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Abstract The present paper concerns the analysis of
the stochastic resonance phenomenon that previously
has been thoroughly studied and found numerous appli-
cations in physics, neuroscience, biology, medicine,
mechanics, etc. A novel “deterministic” explanation of
this phenomenon is proposed that allows broadening
the range of dynamical systems for which the phe-
nomenon can be predicted and analysed. Our results
indicate that stochastic resonance, similarly to vibra-
tional resonance, arises due to deterministic reasons: it
occurs when a system is excited with two (or more)
vastly different frequencies, one of which is much
higher than another. The effective properties of the sys-
tem, e.g. stiffness or mass, change under the action of
the high-frequency excitation; and the low-frequency
excitation acts on this “modified” system leading to
low-frequency resonances. In the case of a broadband
random excitation, the high-frequency part of the exci-
tation spectrum affects the effective properties of the
system. The low-frequency part of the spectrum acts on
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this modified system. Thus by varying the noise inten-
sity one can change properties of the system and attain
resonances. This explanation allows using “determin-
istic” approach, i.e. replacing noise by high-frequency
excitation,when studying the stochastic resonance phe-
nomenon. Employing this approach, we demonstrate
that linear and nonlinear stochastic systems with vary-
ing parameters, i.e. parametrically excited systems, can
exhibit the phenomenon and determine the correspond-
ing resonance conditions.

Keywords Stochastic resonance · Deterministic
explanation · High-frequency excitation · Effective
properties · Oscillatory strobodynamics · Parametric
excitation

1 Introduction

The stochastic resonance phenomenon implies “posi-
tive” changing of a (nonlinear) system behaviour when
white noise is added to the system. It is widely used
to increase responses and signal-to-noise ratios of non-
linear systems, e.g. sensors and amplifiers. Due to its
high practical and theoretical importance, this phe-
nomenon has been thoroughly studied in many papers,
e.g. [1–10]. It was first introduced by Benzi [11–13]
to describe periodically recurrent ice ages. In 1980s,
the stochastic resonance phenomenon has been con-
sidered only within analysis of bi-stable systems under
a periodic input signal and random noise. Later, it
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has been discussed and used also when studying non-
bi-stable systems, e.g. excitable systems and static
threshold systems [14–18]. The phenomenon has found
numerous applications in physics, neuroscience, biol-
ogy, medicine, mechanics and other fields, cf. e.g. [1–
21].

Stochastic resonance is often described as a coun-
terintuitive phenomenon. This is because for conven-
tional linear signal-processing systems it is well known
that output signal-to-noise ratio is maximized in the
absence of noise. So, increase in the output signal-to-
noise ratio due to added noise can seem to be highly
counterintuitive. In this sense, stochastic resonance is
similar to numerous counterintuitive phenomena aris-
ing in nonlinear dynamical systems under action of
high-frequency vibration, e.g. stabilization of the upper
position of a pendulum with vibrating pivot [22,23],
sinking of gas bubbles in vibrating fluid-filled volumes
[24,25], etc., see e.g. [26–28]. These phenomena were
effectively employed to improve and intensify various
technological processes, e.g. relevant for the mining
industry [26–29].

The resemblance of stochastic and high-frequency
excitations has been already noticed and discussed
in several papers, cf. e.g. [30–33] and more recent
publications [34–36]. In particular, it has been noted
that these excitations can lead to similar effects when
applied to nonlinear dynamical systems. More specif-
ically, a phenomenon, called vibrational resonance,
has been described [30,32–36] that resembles stochas-
tic resonance, but with white noise replaced by a
high-frequency harmonic signal. In the present paper,
we continue and expand this research. We revisit the
conventional bi-stable deterministic system studied in
[30,32,33] and provide a more accurate theoretical
model of the arising phenomenon. By contrast to the
previous model, the new one very well corresponds to
numerical results in a wide range of the system param-
eters. Most importantly, it explains why increasing the
amplitude of the original input (low-frequency) sig-
nal, the resonant “noise” (i.e. high-frequency vibration)
intensity decreases. Thismodel emphasises the similar-
ity between the considered deterministic bi-stable sys-
tem under high-frequency excitation and the same sys-
temwith added noise, i.e. between stochastic resonance
and vibrational resonance. The maximum response of
the system and signal-to-“noise” ratio are attained at
a certain nonzero value of the high-frequency excita-
tion (or noise) intensity. In the case of high-frequency

excitation, the signal-to-“noise” ratio means the ratio
between the low-frequency component of the output
signal and the high-frequency component of this sig-
nal.

The obtained results indicate that stochastic res-
onance and vibrational resonance arise due to the
same “deterministic” physical phenomenon. The phe-
nomenon occurs for systems excitedwith two (ormore)
vastly different frequencies, one of which is much
higher than another. The effective properties of the sys-
tem, e.g. stiffness or mass, change under the action of
the high-frequency excitation; and the low-frequency
excitation acts on this “modified” system leading to
low-frequency resonances. In the case of a broadband
random excitation, the high-frequency part of the exci-
tation spectrum affects the effective properties of the
system. The low-frequency part of the spectrum acts
on this modified system. Therefore, by varying the
intensity of the random (high-frequency) excitation,
one can achieve resonance in the system. This observa-
tion provides a novel “deterministic” explanation of the
stochastic resonance phenomenon and allows replac-
ing noise by high-frequency excitation when study-
ing the phenomenon. Moreover, it indicates that sys-
tems exhibiting vibrational resonance will also exhibit
stochastic resonance, which is validated by the other
examples considered in the paper.

Conventionally (cf. [1–13]), stochastic resonance
has been considered as a phenomenon that can occur
only in nonlinear systems. In several papers [37–40],
however, it has been shown that this phenomenon can
also appear in linear systems, e.g. featuring multiplica-
tive noise [37,38]. Using the proposed “deterministic”
explanation of the stochastic resonance and replacing
noise by high-frequency excitation, we show why this
phenomenon occurs for the linear systems, e.g. the one
studied in [38].

The “deterministic” approach is also used to study
systems with an input signal that is not direct, but para-
metric. Parametrically excited systems are now widely
used for signal sensing, filtering, and amplification, par-
ticularly in micro- and nanoscale applications [41–43].
And, as is known [42–44], noise and uncertainty can be
essential for systems at this scale. Thus, these systems
potentially can exhibit stochastic resonance, which can
be of considerable importance for practical applica-
tions. Theoretical analysis of parametrically excited
systems with noise, however, is a non-trivial matter
and only few papers are devoted to it, cf. e.g. [45]. We
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show that stochastic resonance can occur in such sys-
tems and determine the corresponding resonance con-
ditions; note that the stochastic resonance phenomenon
hasn’t been previously predicted or described for sys-
tems with parametric input signals.

The dynamical systems considered in the present
paper involve combined excitations with different, ali-
quant frequencies and relate to an important class of
dynamical systems, the quasi-periodic systems. The
conventional methods of linear and nonlinear dynam-
ics often appear to be not applicable for studying such
systems due to the restrictions they impose on the sys-
tems parameter space [46–48]. Thus in the present
paper, a novel analytical approach, the oscillatory stro-
bodynamics (OS) approach [49,50], is used. The name
is motivated by the fact that the considered system
behaviour is perceived as under a stroboscopic light
so that only the main, slow component of motions
is captured. The approach broadens the concept of
Vibrational Mechanics [26,27] by means of which
several notable phenomena arising in mechanical sys-
tems due to high-frequency vibrationwere revealed and
described [25–29].

The paper is structured as follows: In Sect. 2, a
model bi-stable system conventional for studying the
stochastic resonance phenomenon is considered, how-
ever, instead of adding white noise we introduce high-
frequency excitation. The obtained results are com-
pared with the classical ones for the system with the
added white noise. Section 3 concerns analysis of the
stochastic resonance phenomenon for linear systems
using the proposed deterministic approach. In particu-
lar, we study systems with an input signal that is not
direct, but parametric. In Sect. 4, a model nonlinear
system featuring combined direct and parametric input
signals is considered. In the last section, the conclu-
sions of the paper are outlined.

2 Conventional first-order bi-stable system
exhibiting stochastic resonance

2.1 Preliminary remarks

A conventional generic model illustrating the stochas-
tic resonance phenomenon is the overdamped motion
of a Brownian particle in a bi-stable potential in the
presence of noise and periodic forcing [3,8]:

ẋ(t) = −V ′(x) + A cos(Ωt + ϕ) + ξ(t), (1)

where V (x) denotes the reflection-symmetric quartic
potential

V (x) = −1

2
x2 + 1

4
x4. (2)

In dimensionless equation (1), ξ(t) denotes a zero-
mean, Gaussian white noise with autocorrelation func-
tion

〈ξ(t)ξ(0)〉 = 2Dδ(t), (3)

and intensity D. The dimensionless potential V (x) is
bi-stable with minima located at ±xm = ±1. The
height of the potential barrier between the minima is
�V = 0.25.

Without noise ξ(t), accounting for the periodic sig-
nal A cos(Ωt+ϕ), the time-dependent potential of Eq.
(1) can be written as [3]:

Vo(x, t) = V (x) − Ax cos(Ωt + ϕ). (4)

As is seen, it is tilted back and forth, thereby raising
and lowering alternately the potential barriers of the
right and the left well, respectively, in an antisymmetric
manner. During time, the potential (4) changes from
V (x) − Ax to V (x) + Ax ; and Vom = V (x) ± Ax
features either two minima and one maximum between
them or just one minimum, governed by the equation:

V ′
om(x) = x3 − x ± A = 0 (5)

that has either three or one real roots. The threshold (or
bifurcation point) between these cases corresponds to
the following value of the amplitude A:

A = Acr0 = 2√
27

≈ 0.385 (6)

If amplitude A of the input signal is below Acr0,
then Vom has two minima and one maximum between
them. Thus the particle cannot overcome the poten-
tial barrier and oscillates near one of the minima.
However, if amplitude A is larger than Acr0, then at
t = (−ϕ + 2πn)/Ω , n ∈ Z , the system’s poten-
tial, Vo(x, t) = V (x) − Ax , has only one minimum
x = x1m , while at t = (−ϕ + πn)/Ω , Vo(x, t) =
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V (x)+ Ax has another minimum at x = x2m = −x1m .
Thus the particle is attracted to different minima dur-
ing one period of the input signal and can hop from
one minima to another. This is illustrated in Fig. 1 that
shows the dependencies ofVo(x, t)on x for (a) A = 0.2
and (b) A = 0.6. It is clear that for A > Acr0 the ampli-
tude of the particle oscillations is much larger than for
A < Acr0.

2.2 System under high-frequency excitation; solution
by the OS approach

In this section, we consider dimensionless equation (1)
with the white noise replaced by high-frequency exci-
tation, H cosωt :

ẋ(t) = −V ′(x) + A cos(Ωt + ϕ) + H cosωt. (7)

Comparing (1) with (7), we note that the amplitude of
the high-frequency excitation H directly corresponds
to the noise intensity D; both of them represent the
external (noise) energy supplied to the system.We also
require the condition ω � Ω to hold true, i.e. the fre-
quency of the added excitation should be much higher
than the frequency of the original input signal. Note
that Eq. (7) has been already studied in [30,32,33]; in
the present paper, however, a more accurate solution
and novel interpretation of the results is given.

For solving the nonlinear dimensionless equation
(7) that involves combined excitations with different,
aliquant frequencies, we use the oscillatory strobo-
dynamics (OS) approach [49,50] and the Method of
Direct Separation of Motions (MDSM) [26–29]. The
approach utilizes a general observation that motion
of a dynamical system under high-frequency excita-
tions can usually be separated into two components:
slow X (t) and fast ψ(t) (notions “high-frequency”,
“fast” and “slow” can be formalized [26–29,49,50]).
In essence, this observation merely means that the sys-
tem under oscillating excitation exhibits oscillations.
The main idea of the approach lies in the transition
from initial governing equations of motions to equa-
tions describing only the slow component X (t). This
component is usually of primary interest; and equa-
tions describing it can be much simpler than the initial
equations.

Following the method, we search a solution to (7) in
the form:

x = X (t) + ψ(t, ωt), (8)

where X is slow, and ψ is fast 2π -periodic in time
τ = ωt variable, with average zero:

〈ψ〉 = 1

2π

2π∫

0

ψ(t, τ )dτ = 0, (9)

angular brackets designate averaging in the period 2π
on time τ . Introducing (8) into (7) and averaging with
respect to the fast time τ = ωt , we get the following
equation that describes slow motions of the considered
system:

Ẋ = − 〈
V ′(X + ψ)

〉 + A cos(Ωt + ϕ). (10)

For the initial equation (7) to be satisfied we also get:

ψ̇ = −V ′(X + ψ) + 〈
V ′(X + ψ)

〉 + H cosωt. (11)

This equation describes fast motions of the system.
Note that Eqs. (10)–(11) are not simpler than the

initial equation (7); however, they are much more con-
venient for the approximate solving. More specifically,
as is shown in [26,27,49,50], since the slow variable
X (t) is of primary interest, it is sufficient to determine
the fast variable ψ approximately, because it is present
in Eq. (10) only under the averaging operator, and thus
this approximation will not lead to any considerable
errors in the resulting equation for the variable X . As
one of the approximations, slow variables X and t are
considered as constants (“frozen”) when solving fast
motions equations. Consequently, for the present prob-
lem, a solution to (11) is sought in the form of a series:

ψ =
∞∑
n=1

Bn1 cos nωt + Bn2 sin nωt . (12)

Taking into account only the first (primary) harmonic
in (12), we get the following simple equations for the
amplitudes B11 and B12:

− B11 + ωB12 + 3B11

(
B2
11

4
+ B2

12

4
+ X2

)
= H

−B12 − ωB11 + 3B12

(
B2
11

4
+ B2

12

4
+ X2

)
= 0

(13)
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Fig. 1 The dependencies of the potential of the system (1) on
x for a A = 0.2 and b A = 0.6. Blue lines correspond to
t = (−ϕ+2πn)/Ω , while red lines to t = (−ϕ+πn)/Ω, n ∈ Z .

Black arrows indicate particle’s oscillations amplitudes. (Color
figure online)

These equations give three pairs of values for B11 and
B12 the expressions for which are rather lengthy and
thus not given here. For small B11 and B12, Eq. (13)
can be approximated as follows:

(3X2 −1)B11+ωB12 = H, (3X2 −1)B12 −ωB11 = 0,

(14)

with the solutions:

B11 = H(3X2 − 1)(
3X2 − 1

)2 + ω2
, B12 = Hω(

3X2 − 1
)2 + ω2

.

(15)

Inserting (12) and (15) into (10), we get the following
slow motions equation:

Ẋ =
[
1 − 3

2

H2

(
3X2 − 1

)2 + ω2

]
X

− X3 + A cos(Ωt + ϕ). (16)

It should be noted that slow motions equation (16) dif-
fers from the one obtained in [32,33], since here we
didn’t use the inertial approximation when solving fast
motions equation (11). In [32,33] it was concluded that
the maximum output amplitude of the system (7) is
obtained when the coefficient at X in the slow motions
equation equals zero, i.e. H2/ω2 ≈ 2/3. Thus, the opti-
mal value of the high-frequency excitation amplitude
(i.e. “noise” intensity) doesn’t depend on the ampli-
tude A of the original (low-frequency) input signal.

This conclusion, however, contradicts with the results
of numerical experiments for Eq. (7), see Sect. 2.3.
Moreover, as is known [1–21], the stochastic resonance
phenomenon can also feature dependency of optimal D
on A. In the following section, a new expression for the
optimal value of the high-frequency excitation ampli-
tude is obtained that depends explicitly on A and better
conforms to the results of numerical experiments.

2.3 On the resonance phenomenon

Comparing Eq. (16) with the original equation (7), we
immediately see that effective properties of the system
with respect to slow motions change due to the added
high-frequency excitation.More specifically, the effec-
tive time-dependent potential of the system (16) is:

Vos(X, t) = Vs(X) − AX cos(Ωt + ϕ)

= −1

2
X2 + 1

4
X4 + H2

4ω
arctan

(
3X2 − 1

ω

)

−AX cos(Ωt + ϕ), (17)

and its minima and the height of the potential bar-
rier between the minima are different from those of
(4). Similarly to (4), during time, the potential (17)
changes from Vs(X)− AX to Vs(X)+ AX ; and Vsm =
Vs(X)± AX features either two minima and one maxi-
mum between them or just oneminimum that are deter-
mined from the equation:

V ′
sm(X) =

[
1 − 3

2

H2

(
3X2 − 1

)2 + ω2

]
X − X3 ± A = 0.

(18)
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We note that taking into account only the first (primary)
harmonic in (12) and approximation (15) are valid for
small B11 and B12 implying that the following condi-
tion should hold true:

ω2 � H2. (19)

Using this condition, we get the following approxi-
mate relation for A that corresponds to the threshold
(or bifurcation point) between the two different types
of motions:

Acrs = 2√
27

(
1 − 3

2

H2

ω2 + 4

)3/2

. (20)

Similarly to the case without high-frequency excita-
tion, if amplitude A of the input signal is below Acrs,
then the system oscillates near one of the minima with
a relatively small amplitude. For A > Acrs, the sys-
tem is attracted to different minima during one period
of the input signal and can hop from one minima to
another, exhibiting relatively large amplitude oscilla-
tions. From relation (20) it is evident that introducing
high-frequency excitation (or noise) leads to reducing
the threshold value of the input signal amplitude Acrs.
Consequently, adding such excitation allows to achieve
relatively large output signal of the system even for
weak input signal, A < Acr0, with Acr0 defined by
(6). Threshold value of the high-frequency excitation
amplitude H corresponding to the bifurcation point,
with relation (19) taken into account, can be approxi-
mated by:

H2
cr = 4

9

(
1 −

√
27

2
A

)
(ω2 + 4), (21)

and for H > Hcr, we get large amplitude oscillations.
In particular, from (21) it is evident that Hcr depends
on the input signal amplitude A and relatively large
output signal can be achieved even for small A. Note
that for A > Acr0 = 2/

√
27, the system exhibits

large amplitude oscillations even without any addi-
tional high-frequency excitation.

To further describe the resonance phenomenon in
the system, we determine the minima of the potential
Vs(X) of the slow motions equation (16) without exci-
tation A cos(Ωt+ϕ). Taking into account (19), it is rel-
evant to assume that these minima change only slightly
as compared to those of (2). Consequently, we get:

X1min = 1 − 3

4

H2

4 + ω2 , X2min = −1 + 3

4

H2

4 + ω2

(22)

An important observation here is that |Xmin| reduces
with increasing the high-frequency excitation ampli-
tude H .

If H < Hcr (and A < Acr0), then the system oscil-
lates near one of the potential minima (22). Introducing
Y = X − Xmin and assuming Y to be small, we get the
following approximate linear equation describing these
oscillations:

Ẏ = −2

(
1 − 3

2

16 + ω2

(4 + ω2)2
H2

)
Y + A cos(Ωt + ϕ).

(23)

Solving (23) is a trivial matter, giving the following
steady-state solution:

Y = A

C2 + Ω2 ((C cosϕ + Ω sin ϕ) cosΩt

+ (Ω cosϕ − C sin ϕ) sinΩt), (24)

here C = 2
(
1 − 3

2
16+ω2

(4+ω2)2
H2

)
. Taking into account

(19) and assuming ω � 1, we note that |C | > 1 and
magnitude of Y oscillations, A√

C2+Ω2 , can indeed be
considered small; note that A < Acr0. Consequently,
for H < Hcr the systems exhibits relatively low ampli-
tude oscillations near one of the potential minima (22).

At H = Hcr, however, the behaviour of the system
changes: it hops from one minima to another during
one period of the input signal. These oscillations fea-
ture amplitude that can be roughly approximated as
|Xmin| and thus is relatively large, cf. relations (22).
Further increasing the high-frequency excitation ampli-
tude H leads to reducing of |Xmin| as follows from (22);
consequently, amplitude of the system oscillations, i.e.
the output signal, reduces. This means that the sys-
tem features resonance phenomenon: it’s output sig-
nal depends non-monotonically on the high-frequency
excitation amplitude H (or “noise” intensity); and the
maximum output is achieved at H = Hcr. It should
be noted that the signal-to-“noise” ratio, i.e. the ratio
between the low- and high-frequency components of
the output, also attains its maximum value at H = Hcr,
since, as follows from (15), B11 and B12 increase with
increasing H . For the conventional stochastic system
described by Eq. (1), the stochastic resonance phe-
nomenon exhibits itself as an abrupt jump of the output
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signal at a certain value of the noise intensity, simi-
larly to the resonance phenomenon discussed in this
section. This illustrates the validity of the “determinis-
tic” approach to describe the stochastic resonance phe-
nomenon and indicates direct relationship between the
noise intensity and the amplitude of the high-frequency
excitation. Note that in the case of combined noise
and high-frequency excitations, the corresponding res-
onance phenomenon is also qualitatively similar [51].

As an illustration, Fig. 2 shows the dependencies of
the amplitude Q of the low-frequency component of the
system output signal on H/

√
4 + ω2 for Ω = 0.1 and

different values of the input signal amplitude A. Mark-
ers represent results of direct numerical integration of
Eq. (7), while lines correspond to the theoretical pre-
dictions described in the present section. A good agree-
ment between numerical and theoretical results can be
noted even when relation (19) is not fulfilled, however,
as expected, the discrepancy increases with increasing
H/

√
4 + ω2. In all cases, the described resonance phe-

nomenon is evident and the maximum output signal is
achieved at H = Hcr. And changingΩ doesn’t qualita-
tively affect the results. As noted above, for H > Hcr,
the amplitude of oscillations is approximated as |Xmin|
and thus does not depend on the input signal ampli-
tude A. Consequently, the upper portion of the curves
shown in Fig. 2, corresponding to H > Hcr, follow the
same path. For H < Hcr, low amplitude oscillations
of the system depend on the input signal amplitude A,
c.f. (24).

Results obtained in this section indicate qualitative
similarities between the considered deterministic bi-
stable system under high-frequency excitation and the
same system with added noise, e.g. in the way they
exhibit resonance phenomena.We believe that there are
similarities not only in the way how vibrational reso-
nance and stochastic resonance are exhibited by these
systems, but also in the physical essence of these phe-
nomena. Both of them occur for systems excited with
two (ormore) vastly different frequencies, one ofwhich
is much higher than another. The effective properties
of the system, e.g. stiffness or mass, change under the
action of the high-frequency excitation; and the low-
frequency excitation acts on this “modified” system
leading to low-frequency resonances. In the case of a
broadband random excitation, the high-frequency part
of the excitation spectrum affects the effective prop-
erties of the system. The low-frequency part of the
spectrum acts on this modified system. This observa-

Fig. 2 Theoretical (lines) and numerical (markers) dependen-
cies of the amplitude Q of the low-frequency component of the
system output signal on H/

√
4 + ω2 for Ω = 0.1 and A = 0.05

(black line, down triangles), A = 0.15 (green line, circles),
A = 0.25 (blue line, squares), A = 0.35 (red line, triangles).
(Color figure online)

tion provides a novel “deterministic” explanation of the
stochastic resonancephenomenon that allows replacing
noise by high-frequency excitation when studying the
phenomenon. There is a direct relationship between the
noise intensity and the amplitude of the high-frequency
excitation: both of them represent the external (noise)
energy supplied to the system.

The conventional notion of “stochastic resonance”
may thus be considered as deficient in the sense that it
doesn’t fully reflect the physical meaning of the phe-
nomenon: stochasticity of the excitation is not essen-
tial. The notion of “vibrational resonance” seems to
be inappropriate to describe the phenomenon, since
conventionally term “vibration” implies oscillations
in mechanical systems. However, the described reso-
nance phenomenon occurs not only in mechanical, but
also in electromagnetic, biological and other dynami-
cal systems. As possible alternative names for the phe-
nomenon, we propose: (1) Low-frequency resonance
induced by high-frequency excitations (LRIHE); (2)
Modulated resonance.

123



774 I. I. Blekhman, V. S. Sorokin

3 Linear systems exhibiting the stochastic
resonance phenomenon

In this section,we employ the “deterministic” approach
to describe the stochastic resonance phenomenon for
linear systems. Gitterman [38] has shown that a forced,
underdamped linear oscillator with random natural fre-
quency described by:

ẍ + γ ẋ + [λ2 + ξ(t)]x = A sin(Ωt + ϕ), (25)

can feature stochastic resonance; here the random force
ξ(t) is a Gaussian variable with zero mean. Following
the “deterministic” approach,we replace ξ(t)by ahigh-
frequency excitation:

ẍ + γ ẋ + [λ2 + H sinωt]x = A sin(Ωt + ϕ), (26)

with amplitude H governing the excitation intensity
and frequency ω satisfying relations ω � Ω and
ω � λ. System (26) is the well-known forced Math-
ieu equation. Omitting the details, the corresponding
approximate equation of slow motions is obtained in
the form:

Ẍ + γ Ẋ +
[
λ2 + H2

2

ω2 − λ2

(ω2 − λ2)2 + γ 2ω2

]
X

= A sin(Ωt + ϕ), (27)

that can be further simplified as:

Ẍ + γ Ẋ +
[
λ2 + H2

2ω2

]
X = A sin(Ωt + ϕ). (28)

As is seen from (28), the effective properties of the
system with respect to slow motions change due to the
high-frequency excitation; more specifically, its effec-
tive natural frequency is:

λ2∗ = λ2 + H2

2ω2 (29)

that depend on the high-frequency excitation amplitude
H . Consequently, by changing the excitation intensity
one can affect the natural frequency and attain reso-
nance in the system.

Mathieu equation belongs to a wide class of para-
metrically excited systems. As has been shown, cf.
e.g. [26,27,52], high-frequency parametric excitations
can change effective properties of such systems with
respect to slow motions leading to resonances. The
proposed “deterministic” approach thus indicates that
linear systems featuring parametric excitation that is
not deterministic, but random, can feature the stochas-
tic resonance phenomenon. Considering the linear sys-
tems for which this phenomenon has been previously
observed, e.g. [37–40], we note that all of them fea-
ture random parametric excitation, i.e. some of their
parameters are random. This supports the above con-
clusion and the validity of the proposed “deterministic”
explanation of the stochastic resonance phenomenon.

Substituting random excitation by a deterministic
high-frequency excitation allows broadening the range
of systems for which the stochastic resonance phe-
nomenon can be predicted and described. In particu-
lar, this phenomenon can be present also for stochastic
systems with an input signal that is not direct, but para-
metric. Such systems are now widely used; however,
their theoretical analysis is rather complicated, so that
the stochastic resonance phenomenon hasn’t been pre-
viously predicted or described for them.

As an example, consider the following stochastic
system that is similar to (25), but with the input signal
that is not direct, but parametric:

ẍ + γ ẋ + [λ2 + ξ(t) + A sin(Ωt + ϕ)]x = 0, (30)

Employing the “deterministic” approach, we replace
ξ(t) by a high-frequency excitation:

ẍ + γ ẋ + [λ2 + H sinωt + A sin(Ωt + ϕ)]x = 0,

(31)

with ω � Ω and ω � λ. The corresponding approxi-
mate equation of slow motions takes the form:

Ẍ + γ Ẋ +
[
λ2 + H2

2

ω2 − λ2 − A sin(Ωt + ϕ)

(ω2 − λ2 − A sin(Ωt + ϕ))2 + γ 2ω2 + A sin(Ωt + ϕ)

]
X = 0, (32)

which can be further approximated by:

Ẍ + γ Ẋ +
[
λ2 + H2

2ω2 + A sin(Ωt + ϕ)

]
X = 0,

(33)
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As is seen, similarly to Eq. (28), by changing the exci-
tation intensity we can affect the natural frequency of
the system and attain resonance. This simple example
indicates that linear systems that feature random para-
metric excitations can exhibit the stochastic resonance
phenomenon irrespective of whether the input signal is
direct or parametric.

As the last example, consider the following stochas-
tic system that features both direct and parametric ran-
dom excitations and direct and parametric input sig-
nals:

ẍ + γ ẋ + [λ2 + ξp(t) + Ap sin(Ω1t + ϕ)]x
= ξd(t) + Ad sin(Ω2t + δ), (34)

Following the “deterministic” approach, we replace
ξp(t) and ξd(t) by high-frequency excitations:

ẍ + γ ẋ + [λ2 + Hp sinωt + Ap sin(Ω1t + ϕ)]x
= Hd sin(ωt + θ) + Ad sin(Ω2t + δ), (35)

with ω � Ω1,Ω2 and ω � λ. The corresponding
equation of slow motions is:

Ẍ + γ Ẋ +
[
λ2 + H2

p

2

ω2 − λ2 − Ap sin(Ω1t + ϕ)

(ω2 − λ2 − Ap sin(Ω1t + ϕ))2 + γ 2ω2 + Ap sin(Ω1t + ϕ)

]
X

= Ad sin(Ω2t + δ) − HdHp

2

γω sin θ − (
ω2 − λ2 − Ap sin(Ω1t + ϕ)

)
cos θ

(ω2 − λ2 − Ap sin(Ω1t + ϕ))2 + γ 2ω2 , (36)

which can be reduced to:

Ẍ + γ Ẋ +
[
λ2 + H2

p

2ω2 + Ap sin(Ω1t + ϕ)

]
X

= Ad sin(Ω2t + δ) + HdHp

2ω2 cos θ. (37)

As is seen from (37), the direct high-frequency exci-
tation (with amplitude Hd) cannot affect the effective
properties of the system with respect to slow motions
in the absence of the parametric excitation, i.e. for
Hp = 0. Thus, linear stochastic systems with only
direct random excitations cannot feature the stochas-
tic resonance phenomenon, which corresponds well to
the previously known results.

4 On nonlinear parametrically excited systems
exhibiting the stochastic resonance phenomenon

In this section, we briefly consider a model nonlinear
parametrically and directly excited stochastic system

and determine the corresponding resonance conditions:

ẍ + γ ẋ + [λ2 + ξp(t) + Ap sin(Ω1t + ϕ)]x + kx3

= ξd(t) + Ad sin(Ω2t + δ). (38)

As noted in the previous section, the corresponding
linear system can feature stochastic resonance only
when the random parametric excitation is nonzero, i.e.
ξp(t) �= 0. Here we study how resonance conditions
change in the presence of the Duffing-type nonlinear-
ity. Following the “deterministic” approach, we replace
ξp(t) and ξd(t) by high-frequency excitations:

ẍ + γ ẋ + [λ2 + Hp sinωt + Ap sin(Ω1t + ϕ)]x + kx3

= Hd sin(ωt + θ) + Ad sin(Ω2t + δ) (39)

with ω � Ω1,Ω2 and ω � λ. The equations of slow
and fast motions are, respectively:

Ẍ + γ Ẋ +
[
λ2 + Ap sin(Ω1t + ϕ)

]
X

+ Hp 〈ψ sinωt〉 + k(X3 + 3X〈ψ2〉 + 〈ψ3〉)
= Ad sin(Ω2t + δ) (40)

ψ̈ + γ ψ̇ + [λ2 + Hp sinωt + Ap sin(Ω1t + ϕ)]ψ
+ k(3X2ψ + 3Xψ2 + ψ3)

= Hd sin(ωt + θ) + Hp〈ψ sinωt〉
+ k(3X〈ψ2〉 + 〈ψ3〉) − HpX sinωt (41)

A solution to (41) is sought in the form of series (12).
Taking into account only the first (primary) harmonic,
we get the following equations for the amplitudes B11

and B12:
3

4
kB11

(
B2
11 + B2

12 + 4X2
)

+ B11(λ
2 − ω2

+ Ap sin(Ω1t + ϕ)) + γωB12 = Hd sin θ

3

4
kB12

(
B2
11 + B2

12 + 4X2
)

+ B12(λ
2 − ω2

+ Ap sin(Ω1t + ϕ)) − γωB11 + HpX = Hd cos θ

(42)

These equations give three pairs of values for B11 and
B12 the expressions for which are rather lengthy and
thus not given here. For small B11 and B12, Eqs. (42)
can be approximated as follows:
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3kB11X
2 + B11

(
λ2 − ω2 + Ap sin(Ω1t + ϕ)

)

+ γωB12 = Hd sin θ

3kB12X
2 + B12

(
λ2 − ω2 + Ap sin(Ω1t + ϕ)

)

− γωB11 + HpX = Hd cos θ (43)

with the solutions:

B11 = −γωHd cos θ + Hd sin θ
(
λ2 − ω2 + Ap sin(Ω1t + ϕ) + 3kX2

) + γωHpX

γ 2ω2 + (
λ2 − ω2 + Ap sin(Ω1t + ϕ) + 3kX2

)2

B12 = γωHd sin θ + (
Hd cos θ − HpX

) (
λ2 − ω2 + Ap sin(Ω1t + ϕ) + 3kX2

)
γ 2ω2 + (

λ2 − ω2 + Ap sin(Ω1t + ϕ) + 3kX2
)2 (44)

Inserting (12) and (44) into (40), we get the following slow motions equation:

Ẍ + γ Ẋ +
[
λ2 + Ap sin(Ω1t + ϕ)

]
X

+Hp

2

γωHd sin θ + (
Hd cos θ − HpX

) (
λ2 − ω2 + Ap sin(Ω1t + ϕ) + 3kX2

)
γ 2ω2 + (

λ2 − ω2 + Ap sin(Ω1t + ϕ) + 3kX2
)2

+ k

(
X3 + 3

2
X

H2
d + HpX

(
HpX − 2Hd cos θ

)
γ 2ω2 + (

λ2 − ω2 + Ap sin(Ω1t + ϕ) + 3kX2
)2

)
= Ad sin(Ω2t + δ) (45)

Taking into account only the first harmonic in (12) and
assuming B11 and B12 to be small implies the following
relations to hold true: Hd, Hp � ω. Consequently, Eq.
(45) can be farther simplified into:

Ẍ + γ Ẋ +
[
λ2 + Ap sin(Ω1t + ϕ) + H2

p

2ω2 + 3

2

H2
d

ω4 k

]
X

+ k

(
X3 − 9

HdHp

2ω4 X2 cos θ + 3
H2
p

ω4 X3

)

= Ad sin(Ω2t + δ) + HpHd

2ω2 cos θ. (46)

As is seen, Eq. (46) is similar to (37), but with the
nonlinear terms present (multiplied by k). By contrast
to the linear case, the direct high-frequency excitation
(with amplitude Hd) affects the effective properties of
the system with respect to slow motions in the absence
of the parametric excitation, i.e. for Hp = 0. Note,
however, that the corresponding change of the system’s

linearized effective natural frequency, 3
2
H2
d

ω4 k, is much
smaller than the one causedby the pure parametric exci-

tation,
H2
p

2ω2 , since Hd, Hp � ω.
The above model example indicates that nonlinear

stochastic systems can feature the stochastic resonance
phenomenon irrespective of whether the input signal
and randomexcitations are direct or parametric. Specif-

ically, by varying the noises intensities (represented by
Hp and Hd) one can change the effective properties of
the systems, e.g. their natural frequencies, with respect
to the deterministic input signals. The example also
shows that the stochastic resonance phenomenon can
occur in nonlinear systems with single-well potentials,
which agrees well with the known results [53]. As a

novel application of the phenomenon, we note the pos-
sibility to maintain resonant mode of operation of a
vibrating machine under a varying load by changing
the intensity of stochastic (or high-frequency) excita-
tions.

5 Conclusion

The present paper proposes a “deterministic” approach
to describe and predict the stochastic resonance phe-
nomenon, based on replacing noise by high-frequency
excitations. Its applicability is illustrated by several
examples, including the conventional first-order bi-
stable system and linear systems for which this phe-
nomenon has been previously observed. It is shown
that due to random excitations the effective properties
of the systems, e.g. their natural frequencies, change
with respect to deterministic input signals. Therefore,
by varying the intensity of the excitations resonances
can be attained. It is explained, in particular, why for the
considered linear stochastic systems, the phenomenon
occurs only in the presence of parametric random exci-
tations, i.e. when some parameters of the systems are
random. We show that for stochastic systems, reso-
nances can be attained by varying frequencies of deter-
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ministic input signals or by changing parameters of
these systems for given random excitations, or, as men-
tioned above, by changing intensities of the random
excitations for constant input signals, cf. also [33].

It is also shown that stochastic systems can exhibit
the stochastic resonance phenomenon irrespective of
whether the input signal is direct or parametric. Res-
onance conditions for model systems with parametric
inputs, i.e. with varying parameters, are determined.
A model nonlinear parametrically and directly excited
stochastic system is studied and combined effects of
nonlinearity and parametric excitation on the stochas-
tic resonance conditions are revealed.

The above analysis shows that the conventional
notion of “stochastic resonance” may be considered
as deficient in the sense that it doesn’t fully reflect the
physical meaning of the phenomenon. Resonances in
the considered stochastic systems occur due to multi-
ple excitations with substantially different frequencies.
The effective properties of the system, e.g. stiffness or
mass, change under the action of the high-frequency
excitation; and the low-frequency excitation acts on
this “modified” system leading to low-frequency res-
onances. In the case of a broadband random excita-
tion, the high-frequency part of the excitation spec-
trum affects the effective properties of the system. The
low-frequency part of the spectrum acts on this mod-
ified system. The notion of “vibrational resonance”
seems to be inappropriate to describe the phenomenon,
since conventionally term “vibration” means oscilla-
tions in mechanical systems. However, the resonance
phenomenon occurs not only in mechanical, but also in
electromagnetic, biological and other dynamical sys-
tems.
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