu-
tions in this field. In [14], using graph theory, Sundaram
and Hadjicostis investigated the problem of distributed
FDI for multi-agent systems. In [15], Pasqualetti et
al. designed two different monitors to fulfill the FDI
for cyber-physical systems. Using the technology of
unknown input observer, Shames et al. proposed a
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novel distributed FDI scheme for interconnected sys-
tems [16]. These above results only considered the FDI
for multi-agent systems with perfect communication.
However, in real applications, the disturbances always
exist in multi-agent systems and might influence the
result of FDI.

In [17], Teixeira et al. researched the problem of FDI
for multi-agent systems with uncertain system model.
In [18], using the optimal robust observer approach, the
distributed FDI was investigated for multi-agent sys-
tems with measurement noises. Using the technology
of linear matrix inequality, distributed FDI schemes
robust to disturbanceswere addressed in [19,20]. These
FDI schemes proposed in the above-recited works [17–
20] can only carry out the FDI for single fault in
multi-agent systems. However, the case that several
faults simultaneously occur in the multi-agent systems
is more practical and challenging. In [21,22], a novel
FDI strategy suitable for multiple faults was presented
for a team of networks, which makes each robot of the
team able to detect and isolate faults occurring on other
robots, even if they are not direct neighbor.

Most of the aforementioned results mainly consid-
ered the FDI for multi-agent systems with leaderless.
Recently, leader–follower multi-agent systems, which
require all agents to simultaneously communicate with
their neighbors and virtual leader agents, have been an
active topic and achieved significant progresses; more
results can be seen in [23–30]. However, there are few
studies considering the FDI for leader–follower multi-
agent systems. In [31], using linear matrix inequalities,
a robust unknown input observer is proposed to fulfill
fault estimation for leader–follower multi-agent sys-
tems.

On the basis of the above considerations, we con-
sider the problem of distributed FDI for leader–
followermulti-agent systemswith disturbances. Firstly,
an observer is proposed, which uses local information
and suitable auxiliary information, to estimate the over-
all system state. There are two differences between the
result of this paper and Refs. [21,22]. One is that all the
agents in this paper not only communicate with their
neighbors but also receive information from the virtual
leader agent. The other is that a sliding-mode observer
is designed, which is effective to estimate the overall
system state in the presence of uncertainties compared
to the result of [21,22]. Secondly, using the relative
output estimations, a residual vector is developed to
detect and isolate faults occurring on any follower agent

of the leader–follower multi-agent systems. A thresh-
old is derived to distinguish the difference between
fault and disturbance. Comparing with some previous
results, such as in Refs. [17–20], the merit of the dis-
tributed FDI strategy proposed in this paper is that it
can achieve the FDI not only for single faulty agent but
also for multiple faulty agents.

2 Problem statement

Consider a leader–follower multi-agent systems com-
posed of n + 1 agents, one virtual leader agent labeled
by 0 and n followers labeled by 1 to n. The inter-
action communication between n followers is repre-
sented by undirected graph G = (V, E,A), where
V is a finite non-empty set of nodes, E = V × V
denotes the edge set of the graph, A = [

αi j
]
is the

adjacency matrix, αi i = 0 and αi j = α j i > 0 if
εi j = (Vi ,Vi ) ∈ E, i �= j ∈ V . The degree of the node
i is di = ∑

i∈Ni
αi j , where Ni = {

j ∈ V : εi j ∈ E} is
the neighborhood set of agent i . The degree matrix D
is defined as D = diag{d1, d2, . . . , dn}. The weighed
Laplacian matrix of G is defined as L = D − A. The
interaction between G and the virtual leader is denoted
by αi0, αi0 > 0 if agent i is connected to the leader
(otherwise, αi0 = 0).

Let us consider the first-order leader–followermulti-
agent systems. Each agent is characterized by the fol-
lowing dynamic

ẋi (t) = ui (t) + φi (t) + ξi (t), i ∈ V (1)

where xi (t) ∈ R represents the state of agent i , φi (t) ∈
R is the addictive fault signal that is zero in healthy
condition, ui (t) ∈ R is the control input, and ξi (t) ∈ R
is an uncertainty disturbance supposed to be bounded

‖ξi (t)‖ ≤ ξ̄ ∀i = 1, 2, . . . , n. (2)

The control input ui (t) can be chosen as

ui (t) = β

⎡

⎣
∑

j∈Ni

αi j (x j (t) − xi (t)) + αi0(x0(t) − xi (t))

⎤

⎦

(3)

where x0(t) is the state of the virtual leader andβ > 0
is the control gain.
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Let u(t) = [u1(t), . . . , un(t)]T ∈ Rn denote the
collective input vector, and it can be got

u(t) = Ax(t) + Bx0 (4)

where A = β(−L − Δ), B = βΔ, and Δ =
diag {α10, . . . , αn0}, x0 = 1nx0(t) and 1n denotes a
n-dimensional vector with all 1.

The collective dynamic of the first-order leader–
follower multi-agent systems can be expressed as

ẋ(t) = u(t) + φ(t) + ξ(t) (5)

where x(t) = [x1(t), . . . , xn(t)]T ∈ Rn , φ(t) =
[φ1(t), . . . , φn(t)]T ∈ Rn , and ξ(t) = [ξ1(t), . . . , ξn
(t)]T ∈ Rn represent the collective state vector, the
collective fault vector, and the collective disturbance
vector, respectively.

The following assumption and lemma will be used.

Assumption 1 The communication network topology
G of multi-agent systems considered in this paper is
fixed, undirected, and connected, and there is at least
one agent connected to the virtual leader.

Lemma 1 [27] If assumption 1 holds, thematrixΔ+L
is positive definite, where Δ = diag {α10, . . . , αn0},
and αi0(i ∈ V) are defined as above.

3 Main results

3.1 State observer

In multi-agent systems, not all the states in x(t) are
available to each agent due to the lack of both cen-
tral unit and all-to-all communication. In this section,
for FDI purposes, an observer will be designed at
each agent, which uses local information received from
neighbor agents, to estimate the overall system state
x(t).

Let us first define an auxiliary output vector y(t)
according to the following dynamics:

ẏ(t) = ẋ(t) − u(t). (6)

The estimations of the collective state x(t) and the
auxiliary output vector y(t) can be computed by the
agent i using the following observers:

i ˙̂x(t) = k0

⎛

⎝
∑

j∈Ni

αi j (ŷ j (t) − ŷi (t)) + Πi (y(t) − ŷi (t))

⎞

⎠

+i û(t, i x̂) − νi (t) (7)
˙̂yi (t) = i ˙̂x(t) − i û(t, i x̂) (8)

where Πi = Γ T
i Γi , Γi = [0, . . . ,︸ ︷︷ ︸

i−1

1, 0, . . . 0] ∈ R1×n

is a selection matrix that extracts the components of
the agent i from a collective vector, i x̂(t) and ŷi (t) are
the estimates of x(t) and y(t) computed by agent i ,
respectively,k0 > 0 is a scalar gain, the function νi (t)
is the nonlinear input of the observer to be determined,
and i û(t, i x̂) is the estimation of the collective input.
Together with (4), the estimation of the collective input
can be rewritten as

i û(t, i x̂) = A(i x̂(t)) + Bx0. (9)

Let i ey(t) = y(t) − i ŷ(t) denote the estimation
error of the auxiliary output vector. Then, νi (t) can
be designed as

νi (t) =
{ i ey(t)

‖i ey(t)‖ if i ey(t) �= 0

0 otherwise
(10)

Let x̂∗(t) = [1 x̂ T (t), 2 x̂ T (t), . . . n x̂T (t)]T, and
ŷ∗(t) = [ŷT1 (t), ŷT2 (t), . . . , ŷTn (t)]T. The collective
dynamic of the observer (7) is expressed as

˙̂x∗(t) = û∗(t) − k0(L ⊗ In)ŷ
∗(t)

+ k0Π
∗(1n ⊗ y(t) − ŷ∗(t)) − ν(t) (11)

where û∗(t) = [1ûT (t, 1 x̂(t)), . . . , nûT (t, n x̂(t))]T,
Π∗ = diag{Π1, . . . ,Πn}, and ν(t) =

[ 1eyT (t)
‖1ey(t)‖ , . . . ,

ney T (t)
‖ney(t)‖

]T
.

The following estimation errors are defined as
i ex (t) = x(t) − i x̂(t) (12)

e∗
x (t) = 1n ⊗ x(t) − x̂∗(t) (13)

e∗(t)
y = 1n ⊗ y(t) − ŷ∗(t) (14)

where i ex (t) denotes the estimation error of the
overall system state computed by agent i , e∗

x (t) =
[1eTx (t), 2eTx (t), . . . , neTx (t)]T is the collective state
estimation error, and e∗

y(t) = [1eTy (t), 2eTy (t), . . . , n

eTy (t)]T is the collective auxiliary output estimation
error.

Before giving the main result, the following lemma
is needed.
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Lemma 2 [32] If assumption 1 holds, the matrix L∗ =
L ⊗ In is symmetric and positive semi-definite, where
In denotes the n-dimensional identity matrix. Further-
more, the matrix −(L∗ + Π∗) is Hurwitz and Π∗ is a
diagonal matrix defined in (11).

Theorem 1 Under assumption 1, considering the
leader–follower multi-agent systems (5) without any
fault, the collective estimation errors described as (13)
and (14) are asymptotically bounded if the following
condition

Θ =
[
I − 2k0P(L ⊗ In + Π∗) + 2ηP P

P −γ 2 I

]

(15)

holds, where I is an identity matrix with appropriate
dimension and P > 0 is a symmetric matrix, γ > 0
and η > 0.

Proof φ(t) = 0 if the faults are not considered in the
leader–follower multi-agent systems (5). It is firstly
proved that the collective auxiliary output estimation
error (14) is bounded. From (8) and (11), it obtains

˙̂y∗(t) = ˙̂x∗(t) − u∗(t) = −k0(L ⊗ In)ŷ
∗(t)

+ k0Π
∗e∗

y(t) − ν(t) (16)

Considering (14)

(L ⊗ In)ŷ
∗(t) = (L ⊗ In)(1n ⊗ y(t) − e∗

y(t))

= (L ⊗ In)(1n ⊗ y(t)) − (L ⊗ In)e
∗
y(t)

= (L1n) ⊗ (In y(t)) − (L ⊗ In)e
∗
y(t).

(17)

Notice that L1n = 0; then, (17) can be rewritten as

(L ⊗ In)ŷ
∗(t) = −(L ⊗ In)e

∗
y(t). (18)

Substituting (18) into (16) results in

˙̂y∗(t) = ˙̂x∗(t)−u∗(t) = k0(L ⊗ In +Π∗)e∗
y(t)− ν(t)

(19)

which together with (14) further yields that

ė∗
y(t) = 1n ⊗ ẏ(t) − ˙̂y∗(t) = 1n ⊗ ẏ(t)

− k0(L ⊗ In + Π∗)e∗
y(t) + ν(t) (20)

Combined (5) and (6) gives

ẏ(t) = ξ(t) (21)

Substituting (21) into (19) yields

ė∗
y(t) = 1n ⊗ ẏ(t) − ˙̂y∗(t) = −k0(L ⊗ In + Π∗)e∗

y(t)

+ ν(t)+1n ⊗ ξ(t). (22)

Choose a candidate Lyapunov function V (t) =
(e∗

y(t))
T Pe∗

y(t). Then, the time derivative of V (t) can
be calculated as

V̇ (t) = 2(e∗
y(t))

T Pė∗
y(t)

≤ 2(e∗
y(t))

T P(−k0(L ⊗ In + Π∗)e∗
y(t)

+ 2η(e∗
y(t))

T Pe∗
y(t) + 2(e∗

y(t))
T Pξ∗(t)

(23)

where ξ∗(t) = 1n⊗ξ(t) andη = max{1/∥∥1ey(t)
∥∥, . . . ,

1/
∥∥ney(t)

∥∥}.
For any T > 0, consider the following cost function

JT =
T∫

0

[(
e∗
y(t)

)T
e∗
y(t) − γ 2(ξ∗(t)

)T
ξ∗(t)

]
dt.

(24)

To analyze the performance of disturbances on sys-
tem (22), it supposes that all initial states of the observer
of (8) are equal to the initial states of auxiliary out-
put vector defined in (6), that is e∗

y(0) = 0. Clearly,
V (0) = 0. Then, it follows that

JT =
T∫

0

[(
e∗
y(t)

)T
e∗(t)
y − γ 2ξ∗(t))T ξ∗(t)

+ V̇ (t)
]
dt − V (t)

≤
T∫

0

[(
e∗
y(t)

)T
e∗
y(t) − γ 2ξ∗(t)T ξ∗(t)

+ 2
(
e∗
y(t)

)T
P(−k0(L ⊗ In + Π∗)e∗

y(t)

+ 2
(
e∗
y(t)

)T
Pe∗

y(t) + 2
(
e∗
y(t)

)T
Pξ∗(t)

]
dt − V (t)

=
[
e∗
y(t)

ξ∗(t)

]T
Θ

[
e∗
y(t)

ξ∗(t)

]
− V (t) (25)

whereΘ =
[
I − 2k0P(L ⊗ In + Π∗) + 2ηP P

P −γ 2 I

]

and I is an identity matrix with appropriate dimension.
Obviously, JT < 0 if (15) holds. This means that the
(14) is asymptotically bounded.

Next, it is proved that the collective state estimation
error (13) is bounded. Combining (5), (13), and (22)
results in
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ė∗
x (t) = 1n ⊗ ẋ(t) − ˙̂x∗

(t)

= 1n ⊗ (Ax(t)) + 1n ⊗ (Bx0)

− (In ⊗ A)x̂∗(t) − (In ⊗ B)(1n ⊗ x0)

− k0(L ⊗ In + Π∗)e∗
y(t) + ν(t) + ξ∗(t)

= (In ⊗ A)(1n ⊗ x(t)) + (In ⊗ B)(1n ⊗ x0)

− (In ⊗ A)x̂∗(t)
− (In ⊗ B)(1n ⊗ x0) + ė∗

y(t)

= (In ⊗ A)e∗
x (t)+ė∗

y(t) (26)

From the above analysis, the term ė∗
y(t) is stable.Hence,

it can be seen as a bounded disturbance in (26). With
the aid of Lemma 1, it gets that all the eigenvalues of
A are in the open left half plane, and hence, In ⊗ A is
a stable matrix. Consequently, e∗

x (t) is asymptotically
bounded. This completes the proof. 	


3.2 Fault detection and isolation

For detecting faults occurring on the leader–follower
multi-agent systems, a residual vector computed by
agent i is chosen as:

iγ (t) =
∑

j∈Ni

αi j (ŷ j (t) − ŷi (t)) + Πi (y(t) − ŷi (t))

(27)

where iγ (t) = [i r1(t), i r2(t), . . . , i rn(t)]T ∈ Rn , and
i r j (t)( j = 1, 2, . . . , n) represents the residual relative
to agent j .

Theorem 2 The residual components irk(t) (k =
1, 2, . . . , n) in residual vector iγ (t) computed by agent
i can only be affected by the certain fault φk(t) occur-
ring on the agent k and not be affected by the other
faults φl(t) (l = 1, 2, . . . , n and l �= k).

Proof Let γk(t) = [1rk(t), 2rk(t), . . . , nrk(t)]T ∈ Rn

denote the collective dynamic of residual relative to
agent k. Combining with (27) results in

γk(t) = (L + Πk)ẽ
k
y(t) (28)

where ẽky(t) = diag{Γk, Γk, . . . , Γk}e∗
y(t) = Γ ∗

k e
∗
y(t),

and Γk is a selection matrix chosen as the same as
Eq. (7).

From (22) and (28), we get

˙̃eky(t) = Γ ∗
k ėy(t) = −k0(L + Πk)ẽ

k
y(t) + 1n ⊗ φk(t)

+ 1n ⊗ ξk(t) + Γ ∗
k ν(t). (29)

where ν(t) = [νT1 (t), . . . , νTn (t)]T. According to
Lemma 2, −(L + Πk) is a stable matrix. Hence, the
solution of (29) can be written as

ẽky(t) = e−k0(L+Πk )t ẽky(0)

+
t∫

0

e−k0(L+Πk )(t−τ)(1n ⊗ φk(τ )

+1n ⊗ ξk(τ ) + Γ ∗
k ν(τ))dτ. (30)

Consequently, the residual i rk(t) can be rewritten as

i rk(t) = Γi (L + Πk)(e
−k0(L+Πk )t ẽky(0)

+
t∫

0

e−k0(L+Πk )(t−τ)(1n ⊗ φk(τ )

+1n ⊗ ξk(τ ) + Γ ∗
k ν(τ))dτ). (31)

Obviously, the results of i rk(t) only contain a single
fault φk(t). It means that i rk(t) is only affected by the
fault φk(t) occurring on agent k and not affected by
fault φl(t) occurring on agent l (l ∈ V and l �= k). This
completes the proof. 	


When there is not any fault in the multi-agent sys-
tems, the following equation can be derived from equa-
tion (31):

‖i rk(t)‖ = ‖Γi (L + Πk)(e
k0(L+Πk )t )ẽk(0)

+
∫ t

0
e−k0(L+Πk )(t−τ)(1n ⊗ ξk(τ )

+Γ ∗
k ν(t))dτ‖

≤ ‖Γi (L + Πk)(e
k0(L+Πk )t )ẽk(0)‖

+‖Γi (L + Πk)

∫ t

0
e−k0(L+Πk )(t−τ)

(1n ⊗ ξk(τ ) + Γ ∗
k ν(t))dτ‖

≤ ‖Γi (L + Πk)‖‖(ek0(L+Πk )t )ẽk(0)‖
+‖Γi (L + Πk)‖

∫ t

0
‖ek0(L+Πk )t )ẽk(0)‖

(
√
n(1 + ξ̄ ))dτ (32)

According to the result of Ref. [33], we can get that

∥∥∥
(
ek0(L+Πk )t

)∥∥∥ ≤ βe−λt (33)
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where β =
√

λmin(H)

λmax(H)
, λmax(H) and λmax(H) are the

minimum eigenvalue and the maximum eigenvalue of
the symmetric positive definite matrix H, which is a
solution of Eq. (34), respectively.

k0H(L + Πk)
T + k0(L + Πk)H = 2I (34)

where I is an identify matrix with appropriate dimen-
sion.

According to the result of Ref. [21], we can get that

‖Γi (L + Πk)‖ ≤ ‖Γi L‖ + ‖ΓiΠk‖ = di + iσk (35)

where iσk = 1 if i = k, otherwise iσk = 0
Combining (32), (33), and (35) yields

‖i rk(t)‖ ≤ (di + iσ j )(‖ẽ jy(0))‖βe−λ(t)

+β
√
n(1 + ξ̄ )(1 − e−λ(t))) (36)

Based on the above results, the fault occurring on
agent j can be detected and isolated by agent i as fol-
lows:
∥∥i r j (t)

∥∥ > θ j t > t f∥∥i rl(t)
∥∥ ≤ θl l �= j ∈ V, t > 0

(37)

where t f is the instant at which the fault starts and
θk = (di + iσk)(β‖ẽky(0))‖ + β

√
n(1+ ξ̄ )), (k = j, l)

is the FDI threshold.

Remark 1 From (31), we can get that the fault φk only
affects the residual i rk(t) and it can not influence the
other residual i rl(t) computed by agent i . It means that
the residual components in the residual vector com-
puted by agent i are not influenced by each other. This
implies that the FDI scheme in (37) can fulfill the FDI
for multiple faulty agents.

Remark 2 Comparing with our early work [20], the
advantage of the FDI scheme proposed in this paper is
that agent i can monitor the overall system state even
if they do not directly connected. It means that we can
carry out the FDI for the whole system through any
agent i .

4 Simulation

In this section, anundirectedmulti-agent systemshown
in Fig. 1 is considered, where the agent 0 represents

Fig. 1 The network topology of leader–follower multi-agent
systems

the virtual leader, which is only connected with the
follower agent 1, and the arrow symbol between agent
1 and agent 0 represents the communication between
them is unidirectional. Without loss of generality, all
weights of edges are assumed to be 1, the initial states
of four agents are randomly chosen, the state of the
virtual leader is fixed to x0(t) = 2, and the distributed
disturbance bound in (2) is set to ξ̄ = 0.05. Observer
and control gain are set to k0 = 1.3 and β = 2. Next,
three examples are given to illustrate the validity of the
distributed FDI scheme.

Case 1: FDI for multi-agent systems without faulty
agent. Figure 2 is the state output of the leader–follower
multi-agent systems. It shows that all the follower
agents can track the leader agent in the presence of
disturbance if there is not any fault in the multi-agent
systems. For the purpose of FDI, we construct observer
and residual in themulti-agent systems. Figure 3 shows
the residual output, where

∥∥1ri (t)
∥∥ (i = 1, 2, 3, 4) rep-

resents the residual computed by agent 1, which is con-
cerned with agent j . The residual threshold is chosen
as θ = 0.08. It shows that

∥∥1ri (t)
∥∥ < θ . According

to the FDI criterion described in (37), we can get that
there is not any faulty agent. This means that the FDI
scheme proposed in this paper is valid for multi-agent
systems with disturbance and without faulty agent.

Case 2: FDI for single faulty agent. It is assumed that

there is only one fault described as φ2(t) =
{
0, t < 2
1, t ≥ 2

in the multi-agent systems. Figure 4 is the state out-
put of the leader–follower multi-agent systems with
a faulty agent. Although the states of the multi-agent
systems can achieve consensus, they failed in track-
ing with the leader in the presence of the faulty agent.
Hence, it shows that the leader–follower multi-agent
systems do not achieve leader–follower with a faulty
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Fig. 2 States of the leader–followermulti-agent systemswithout
fault
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Fig. 3 Residuals computed by agent 1 for the leader–follower
multi-agent systems without fault

agent. We construct observer and residual in the multi-
agent systems for FDI. The result of residual is pre-
sented in Fig. 5, where

∥∥1ri (t)
∥∥ (i = 1, 2, 3, 4) denotes

the residual computed by the agent 1, which is relative
to agent i . If we choose threshold θ = 0.08, we can
get that

∥∥1r2(t)
∥∥ > θ when t > 2s, and

∥∥1r j (t)
∥∥ < θ

( j = 1, 3, 4) for all t > 0. According to the FDI cri-
terion described in (37), it means that agent 2 is faulty
when t > 2s .

Case 3: FDI for multiple faulty agents. It is assumed
that there are two faults in the multi-agent systems,

which are described asφ2(t) =
{
0, t < 2
2, t ≥ 2

andφ3(t) =
{
0, t < 3
1, t ≥ 3

. The result of FDI is presented in Fig. 6.

If we choose threshold θ = 0.08, we can get that∥∥1r2(t)
∥∥ > θ when t ≥ 2s,

∥∥1r3(t)
∥∥ > θ when t ≥ 3s

and
∥
∥1ri (t)

∥
∥ < θ (i = 1, 4) for all t > 0. According to

the FDI criterion described in (37), we can get that the
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Fig. 4 States of the leader–follower multi-agent systems with a
fault
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Fig. 5 Residuals computed by agent 1 for the leader–follower
multi-agent systems with a fault
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Fig. 6 Residuals computed by agent 1 for the leader–follower
multi-agent systems with two faults

agent 2 is faulty when t > 2s and the agent 3 is faulty
when t > 3s. It means that the FDI scheme proposed
in this paper can carry out the FDI for multiple faults.
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5 Conclusion

In this paper, the problems of distributed FDI for
leader–follower multi-agent systems with disturbances
have been considered. For FDI purpose, an observer is
designedwhich can estimate the overall follower’s state
of the leader–follower multi-agent systems. Based on
the designed observer, a residual vector is introduced
and a distributed FDI scheme is proposed. Different
from previous works cited in this paper, using the dis-
tributed FDI scheme, each agent can fulfill the FDI
for multiple faulty agents even if they are not directly
connected. However, in this paper, we only considered
the FDI for first-order leader–follower multi-agent sys-
tems with fixed topology and delay less. In our future
work, FDI for high-order leader–follower multi-agent
systems with switched topology and communication
delay will be investigated.

Acknowledgements Thiswork is supported in part byNational
Natural Science Foundation of China under Grant 61374047 and
61203147, in part by US National Science Foundation under
Grant EPCN 1507096, and in part by Natural Science Foun-
dation of Jiangsu Higher Education Institutions under Grant
16KJB520003.

References

1. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and
cooperation in networked multi-agent systems. Proc. IEEE
95, 215–233 (2007)

2. Liu, C.L., Tian, Y.P.: Survey on consensus problem ofmulti-
agent systems with time delays. Control Decis. 24, 1600–
1601 (2009)

3. Oh, K.K., Park, M.C., Ahn, H.S.: A survey of multi-agent
formation control. Automatica 53(C), 424–440 (2015)

4. Cao, Y., Yu, W., Ren, W., Chen, G.: An overview of recent
progress in the study of distributedmulti-agent coordination.
IEEE Trans. Ind. Inform. 9, 427–438 (2013)

5. Boem, F., Ferrari, R.M.G., Parisini, T., Polycarpou ,M.M.:
Distributed fault detection for uncertain nonlinear systems:
a network delay compensation strategy. In: Proceedings of
the American Control Conference, Washington, DC, USA,
June, pp. 3549–3554 (2013)

6. Zhang, Q., Zhang, X.: Distributed sensor fault diagnosis in
a class of interconnected nonlinear uncertain systems. Ann.
Rev. Control 37, 170–179 (2013)

7. Panda, M., Khilar, P.M.: Distributed self fault diagnosis
algorithm for large scale wireless sensor networks using
modified three sigma edit test. Ad Hoc Netw. 25(PA), 170–
184 (2015)

8. Yan, X.G., Edwards, C.: Robust decentralized actuator fault
detection and estimation for large-scale systems using a slid-
ing mode observer. Int. J. Control 81, 591–606 (2008)

9. Zhang, Q.: Distributed sensor fault detection and isolation
for multimachine power systems. Int. J. Robust Nonlinear
Control 24, 1403–1430 (2014)

10. Meskin, N., Khorasani, K.: Actuator fault detection and iso-
lation for a network of unmanned vehicles. IEEE Trans.
Autom. Control 54, 835–840 (2009)

11. Zhang, D., Zhang, W., Yu, L., Wang, Q.G.: Distributed fault
detection for a class of large-scale systems with multiple
incomplete measurements. J. Frankl. Inst. 352, 3730–3749
(2015)

12. Wang, G., Yi, C.: Fault estimation for nonlinear systems by
an intermediate estimator with stochastic failure. Nonlinear
Dyn. 89, 1–10 (2017)

13. Wang, H., Ye, D., Yang, G.H.: Actuator fault diagnosis for
uncertain TS fuzzy systems with local nonlinear models.
Nonlinear Dyn. 76, 1977–1988 (2014)

14. Sundaram, S., Hadjicostis, C.N.: Distributed function calcu-
lation via linear iterative strategies in the presence of mali-
cious agents. IEEE Trans. Autom. Control 56, 1495–1508
(2011)

15. Pasqualetti, F., Drfler, F., Bullo, F.: Attack detection
and identification in cyber–physical systems. IEEE Trans.
Autom. Control 58, 2715–2729 (2013)

16. Shames, I., Teixeira, A.M.H., Sandberg, H., Johansson,
K.H.: Distributed fault detection for interconnected second-
order systems. Automatica 47, 2757–2764 (2011)

17. Teixeira,A., Shames, I., Sandberg,H., Johansson,K.H.:Dis-
tributed fault detection and isolation resilient to network
model uncertainties. IEEE Trans. Cybern. 44, 2024–2037
(2014)

18. Shi, J., He, X., Wang, Z., Zhou, D.: Distributed fault detec-
tion for a class of second-order multi-agent systems: an opti-
mal robust observer approach. IET Control Theory Appl. 8,
1032–1044 (2014)

19. Liu, X., Gao, X., Han, J.: Observer-based fault detection for
high-order nonlinear multi-agent systems. J. Frankl. Inst.
353, 72–94 (2016)

20. Quan, Y., Chen, W., Wu, Z., Peng, L.: Observer-based
distributed fault detection and isolation for heterogeneous
discrete-time multi-agent systems with disturbances. IEEE
Access 4, 4652–4658 (2016)

21. Arrichiello, F.,Marino, A., Pierri, F.: Observer-based decen-
tralized fault detection and isolation strategy for networked
multirobot systems. IEEE Trans. Control Syst. Technol. 23,
1465–1476 (2015)

22. Marino, A., Pierri, F., Chiacchio, P., Chiaverini, S.: Dis-
tributed fault detection and accommodation for a class
of discrete-time linear systems. In: Proceedings of IEEE
International Conference on Information and Automation,
Lijiang, China, August, pp. 469–474 (2015)

23. Hong, Y., Chen, G., Bushnell, L.: Distributed observers
design for leader-following control of multi-agent networks.
Automatica 44, 846–850 (2008)

24. Wu, Z., Peng, L., Xie, L., Wen, J.: Stochastic bounded con-
sensus tracking of leader–followermulti-agent systemswith
measurement noises based on sampled-data with small sam-
pling delay. Phys. A 392, 918–928 (2013)

25. Xu,X., Chen, S., Huang,W., Gao, L.: Leader-following con-
sensus of discrete-time multi-agent systems with observer-
based protocols. Neurocomputing 118, 334–341 (2013)

123



Distributed fault detection and isolation for leader–follower multi-agent systems 871

26. Djaidja, S.,Wu,Q.H., Fang,H.: Leader-following consensus
of double-integrator multi-agent systems with noisy mea-
surements. Int. J. Control Autom. Syst. 13, 17–24 (2015)

27. Hu, J., Hong, Y.: Leader-following coordination of multi-
agent systems with coupling time delays. Physica A 374,
853–863 (2007)

28. Zhou, B., Liao, X.: Leader-following second-order consen-
sus in multi-agent systems with sampled data via pinning
control. Nonlinear Dyn. 78, 555–569 (2014)

29. Li, W., Chen, Z., Liu, Z.: Leader-following formation con-
trol for second-order multiagent systems with time-varying
delay and nonlinear dynamics. Nonlinear Dyn. 72, 803–812
(2013)

30. Peng, Z., Wang, D., Li, T., et al.: Leaderless and leader-
follower cooperative control of multiple marine surface
vehicles with unknown dynamics. Nonlinear Dyn. 74, 95–
106 (2013)

31. Zhang, K., Liu, G., Jiang, B.: Robust unknown input
observer-based fault estimation of leader-follower linear
multi-agent systems. Circuits Syst. Signal Process. 36(2),
1–18 (2016)

32. Antonelli, G., Arrichiello, F., Caccavale, F., Marino, A.: A
decentralized controller–observer scheme for multi-agent
weighted centroid tracking. IEEE Trans. Autom. Control
58, 1310–1316 (2013)

33. Hu, G.D., Liu, M.: The weighted logarithmic matrix norm
and bounds of the matrix exponential. Linear Algebra Appl.
390, 145–154 (2004)

123


	Distributed fault detection and isolation for leader–follower multi-agent systems with disturbances using observer techniques
	Abstract
	1 Introduction
	2 Problem statement
	3 Main results
	3.1 State observer
	3.2 Fault detection and isolation

	4 Simulation
	5 Conclusion
	Acknowledgements
	References




