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Abstract In this paper, we investigate the behavior of
an underactuated mixed-dynamic nonholonomic sys-
tem, a Chaplygin sleigh, subjected to viscous dissipa-
tion and sinusoidal forcing. The viscous dissipation is
in the allowable directions of motion and preserves the
nonholonomic constraint. The inclusion of such dis-
sipative effects produces limit cycle oscillations in a
reduced velocity space. We find analytical approxima-
tions to such limit cycles and use these to determine
sinusoidal inputs to control the speed of the sleigh.
We further show small changes to the sinusoidal input
can steer the sleigh to any desired direction. Invariant
structures like limit cycles can be expected to be seen in
the dynamics of other nonholonomic systems when the
effects of viscous dissipation are included. The findings
we report here are therefore applicable to a broad class
of both terrestrial and aquatic locomotion systems with
nonholonomic constraints.

Keywords First keyword · Second keyword · More

1 Introduction

The Chaplygin sleigh is a canonical system in the study
of nonholonomic mechanics [1–5]. The sleigh has a
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wheel or a knife edge at one end, which does not
allow any velocity in a transverse direction, see Fig. 1.
The Chaplygin sleigh is a mixed-dynamic system [6]
with one nonholonomic constraints and three degrees
of freedom with the equations of motion of the sleigh
having a drift term. One of the first papers to inves-
tigate the control of the motion of the sleigh was by
Osborne and Zenkov [7], where the means of control
was a particle that could move anywhere on the sleigh.
With these two degrees of actuation, it was shown that
the sleigh could be steered to pass through any point
in the configuration space or workspace. A modified
version of the sleigh, called the Chaplygin beanie, was
introduced in [8]. The Chaplygin beanie contained an
actuated balanced rotor pinned to the sleigh. The sleigh
with the balanced rotor is an underactuated control sys-
tem, since it has only one control input, the torqueon the
rotor. In [8], it was shown that any desirable change in
the heading angle of the sleigh can be achieved through
proportional control, but the speed of the sleigh could
not be controlled. This is because for the classical sleigh
the energy can only increase. This has also been dis-
cussed in [9,10]. A consequence is that limit cycles
in the reduced velocity space are only possible when
some energy dissipation is introduced. An open loop
control of the sleigh’s heading was proposed in [11]
for the Chaplygin sleigh with the balanced rotor. Other
variants of the Chaplygin sleigh are also addressed in
recent works [12–15].
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A piecewise smooth constraint was considered in
[16,17] which allowed the sleigh to slip in the trans-
verse direction at the knife edge if the constraining
force of friction exceeded a threshold. The Coulomb
friction model produced stick-slip motion of the sleigh
such that the speed and heading of the sleigh could be
controlled for a small range of velocities. Separately,
in the context of nonholonomic systems, the effects
of viscous dissipation in the form of Reyleigh dissipa-
tion function were considered in [18] where the effects
of the dissipation on several gaits of the snakeboard
were shown. In [19], the motion planning problem for
the snakeboard in the presence of viscous dissipation
was investigated. The viscous dissipation in these cases
preserves the nonholonomic constraint, but dissipates
energy at a rate proportional to square of the velocity
in the direction orthogonal to the nonholonomic con-
straint. A viscous sleighwas also recently considered in
[20], where regular and chaotic dynamics were shown
for the case of impulsive torques.

The introduction of viscous friction is motivated
by the fact that dissipation of kinetic energy exists in
robotic systems with nonholonomic constraints even
in the absence of slip-induced dissipation. A second
motivation is due to recent work related to a fish-like
swimming robot. The interaction between a Joukowski
foil-shaped body and the fluid through vortex shedding
has been shown to be an affine nonholonomic constraint
[21,22]. Moreover, this constraint has a formal simi-
larity to that of the constraint on the Chaplygin sleigh.
Experimental data related to the motion of a swimming
robot propelled by an internal rotor show that itsmotion
is very similar to that of the Chaplygin sleigh [23]. The
Chaplygin sleigh thus serves as a terrestrial analogue
of swimming robots, and this analogy can be exploited
to understand the more complicated dynamics of fluid–
robot interaction.

In this paper, an extension of previous work [24], we
investigate the motion of a Chaplygin sleigh under the
influence of viscous dissipation. The sleigh’s motion
is controlled through the torque applied on a balanced
rotor pinned to the sleigh. The locomotion character-
istics of many animals, including those of fish, show
that rhythmic or periodic actuation for instance through
central pattern generators plays an important role [25].
There has also been a rich history within the area of
nonholonomic mechanics, where motion planning was
achieved through sinusoidal inputs [26]. Motivated by
this, we consider the dynamics of the sleigh when

the balanced rotor executes sinusoidal motion. Such
motion of the rotor is shown to lead to limit cycles in
the reduced velocity space of the sleigh. We then use
the harmonic balance method [27,28] to control both
the speed and the heading of the sleigh. While motion
planning ofmixed-dynamic nonholonomic systems has
been studied extensively in the past, see for instance,
[29,30], the work presented here is the first to exploit
the limit cycles in the reduced velocity space to control
the motion of the sleigh.

2 Equations of motion

A schematic diagram of the Chaplygin sleigh is shown
in Fig. 1. The sleigh has massm and moment of inertia
I . The point P represents the point of contact of sharp
knife edge or wheel with the ground. At this point, the
sleigh is not allowed to slip in the transverse direc-
tion. The axes Xb and Yb are body fixed where Xb

is aligned with the line between P and the center of
mass. The position of the center of mass of the sleigh
is denoted by (x, y), and the orientation of the sleigh
is θ . The distance between P and the center of mass
is b. The sleigh carries a balanced rotor (Ir), whose
center coincides with the center of mass of the sleigh.
The relative angle that the rotor makes with the body
axes is denoted by φ. The configuration manifold for
the system is Q = SE2 × S1, where S1 is the shape
or base manifold that is parametrized by the relative
angle the rotor makes with the Xb-axis. The so-called
fiber manifold is SE2 that is parameterized by the x, y
coordinates of the center of mass of the sleigh and the

P

(x,y)

X

Y

XbYb

θ

b

φ

Fig. 1 Chaplygin sleigh with a balanced rotor. The rotor is
placed at distance of b from the rear contact
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orientation of the body axis with respect to the fixed
inertial axis. The equations of motion are derived using
the Lagrange multiplier method. The generalized coor-
dinates are q = (x, y, θ, φ), and the generalized veloc-
ities are q̇ = (ẋ, ẏ, θ̇ , φ̇). Since there are no potential
forces, theLagrangian is the kinetic energy of the sleigh
(1),

L = 1

2
m(ẋ2 + ẏ2) + 1

2
I θ̇2 + 1

2
Ir (θ̇ + φ̇)2. (1)

The system is subject to the followingnonholonomic
constraint (2), which ensures that the transverse veloc-
ity ( along the Yb direction) of the point of contact P
be equal to zero,

− ẋ sin θ + ẏ cos θ − bθ̇ = 0 (2)

with Pfaffian one form being

− sin θdx + cos θdy − bdθ = 0.

The viscous dissipation is due to the longitudinal
velocity of the sleigh, u = ẋ cos(θ) + ẏ sin(θ) along
the body Xb-axis. The Rayleigh dissipation function is

Rw = 1

2
cu2 = 1

2
c(ẋ cos θ + ẏ sin θ)2.

The Euler–Lagrange equations are of the following
form

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= Ckλ + Qqk (3)

where λ is the Lagrangemultiplier,Ck is the coefficient
corresponding to one forms dqk , and Qqk = − ∂Rw

∂qk
is

the dissipation force due to dissipation at the wheel.
The dissipation forces are calculated as

Qx = − c(ẋ cos2 θ + ẏ sin θ cos θ)

Qy = − c(ẏ sin2 θ + ẋ sin θ cos θ)

Qω = 0.

With this formulation, the Euler–Lagrange equa-
tions are readily obtained to be

mẍ = − λ sin(θ) + Qx

mÿ = λ cos(θ) + Qy

mθ̈ = − bλ − Irφ̈ + Qθ .

The velocities of the center of the cart can be written
in terms of the velocity of the point P and the angular
velocity of the sleigh, ω = θ̇ , to obtain the reconstruc-
tion equations which define the path of the body on the
fiber manifold.

ẋ = u cos θ − ωb sin θ (4)

ẏ = u sin θ + ωb cos θ. (5)

ẍ = u̇ cos θ − uω sin θ − ω2b cos θ − ω̇b sin θ

ÿ = u̇ sin θ + uω cos θ − ω2b sin θ + ω̇b cos θ.

Using the above expressions, the equations of
motion can be reduced to

u̇ = bω2 − c

m
u (6)

ω̇ = −mbuω

I + Ir + mb2
− Irφ̈

I + Ir + mb2
(7)

θ̇ = ω. (8)

In the absence of any actuation from the rotor, i.e., φ̈,
the system has one globally asymptotically stable fixed
point at (u, ω) = (0, 0).

3 Sinusoidal motion of the rotor

We analyze the behavior of the sleigh when the bal-
anced rotor executes sinusoidal motion. In the dynam-
ical system described by (6) and (7), we set − Irφ̈ =
A sinΩt . We first show that the velocity of the sleigh is
bounded for any sinusoidal input. We further show that
the average kinetic energy of the sleigh, averaged over
a time period T = 2π

Ω
, converges to a constant value.

3.1 Bounded velocities

We first establish that the dynamical system (6) and (7)
has no fixed points when− Irφ̈ = A sinΩt . For if such
a fixed point exists, it must satisfy

bω2 − c

m
u = 0

−mbuω + A sinΩt

I + Ir + mb2
= 0.
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This requires that m2b2ω3 = Ac sin(Ωt) which is not
satisfied by any fixed value of ω if A �= 0.

Next, we consider four possible scenarios in which
u(t) or ω(t) could be unbounded and show that these
contradict (6) and (7).

1. Suppose u → −∞. By examining (6) u̇ > 0 if u <

0. Therefore u(t) cannot be a decreasing function
if u < 0 and the case u → −∞ can be ruled out.

2. Suppose u → ∞, and ω ∈ C ⊂ R, a bounded
subset. Let ωmax be the highest value of ω ∈ C .

Then, for u >
mbω2

max
c , u̇ < 0. Therefore, u will

have to be a decreasing function for large enough
values of u contradicting the assumption that u →
∞.

3. Suppose ω → ∞ or ω → −∞ and u ∈ C ⊂ R,
a bounded subset. Once again, (6) prohibits such
unbounded behavior. We can infer that this is not
possible because if umin ≤ u ≤ umax, then for
ω2 > c

bm umax, u̇ > 0 and u must increase past
umax.

4. Suppose u → ∞,ω → ∞ orω → −∞. From (7)
we can see that if u > 0 and ω > 0, then ω must be
a decreasing function when uω > Ir A

mb . Therefore,
ω cannot become positively unbounded. Similarly,
if u > 0 andω < 0 then for−uω > Ir A

mb , ω̇ > 0 and
ω must increase. So, ω cannot become negatively
unbounded.

We can therefore conclude that the solution of (6) and
(7) has to be bounded.

3.2 Bounded average kinetic energy

The kinetic energy of the sleigh is bounded, since the
velocities u and ω are bounded. Furthermore, numer-
ics indicate that starting from rest the kinetic energy
of sleigh varies periodically after an initial transient.
Figure 2a shows the evolution of the kinetic energy of
sleigh due to the sinusoidal motion of the rotor. The
kinetic energy initially increases from zero and then
decays somewhat before beginning to oscillate period-
ically. Figure 2b shows a plot of the kinetic energy at
points t = t0 + kT for t ≥ 50, k = 1, 2, 3 . . ., where
T = 2π

Ω
. The value of the kinetic energy at these time

intervals L(t0 + kT ) reaches a constant. This indicates
that the kinetic energy of the sleigh varies periodically
when the rotor is forced to execute sinusoidal motion.

0 50 100
time

0

1

2

3

4

L

(a)
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time
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1.028
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Fig. 2 a Kinetic energy L over time and b The kinetic energy
of the sleigh at intervals of time T for t > 50

The change in kinetic energy in a time period T is∫ t0+T

t0

d

dt
L dt =

∫ t0+T

t0

(
Irφ̇φ̈ + Irφ̇ω̇ − cu2

)
dt

(9)

where (6) and (7) are used to substitute for u̇. Since
− Irφ̈ = A sinΩt , the first integral

∫ t0+T
t0

Irφ̇φ̈dt on
R.H.S of (9) vanishes. The second integral can be
reduced through integration by parts to obtain

∫ t0+T

t0
Irφ̇ω̇dt = φ̇ω

∣∣∣t0+T

t0
−

∫ t0+T

t0
Irφ̈ωdt.

The change in kinetic energy of the sleigh in one time
period of actuation is∫ t0+T

t0

d

dt
L dt = φ̇ω

∣∣∣t0+T

t0
−

∫ t0+T

t0
(Irφ̈ω − cu2)dt.

(10)

Setting t0 = nT for n ≥ 1, one can obtain a sequence,
{ΔEn} of changes in the kinetic energy of the sleigh in
each time period,

ΔEn =
∫ (n+1)T

nT

d

dt
L dt.

The sequence {ΔEn} is bounded since the total energy
of the sleigh is bounded. By virtue of the Bolzano–
Weierstrass theorem, the bounded sequence contains
a convergent subsequence. The sequence {ΔEn} con-
verges to zero if solutions to (6) and (7) converge to a
limit cycle with frequency that is an integer multiple of
the forcing frequencyΩ . A sufficient condition for this
is that the velocities are u and ω converge to periodic
functions with frequencies that are integer multiples
of the forcing frequency Ω , with appropriate time T -
averages. The first term on the L.H.S of (10) vanishes
since φ̇(t0)ω(t0) = φ̇(t0 + T )ω(t0 + T ). The next two
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Fig. 3 Simulation of chaplygin sleigh with (u(0), ω(0)) =
(0, 0) with the input being Irφ̈ = −2 sin t , i.e., A = 2 and
Ω = 1

terms on the L.H.S of (10) sum to zero if the time T -
average of Irφ̈ω−cu2 is zero. This follows from a basic
result in analysis that a function f (t) is T -periodic if
and only if

∫ t0+T

t0
f (t)dt = f T

for any t0, where f is time T -average of the function f .
Therefore, a period-T limit cycle exists in the reduced
velocity space if and only if the change in energy of the
sleigh in a time interval T on the limit cycle is zero,

ΔE = −
∫ t0+T

t0
(Irφ̈ω − cu2)dt = 0. (11)

3.3 Limit cycles in the reduced velocity space

Figure 3a–c shows the results of a simulation of (6)–(8)
under input of the form− Irφ̈ = A sin(Ωt) and Fig. 3d
shows the path of the sleigh in the x − y plane obtained
through the reconstruction equation (4)–(5).

We see from Fig. 3a–c that the velocities u and ω

are T -periodic. The solutions to (6) and (7) converge to
a limit cycle in the velocity space as shown in Fig. 4.
The figure 8 shape of the limit cycle is due to the fact
that the frequency of oscillations in u is double the
frequency of oscillations in ω as shown in Fig. 3a, b. A

0 0.5 1 1.5
ux

-1

-0.5

0

0.5

1

1.5

ω

Fig. 4 Trajectory of the sleigh with (u(0), ω(0)) = (0, 0)
(dashed line) and predicted limit cycle from harmonic balance
method (solid line). The input is Irφ̈ = −2 sin t , i.e., A = 2 and
Ω = 1

similar phenomenon has been observed in the twistcar
[31] under periodic input.

Figure 3d shows that sinusoidal motion of the rotor
can cause the sleigh to exhibit serpentine motion. Fur-
thermore, after the initial transient motion decays, the
average heading of the sleigh remains constant, say
θc with some fixed time T -average velocity vnet. Let
(x(t1), y(t1)) be a point on the path of the sleigh in the
x − y plane that is generated by the limit cycle in the
reduced velocity space, then vnet is defined as

vnet= 1

T

√
(x(t1+T )−x(t1))2+(y(t1 + T ) − y(t1))2.

(12)

The average velocity vnet is the velocity which would
actually be useful in developing motion planning for
the sleigh under sinusoidal inputs.

In this paper, we address the problem of controlling
vnet by choosing A. First, we employ the harmonic bal-
ance technique to show that given A the limit cycle
can be accurately predicted. Then we take A to be an
unknown and apply averaging to reduce the problem of
controlling vnet to solving a nonlinear system of equa-
tions. We then employ the Newton–Raphson algorithm
to solve the system and obtain A. Finally, we check the
accuracy of our prediction with simulations.

4 Approximate solution of the limit cycle

An approximate solution to the limit cycle can be found
using the harmonic balance method. Following this
approach and motivated by the numerical simulation, 3
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we will make the ansatz that u and ω are T -periodic
functions The harmonic balance technique assumes the
outputs of a system to be sinusoidal and attempts to use
the equations of motion to predict the limiting trajec-
tory. From the simulations, we see that only harmonics
up to the second order appear in the velocities. We use
this as motivation to neglect periodic terms with fre-
quency greater than 2Ω . Suppose that u and ω are of
the form

u = uc + a1 sinΩt + a2 cosΩt

+ Au sin 2Ωt + Bu cos 2Ωt

ω = Aw sinΩt + Bw cosΩt

+ b1 sin 2Ωt + b2 cos 2Ωt .

The angular velocitywill assumed to periodicwith zero
mean since numerical simulations such as those shown
in Fig. 4 indicate that limit cycles in the velocity space
are symmetric about ω axis. The assumed form of u
and ω will be substituted into (6) and (7). In apply-
ing the harmonic balance approach, we will substitute
our assumed solutions into the equations of motion and
equate coefficients on both sides. Consider u̇, substitut-
ing the assumed periodic form into (6) and (7),

u̇ = A2
wbm + B2

wbm − 2cuc − c

m
(a1 sinΩt

+ a2 cosΩt)

+ (2AwBwb − 2Auc) sin 2Ωt

+ (−A2
wbm + b2wbm − 2Buc) cos 2Ωt . . .

A direct differentiation of the assumed periodic form
of u yields

u̇ = −Ωa2 sinΩt + Ωa1 cosΩt

− 2ΩAu sin 2Ωt + 2ΩAw cos 2Ωt .

Equating coefficients of sinΩt and cosΩt , we get

−Ωa2 = − c

m
a1, Ωa1 = − c

m
a2

which is only satisfied if a1 = a2 = 0. Substituting the
assumed periodic form of ω and u into the right-hand
side of (7),

ω̇ = (−Au Bwbm + AwBubm − 2Aubmuc + 2A)

mb2 + I + Ir
sin(Ωt)

+ (−Au Awbm − Bub2bm − 2Bwbmuc)

mb2 + I + Ir
cos(Ωt) . . . (13)

The interesting thing to note is that no second-order
harmonics appear in the (13). By equating coefficients
of sin(2Ωt) and cos(2Ωt) with the derivative of our
assumed ω, we get simply

− 2Ωb3 = 0, 2Ωb4 = 0

or b3 = b4 = 0. Therefore, the velocity u has only
secondharmonicswhile the angular velocity,ω has only
first harmonic,

u = uc + Au sin(2Ωt) + Bu cos(2Ωt) (14)

ω = Aw sin(Ωt) + Bw cos(Ωt). (15)

In order for this solution to exist, it must satisfy (6)–
(7). Substituting (14) and (15) into (6)–(7) and simpli-
fying,

u̇ = A2
wbm + B2

wbm − 2cuc

+ (2AwBwb − 2Auc) sin(2Ωt)

+ (−A2
wbm + B2

wbm − 2Buc) cos(2Ωt) . . .

ω̇ = (−Au Bwbm + AwBubm − 2Awbmuc + 2A)

mb2 + I + Ir
sin(Ωt)

+ (−Au Awbm − BuBwbm − 2Bwbmuc)

mb2 + I + Ir
cos(Ωt) . . .

The higher harmonics are neglected as part of the
harmonic balance method. We will later justify this
assumption with numerical results. A direct differenti-
ation of (14) and (15) gives

u̇ = − 2ΩBu sin(2Ωt) + 2ΩAu cos(2Ωt)

ω̇ = −ΩBw sin(Ωt) + ΩAw cos(Ωt).

To determine uc and the coefficients Au , Bu , Aw and
Bw, we simply equate the coefficients of the above two
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Sinusoidal control and limit cycle analysis 841

systems. This yields the following system of nonlinear
equations

0 = A2
wbm + B2

wbm − 2cuc (16a)

− 4mΩBu = 2AwBwbm − 2Auc (16b)

4mΩAu = −A2
wbm + B2

wbm − 2Buc (16c)

− 2αΩBw = −Au Bwbm + AwBubm

− 2Awbmuc + 2A (16d)

2αΩAw = −Au Awbm − BuBwbm − 2Bwbmuc.
(16e)

where we denote α = mb2+ I + Ir to keep the notation
compact. We employ the Newton–Raphson method to
solve the equations (16) numerically.

To illustrate the calculation of the coefficients, we
choose the sleigh parameters and the input, φ̈ to be the
same as the parameters for the simulation in Fig. 4.
Performing the calculations yields uc = 0.6341, Au =
0.1103, Bu = 0.1071, Aw = 0.2069 and Bw =
−0.7689 after just 4 iterations of the Newton–Raphson
method. To compare this solution with the numeri-
cal simulation, we may define Cu = √

A2
u + B2

u and
Cw = √

A2
w + B2

w, which are the amplitudes of u and
ω, respectively. In a similar manner, we will define C∗

u
andC∗

w to be the amplitude of u andω on the limit cycle
in the numerical simulation. This allows us to define the
error between the limit cycle solution obtained through
the harmonic balance method and the limit cycle solu-
tion obtained through a numerical simulation,

e =
√

(uc − u∗
c)

2 + (Cu − C∗
u )

2 + (Cw − C∗
w)2.

(17)

The error was found to be e = 8.6e − 3 which is two
orders ofmagnitude smaller than the values of the coef-
ficient (uc, Au, Bu, Aw, Bw). In Fig. 4, we can see fur-
ther agreement between the analytical solution of the
limit cycle and one obtained through direct numerics.
The dotted graph shows a trajectory with generic ini-
tial values of (u, ω) converging to the analytically pre-
dicted limit cycle (solid line).

Recall the expression for the change in the kinetic
energy of the sleigh over time period (10). By substi-
tuting (14) and (15) into (11), we get

ΔE = AAw − c(A2
u + B2

u + 2u2c) = 0. (18)

Recall that the harmonic balance approximation sat-
isfies (16a-e). We can take the following combinations:

Suppose we denote by X1 and X2 the following expres-
sions,

X1 = (R.H.S(16b)Au + (R.H.S(16c)Bu = 0

X2 = (R.H.S(16d)Au + (R.H.S(16e)Bu = 0,

then
1

2
(X1+X2) = 0=AAw − c(A2

u + B2
u + 2u2c) = ΔE .

(19)

which matches with (18). This confirms that the solu-
tion of the limit cycle obtained through the harmonic
balance approach is such that the time T -average of the
energy of the sleigh on the limit cycle is constant.

5 Feedforward velocity control of the sleigh

The harmonic balancemethod can be used to determine
the input, Irφ̈ = − A sinΩt required for the sleigh to
move at a prescribed vnet or average velocity. This is
equivalent to controlling the velocity of the sleigh to lie
on a chosen limit cycle in the reduced velocity space.
The asymptotic angle θc is due to the transient phase of
the motion, and it is not predicted by the Harmonic bal-
ance approach. However, special cases can treated and
in this section we develop a technique for controlling
vnet.

5.1 Average velocity of the sleigh

We first derive an expression for the average velocity of
the sleigh, when its longitudinal velocity and angular
velocity lie on a limit cycle. We will choose the input
control parameter to be the amplitude of the torque on
the rotor, A, and leave the input frequency Ω constant.
Equations (6) and (7) are independent of θ , so the even-
tual value of the heading does not influence the average
speed of the sleigh. Therefore, in calculating vnet we
may set θc = 0. This simplifies vnet (23) to

vnet = 1

T
(x(t1 + T ) − x(t1)) = 1

T

∫ t1+T

t1
ẋdt. (20)

This average velocity can then be put in terms of u and
ω using (4)

vnet = 1

T

∫ t1+T

t1
(u cos θ − ωb sin θ)dt. (21)
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842 V. Fedonyuk, P. Tallapragada

Without any loss of generality, we may choose t1 = 0.
We can simplify the second of the integrals on the right-
hand side of (21),

1

T

∫ T

0
ωb sin θdt = − b

T

∫ θ(T )

θ(0)
sin θdθ

= b

T
(cos(θ(T )) − cos(θ(0)). (22)

where used ωdt = dθ to change the variable of inte-
gration.

We will now use (14) and (15) to compute the inte-
grals in (21) and (22). Furthermore, we can also obtain
θ(T ) through such a substitution

θ(T ) = θ(0) +
∫ T

0
ωdt = θ(0).

This follows from the fact that ω is periodic with zero
mean. The average velocity vnet is then

vnet = 1

T

∫ T

0
u(t) cos(θ(t))dt. (23)

5.2 Feedforward velocity control

The integral leftover in (23) cannot be evaluated analyt-
ically, since a substitution of the expression for θ leads
to terms such as cos(sinΩt) in the integrand. This inte-
gral will therefore be computed numerically in an iter-
ative manner. Considering the amplitude of the input
torque on the rotor, A to be an unknown (23) together
with (16) form a system of 6 equations and 6 unknowns
in A and the variables (uc, Au, Bu, Aw, Bw). Solving
this system for some desired vnet and finding the A
required will allow us to control the velocity of the
sleigh. In order to solve the system of six equations, we
once again employ the Newton–Raphson algorithm.

To illustrate this process, suppose we want the
sleigh to be on a limit cycle such that vnet =
0.2. Solving system (23), (16) yields the solution
(uc, Au, Bu, Aw, Bw, A) = (0.2106, 0.0466, 0.0208,
− 0.0400, 0.4571,− 1.1403) after 9 iterations of the
Newton Raphson algorithm. This means that we must
choose A = −1.1403 to get a translational speed of
vnet = 0.2.

The error in vnet between the calculation (23) that
relies on the harmonic balance approachwith respect to
the value obtained from a direct numerical simulation,
can be quantified as
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Fig. 5 Simulation of Chaplygin sleigh with (u(0), ω(0)) =
(0, 0). The input is torque has amplitude A = − 1.1403 and
frequency Ω = 1

ev = ||vnet − v∗
net || (24)

where v∗
net is the average velocity of the sleigh found

from the simulation using (20). The results of the sim-
ulation of the motion of the sleigh due to the chosen
input, A = −1.1403 and Ω = 1 are shown in Fig. 5.
The velocity u of the rear wheel/knife edge is a periodic
function with a nonzero mean, while the angular veloc-
ity of the sleigh is a periodic function with zero mean.
The heading angle of the sleigh, θ , is also periodic with
a nonzero mean, which is the average heading of the
sleigh.

The actual net translational velocity was found to
converge to v∗

net = 0.20049, while our control algo-
rithm gave a vnet = 0.2 with an error of 4.9 × 10−4.
A plot of the error against t2 can be seen in Fig. 6. The
error is large initially, when u(t), ω(t) are far from the
limit cycle. As these velocities converge to the limit
cycle, lim sup ev(t) → 0.

6 Simultaneous control of vnet and θc

The average orientation of the sleigh θc is due to the
transient phase of motion, when the angular velocity
of the sleigh is far from being a periodic function.
This means that we cannot use the harmonic balance
approach to determine the average heading. It is also
possible that in practice the average orientation of the
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Fig. 6 Error in vnet for theChaplygin sleighwith (u(0), ω(0)) =
(0, 0). The input is torque has amplitude A = −1.1403 and
frequency Ω = 1

sleigh would not remain constant due to unaccounted-
for dynamic effects and disturbances. This motivates
the use of feedback to control the heading of the sleigh.

6.1 Integral control of the average heading angle

Since the velocities (u, ω) of the sleigh converge to a
limit cycle, we wish to use a controller that does not
depend on the immediate state. The steady feedforward
sinusoidal input takes care of the fast dynamics. For this
reason, we define our error in terms of an integral over
one time period (25). By defining the feedback error
in this way, we ensure that the integral control remains
close to zero once the sleigh is on the limit cycle and
has achieved its desired orientation θr.

eθ (t) =
∫ t

t−T
(θ(t) − θr)dt . (25)

This allows us to add a feedback term TI = −KI eθ

to the torque which accounts for deviations from the
reference angle θr. The input torque becomes

− Irφ̈ = A sin(Ωt) + TI (26)

where the first term, designed through harmonic bal-
ance method, generates forward motion. The second
term adjusts the heading angle of the sleigh. As the tra-
jectory approaches the limit cycle in the reduced veloc-
ity space with the desired orientation, the second term
in (26) converges to zero.

6.2 Simulation

We demonstrate the ability of the proposed control law
to steer the sleigh with results of a simulation. The

sleigh will be required to track vnet = 0.2, while first
having an average heading of θ = 0 and later making
a turn to θ = π

2 still tracking vnet = 0.2. The reference
angle is

θr =
{
0 t < 150
π
2 t ≥ 150.

The results of the simulation of the sleigh complet-
ing this maneuver are in Fig. 7. From Fig. 7a, c we see
that the sleigh acquires a large heading angle from the
initial swing of the rotor; however, the integral control
quickly begins to correct for it and the sleigh’s average
heading converges to zero. After t = 150, the sleigh
begins to turn, ultimately changing its average head-
ing by 90◦. The overshoot and settling time depend on
the integral control parameter KI . In this case, it takes
approximately 90s for error in the average heading
angle to become negligible. Simultaneously, a constant
amplitude sinusoidal torque is applied determined from
harmonic balance method that ensures that the average
speed of the sleigh converges to vnet = 0.2, as seen in
Fig. 7b. The graph of TI is shown in Fig. 8a, and the
graph of the total input torque is shown in Fig. 8b. The
input torque, TI , to steer the sleigh is small compared
to the torque required to propel the sleigh forward. The
sleigh with average straight line motion can therefore
be easily steered by small changes to the total input
torque.

We see that the input required to drive θc is small
compared to the inputwe are already applying to propel
the sleigh. We also see in Fig. 8a that the input due to
the integral control goes to zero during both stages of
motion as we hoped.

7 Effect of forcing amplitude and frequency on
motion

The motion of the sleigh due to changes in the ampli-
tude and frequency of oscillation of the rotor shows
a rich variety of dynamics. The effect of variations in
the forcing amplitude A and the frequency Ω on the
average longitudinal velocity u0 of the knife edge and
hence the average velocity vnet of the sleigh is shown
in 9.

The average longitudinal velocity of the wheel u0
only increases with amplitude and shows little varia-
tion with respect to the forcing frequency Ω at low
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Fig. 7 Simulation of the chaplygin sleigh tracking a turn with
(u(0), ω(0)) = (0, 0). The sleigh first tracks a reference of θr =
0, and then at t = 150s the control objective is changed to θr =
π
2 . The integral control parameter is KI = 0.003

amplitudes. This means that the instantaneous speed
of the sleigh along its path is higher for higher-
amplitude input. The average velocity of the sleigh
in the plane vnet appears to reach a local maximum
and then decreases to zero before increasing again for
higher amplitudes.

Figure 10 shows a plot of u0 and vnet for a fixed Ω

and a large range of amplitudes. We note that although
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Fig. 8 Required input for turning simulation. Input due to inte-
gral control is shown in (a) and total input in (b)
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0 500

(a) (b)

1000

A

0

20

40

60

80

100

u 0

0 500 1000

A

0

5

10

15

20

25

v ne
t

Fig. 10 Velocity of the sleigh for different amplitudes. a shows
u0 and b shows vnet for amplitudes of up to 1000 with Ω set to
15.5

u0 monotonically increases with A, vnet can decrease
or increase.

Figure 11 shows the transitions in steady paths of
the sleigh in x − y plane as A increases. These are
the paths of the sleigh when the velocities u and ω

are on or very close to the limit cycle in the reduced
velocity space. The net displacement of the sleigh in a
time period T shrinks, with the path curving back onto
itself, as illustrated in the paths for A = 5 and A = 10.
As A increases further, path of the sleigh forms a closed
loop at A ≈ 16.82. This is when vnet converges to zero
for the first time. As A increases further, vnet becomes
nonzero again and the figure eight path breaks open
to produce a net displacement, as shown for A = 20.
Larger values of A lead to the path increasingly close
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shown for t > 4T allowing for the velocities u andω to converge
to the limit cycle. The trajectories for the transient phase are not
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Fig. 12 Simulations of the chaplygin sleigh executing a closed
trajectory in the (x, y) plane. Input parameters are Ω = 1 and a
A = 16.82, b A = 175.4

onto itself, eventually leading to another closed path
for A ≈ 175.4 as shown in Fig. 12b.

8 Conclusion and discussion

The motion of the Chaplygin sleigh under the effect of
viscous dissipation and periodic forcing exhibits a sta-
ble limit cycle in the reduced velocity space. We find
an analytical approximation for the limit cycle solution
with the use of the harmonic balance method. Further-
more, we use the harmonic balance method to control
the average velocity of the sleigh by using the ampli-
tude of the rotor’s motion as a control input. We also
show that the heading of the sleigh could be controlled
simultaneously using integral control. The utility of the
proposed approach was demonstrated through simula-
tions.

The analysis of the limit cycles of the Chaplygin
sleigh in this paper opens the possibility that other
mixed-dynamic nonholonomic systems that are sub-

ject to viscous friction in the allowable directions of
motion also have stable limit cycles in their reduced
velocity or nonholonomic momentum space when sub-
jected to periodic forcing. The algorithm to control to
the average velocity and heading can then be useful in
the motion planning for other nonholonomic systems
and robots based on them.

Acknowledgements This paper is based upon work supported
by the National Science Foundation under Grant Number CMMI
1563315.

Compliance with ethical standards

Conflict of interest The authors have no conflict of interest to
report.

References

1. Chaplygin, S.A.: On the theory of motion of nonholonomic
systems. The theorem on the reducing multiplier. Math. Sb.
1, 303–314 (1911)

2. Caratheodory, C.: Der schlitten. J. Appl. Math. Mech. 13,
71–76 (1933)

3. Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic
Systems. AMS, Providence (1972)

4. Blochm, A.M.: Nonholonomic Mechanics and Control.
Springer, Berlin (2003)

5. Chaplygin, S.A.: On the theory of motion of nonholonomic
systems. The reducing-multiplier theorem. Regul. Chaotic
Dyn. 13(4), 369–376 (2008)

6. Ostrowski, J.: Computing reduced equations for robotic sys-
tems with constraints and symmetries. IEEE Trans. Robot.
Autom. 15(1), 111–123 (1999)

7. Osborne, J.M., Zenkov, D.V.: Steering the Chaplygin sleigh
by a moving mass. In: Proceedings of the American Control
Conference (2005)

8. Kelly, S.D., Fairchild, M.J., Hassing, P.M., Tallapragada,
P.: Proportional heading control for planar navigation: the
Chaplygin beanie and fishlike robotic swimming. In: Pro-
ceedings of the American Control Conference (2012)

9. Bizyaev, I.A., Borisov, A.V., Mamaev, I.S.: The Chaplygin
sleighwith parametric excitation: chaotic dynamics andnon-
holonomic acceleration. Regul. Chaotic Dyn. 22(8), 955–
975 (2017)

10. Bizyaev, I.A., Borisov, A.V., Kuznetsov, S.P.: Chaplygin
sleigh with periodically oscillating internal mass. Europhys.
Lett. 119(6), 60008 (2017)

11. Tallapragada, P., Fedonyuk, V.: Steering a Chaplygin sleigh
using periodic impulses. J. Comput. Nonlinear Dyn. 12(5),
054501 (2017)

12. Borisov, A.V., Mamaev, I.S.: An inhomogeneous Chaplygin
sleigh. Regul. Chaotic Dyn. 22(4), 435–447 (2017)

13. Bizyaev, I.A., Borisov, A.V., Mamaev, I.S.: Dynamics of the
Chaplygin sleigh on a cylinder. Regul. Chaotic Dyn. 21(1),
136–146 (2016)

123



846 V. Fedonyuk, P. Tallapragada

14. Borisov, A.V., Mamaev, I.S., Bizyaev, I.A.: The Jacobi
integral in nonholonomic mechanics. Regul. Chaotic Dyn.
20(3), 383–400 (2015)

15. Kuznetsov, S.P.: Regular and chaotic motions of the Chap-
lygin sleigh with periodically switched location of non-
holonomic constraint. EPL (Europhys. Lett.) 118(1), 10007
(2017)

16. Fedonyuk, V., Tallapragada, P.: The stick-slip motion of a
Chaplygin sleigh witth a piecewise smooth nonholonomic
constraint. In: Proceedings of the ASME DSCC (2015)

17. Fedonyuk, V., Tallapragada, P.: Stick-slip motion of the
chaplygin sleigh with a piecewise smooth nonholonomic
constraint. J. Comput. Nonlinear Dyn. 12, 031021 (2017)

18. Ostrowski, J.: Reduced equations for nonholonomic
mechanical systems with dissipative forces. Rep. Math.
Phys. 42(1), 185–209 (1998)

19. Dear, T., Kelly, S.D., Travers, M., Choset, H.: Snakeboard
motion planning with viscous friction and skidding. In: Pro-
ceedings of IEEE International Conference on Robotics and
Automation, pp. 670–675 (2015)

20. Borisov, A.V., Kuznetsov, S.P.: Regular and chaotic motions
of a Chaplygin sleigh under periodic pulsed torque impacts.
Regul. Chaotic Dyn. 21(7–8), 792–803 (2016)

21. Tallapragada, P.: A swimming robot with an internal rotor
as a nonholonomic system. In: Proceedings of the American
Control Conference (2015)

22. Tallapragada, P., Kelly, S.D.: Integrability of velocity con-
straints modeling vortex shedding in ideal fluids. J. Comput.
Nonlinear Dyn. 12(2), 021008 (2017)

23. Pollard, B., Tallapragada, P.: An aquatic robot propelled
by an internal rotor. IEEE/ASME Trans. Mechatron. 22(2),
931–939 (2016)

24. Fedonyuk, V., Tallapragada, P.,Wang, Y.: Limit cycle analy-
sis and control of the dissipativeChaplygin sleigh. In:ASME
Dynamic Systems and Control Conference (2017)

25. Ijspeert, A.J.: Central pattern generators for locomotion con-
trol in animals and robots: a review. Neural Netw. 21(4),
642–653 (2008)

26. Murray, R., Sastry, S.S.: Steering nonholonomic systems
using sinusoids. In: Proceedings of the 29th Conference of
Decision and Control (1990)

27. Genesio, R., Tesi, A.: Harmonic balance methods for the
analysis of chaotic dynamics in nonlinear systems. Auto-
matica 28(3), 531–548 (1992)

28. Basso, M., Genesio, R., Tesi, A.: A frequency method for
predicting limit cycle bifurcations. Nonlinear Dyn. 13(4),
339360 (1997)

29. Ostrowski, J.: Steering for a class of dynamic nonholonomic
systems. IEEE Trans. Autom. Control 45, 14921497 (2000)

30. Bullo, F., Lewis, A.D.: Kinematic controllability andmotion
planning for the snakeboard. IEEE Trans. Robot. Autom.
9(3), 494–498 (2003)

31. Chakon,O.,Or,Y.:Analysis of underactuated dynamic loco-
motion systems using perturbation expansion: the twistcar
toy example. J. Nonlinear Sci. 27, 1215–1234 (2017)

123


	Sinusoidal control and limit cycle analysis of the dissipative Chaplygin sleigh
	Abstract
	1 Introduction
	2 Equations of motion
	3 Sinusoidal motion of the rotor
	3.1 Bounded velocities
	3.2 Bounded average kinetic energy
	3.3 Limit cycles in the reduced velocity space

	4 Approximate solution of the limit cycle
	5 Feedforward velocity control of the sleigh
	5.1 Average velocity of the sleigh
	5.2 Feedforward velocity control

	6 Simultaneous control of vnet and θc
	6.1 Integral control of the average heading angle
	6.2 Simulation

	7 Effect of forcing amplitude and frequency on motion
	8 Conclusion and discussion
	Acknowledgements
	References




