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Abstract In this contribution, amodified oscillator of
Tamasevicius et al. (Electron Lett 33:542–544, 1997)
(referred to as the mTCMNL oscillator hereafter) is
introduced with antiparallel diodes as nonlinear ele-
ments. The model is described by a continuous time
of four-dimensional autonomous system with hyper-
bolic sine nonlinearity based on Shockley diodemodel.
Various methods for characterizing chaos/hyperchaos
including bifurcation diagrams, Lyapunov exponents
spectrum, frequency spectra, phase portraits, Poincaré
sections and two parameter Lyapunov exponents dia-
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grams are exploited to point out the rich dynamical
behaviors in the model. Numerical results indicate that
the system displays extremely rich dynamical behav-
iors including periodic windows, torus, chaotic and
hyperchaotic oscillations. One of the main findings of
this work is the presence of a region in the param-
eter space in which the mTCMNL experiences hys-
teretic behaviors. This later singularity/phenomenon
is marked by the coexistence of multiple attractors
(i.e., coexistence of asymmetric pair of periodic, torus
and chaotic attractors with symmetric periodic, torus
and chaotic attractors), for the same parameters set-
tings. Basins of attractions of various competing attrac-
tors depicts symmetric complex basin boundaries, thus
suggesting possible jumps between coexisting solu-
tions (i.e., asymmetric pair of attractors with sym-
metric one) in experiments. A predominant route to
chaos/hyperchaos observed in the system for different
system parameters is the Afraimovich–Shilnikov sce-
nario with tiny periodic regions. Experimental results
from real-time circuit implementation are in good
agreement with numerical analysis.

Keywords Multiple coexisting attractors · Hyper-
chaos · Two parameter Lyapunov exponent · Antipar-
allel diode · Experimental setup

1 Introduction

Shortly after Pecora and Carroll showed the possibility
of synchronizing chaotic elements [2], many research
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works have focused on applications and control of
chaotic elements in different fields [3,4], as this phe-
nomenon appears inmany systems in a variety of ways.
Secure communication [5–8] turns out as one of the
prominent applications of chaotic signals. In 1995, after
Perez and Cerdeira [9] have shown in their seminal
work that masking signals with simple chaos (i.e., with
only one positive Lyapunov exponent) does not provide
high level of security, the design and implementation of
suitable hyperchaotic generators [1,10–15] with more
than one positive Lyapunov exponent have become one
of the most followed research avenues. Among the var-
ious hyperchaotic generators, the circuit proposed by
Tamasevicius et al. [1] (referred as TCMNL) compris-
ing four memory elements, a p–n junction diode as
the nonlinear component and a negative impedance
converter attracted attention of recent times. Indeed,
they adopted a piecewise linear model (PWL) of the
diode to describe the dynamical behavior of the system.
As PWL is merely a first-order approximation of the
actual experimental circuit, Fozin et al. [16] proposed
a smooth (exponential) mathematical model to investi-
gate the nonlinear dynamics of the TCMNL oscillator.
Moreover, they have also synchronized these coupled
oscillators (considering smooth mathematical model)
using nonlinear state observers. In 2015, Kengne [17]
showed the coexistence of chaos with hyperchaos and
also pointed out the striking phenomenon of transient
chaos in the TCMNL oscillator by considering the
smooth mathematical model of the diode as provided
by the Schockley equation.

Very recently, many works [18–22] and references
therein showed that by replacing the single diode (expo-
nential function/nonlinear element) in many differ-
ent circuits with antiparallel diode (hyperbolic func-
tion/nonlinear element) as suggested in [23], the whole
dynamics of the system is changed and novel phe-
nomena are exhibited. Using the same approach, we
propose in this paper a modified TCMNL (referred
as mTCMNL hereafter) with antiparallel diodes to
uncover several dynamical behaviors of special inter-
est. Due to the presence of antiparallel diodes (sine
hyperbolic nonlinearity), the mTCMNL is highly sym-
metric and thus has potential to experience multi-
ple coexisting attractors. Above the rich dynamics
(chaos/hyperchaos) investigated in this work, we also
provide a systematic and methodological analysis of
the nonlinear dynamical mTCMNL oscillator helping
to point out coexistence of multiple attractors. Indeed,

while varying the system parameters, we observe the
coexistence of multiple attractors (i.e., coexistence of
three disconnected periodic attractors) ranging from
periodic, torus to chaotic. More importantly, we pro-
vide the range of parameters set for which different
dynamical behaviors exist and coexist.

Coexistence of multiple attractors is an interesting
and striking phenomenon harnessed in the literature
nowadays. Indeed, it has received lots of attention dur-
ing the last decade in diverse areas such as electronic
circuits [17,19,24–30], biological/ecological systems
[31–33], laser [34], chemical reaction [35], just to name
few. In contrast to monostable systems in which given
set system parameters define a unique attractor, a mul-
tistable system may experience two (bistable) or more
coexisting attractors for the same values of its param-
eters, depending solely on the choice of initial states
[25–27,36]. Correspondingly, the state space is mag-
netized, and each coexisting attractor has its own sphere
of influence called basin of attraction, (i.e., the set of
initial conditions leading to long-time behavior that
approaches the given attractor). Each attractor in the
basin can display completely different properties such
as Lyapunov exponents, frequency spectrum, and can
appear in all combinations including fixed points, limit
cycles, tori, chaotic attractors and hyperchaotic attrac-
tors (i.e., attractor with at least two positive Lyapunov
exponents). The types and number of attractors may
differ significantly depending on parameters monitor-
ing/tuning. Consequently, the qualitative dynamic of
the long-time behavior of a given nonlinear dynamical
system can fundamentally change depending on which
basin of attraction the initial state belongs. Though lit-
erature providesmultiple coexisting attractors in asym-
metric nonlinear systems [29,37], such phenomenon
is mostly relevant/present in symmetric systems and
may induce special events such as symmetry-breaking,
symmetry restoring crisis, coexisting bifurcation and
hysteresis [24,26,36]. The result presented here is then
a rich contribution concerning symmetric autonomous
hyperchaotic systems with simple/elegant mathemati-
cal model as well as electronic circuit realization [38].
One should notice that the coexistence of attractors is
additional sources of randomness in chaotic systems
and may be exploited for chaos-based secure com-
munications or image processing [39]. However, their
studies and control are very important in most engi-
neering applications as they can lead to unexpected
and potentially disastrous responses to perturbations
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[35,40]. Detailed study along this line is beyond the
scope of this work.

The paper is organized as follows. In Sect. 2, we
briefly describe the mTCMNL circuit and a suitable
mathematical model is derived to describe the dynam-
ics of the proposed oscillator. Some basic properties of
the model are underlined. The possibility of chaotic
oscillations is presented from the stability analysis.
Section 3 presents the result of our numerical inves-
tigation. The bifurcation structure showing the win-
dow of occurrence of coexisting multiple attractors is
revealed. Phase portraits and corresponding Poincaré
section/frequency spectra are depicted to confirm the
bifurcation structure. The two parameter Lyapunov
exponents corresponding to the two largest Lyapunov
exponents are provided as abacus for engineering appli-
cations as they describe the whole dynamics in the sys-
tem when varying simultaneously two control param-
eters. In Sect. 4, details studies of multistability in
mTCMNL oscillator are depicted. Basins of attraction
of various coexisting solutions are computed show-
ing complex basin boundaries. Experimental results are
presented in Sect. 5. Laboratory experimentalmeasure-
ments show a very good agreement with the theoreti-
cal analyses. Conclusion and possible future works are
presented in Sect. 6.

2 Circuit description, mathematical model and
basic properties

We briefly describe the circuit diagram in Sect. 2.1;
then, in Sect. 2.2, we provide the corresponding math-
ematical model of the circuit diagram of mTCMNL.
Finally, Section 2.3 presents the basic properties of the
model and the nature of the equilibrium points.

2.1 Circuit description

The schematic diagram of the mTCMNL oscilla-
tor is depicted in Fig. 1. It consists of a combined
parallel-series LC (namely L1C1 − L2C2), a nega-
tive impedance converter (NIC) ZNIC = −R which
is implemented as reported in [23] and two antiparal-
lel diodes. The antiparallel diodes are responsible for
the whole set of nonlinear phenomena (chaos/ hyper-
chaos) in the circuit and replace the only diode which
was considered in the original circuit. During our anal-

Fig. 1 Schematic diagram of the modified TCMNL oscillator
with antiparallel diodes. ZNIC is a negative impedance converter
and is implemented as in [23]

ysis, ZNIC = −R will serve as the main bifurcation
control parameter for the system.

2.2 Mathematical model

This subsection introduces the mathematical model
of the mTCMNL considering the following hypothe-
sis. Firstly, we assume all the components except the
antiparallel diodes to operate in their linear region. Sec-
ondly, the current–voltage (I − V ) characteristic of
each diode is modeled with an exponential function
[16]. Hence, the overall current Id flowing through the
antiparallel diodes is described with a hyperbolic non-
linearity [18,19].

Id = f (Vd) = 2Issinh

(
Vd

ηVT

)
, (1)

where Is is the saturation current of the junction, Vd
represents the voltage drop across the diode, η stands
for the ideality factor (1 < η < 2) and VT = kBT/q
is the thermal voltage. Here, KB is the Boltzmann con-
stant, T is the absolute temperature expressed inKelvin
and q is the electron charge. It is worth to note that at
room temperature (300K), we have VT ≈ 26mV. By
applying the Kirchhoff’s laws to Fig. 1, we obtain the
following set of autonomous differential equations of
the mTCMNL oscillator:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1
dVC1

dt
= VC1

R
− I1 − Id

L1
dI1
dt

= VC1

C2
dVC2

dt
= Id − I2

L2
dI2
dt

= VC2

(2)
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where In (n = 1, 2) is the current flowing through
the inductor Ln , VCm (m = 1, 2) the voltage across
capacitor Cm and Id, defined by Eq. (1), is the current
flowing through antiparallel diodes. We normalize the
above set of first-order differential equations (2) by con-
sidering the following rescaled variables and parame-
ters: τ = t/

√
L1C1, Vref = ηVT , x1 = VC1/Vref ,

x2 = ρ I1/Vref , x3 = VC2/Vref , x4 = ρ I2/Vref , α =
ρ/R, γ = ρ Is/Vref , ε1 = C1/C2, ε2 = L1/L2 and
ρ = √

L1/C1. Consequently, we obtain the following
system of smooth normalized differential equations:

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = αx1 − x2 − f (x1 − x3)
ẋ2 = x1
ẋ3 = ε1 ( f (x1 − x3) − x4)
ẋ4 = ε2x3

(3)

where (̇) = d
dτ

and f (x1 − x3) = 2γ sinh(x1 − x3)
is the hyperbolic nonlinearity of the system. Note that
the presence of this hyperbolic nonlinearity is respon-
sible of all the complex behaviors observed in system
(3). The vector field associated with Eq. (3) is of C∞
type due to the smoothness of the nonlinear hyperbolic
function, thereby, making the system more tractable.

2.3 Symmetry and fixed points

From Eq. (3), one can easily check that the model
is symmetric about the origin O(0, 0, 0, 0), i.e., if
(x1(τ ), x2(τ ), x3(τ ), x4(τ )) is the solution of the
system (3) for a specific set of parameters, then
(− x1(τ ),− x2(τ ),− x3(τ ),− x4(τ )) is also a solution
for the same parameters set. As a consequence, any pro-
jection of the attractors in the (x1, x2, x3, x4) subspace
or any lower combination is symmetric with respect
to the origin; otherwise, they must appear in pairs, to
restore the exact symmetry of themodel equations. This
exact symmetry could serve to justify the occurrence
of several coexisting attractors in state space. Further-
more, this interesting property represents a good way
to test the scheme used during numerical computation.
The equilibrium point of system (3) is computed to be
the origin O(0, 0, 0, 0). The evaluation of the eigenval-
ues for the following chosen parameters set, α = 1.3,
ε1 = 3.228, ε2 = 15.0, γ = 4.8982907×10−5 yields:
ζ1,2 = 0.649951± j0.759976 and ζ3,4 = − 7.34746×
10−4 ± j6.95845. Consequently, as the eigenvalues
are complex conjugate with some positive real parts,

the equilibrium point O(0, 0, 0, 0) is an unstable sad-
dle focus. Physically, this result supports the fact that
the oscillator can oscillate chaotically and excludes the
existence of stable fixed point motion in the system (3).

3 Numerical analysis

The transitions to chaos/hyperchaos are defined by
solving Eq. (3) numerically using the fourth-order
Runge–Kutta method. For each set of parameter used
in this work, the time step is always chosen as 	t =
1 × 10−4 during the computation. The system is inte-
grated for a sufficiently long time, and the transient
is discarded. Bifurcation diagram and Lyapunov expo-
nent spectrum are the two combined indicators used
in Sect. 3.1 to identify the type of transitions which
lead to chaos/hyperchaos. Section 3.2 deals with the
two parameter Lyapunov exponents diagrams which is
an abacus for engineers to choose the right parameters
sets for any further applications.

3.1 Bifurcation analysis

Bifurcation diagram is a qualitative tool to examine
the transitions occurring in a dynamical system [41].
The variation of the local maxima of the state variable
x2(τ ) with respect to the control parameter α is plot-
ted in Fig. 2a, b. The final state at each iteration of
the bifurcation control parameter is used as the initial
condition for the next iteration. Two sets of data corre-
sponding, respectively, to increasing (red) and decreas-
ing (blue) values ofα are presented. This strategy repre-
sents a straightforward method to identify the domains
inwhich system (3) demonstrates the behavior ofmulti-
ple coexisting attractors’ (see Sect. 4 for more details).
In the light of Fig. 2, one can easily observe that sys-
tem (3) evolves from period-1 to chaos/hyperchaos
oscillations/solutions with tiny windows of multiperi-
odic, quasiperiodic and chaotic attractors. These latter
transitions are confirmed and characterized using the
quantitative tool of Lyapunov exponent spectrum [42].
Table 1 quantifies the predominant phenomena of the
mTCMNL in terms of Lyapunov exponents (LE) and
also their corresponding ranges in terms of the control
parameter α.

Using the same strategy as described to obtain the
bifurcation diagrams, we have plotted in Fig. 2c, d, the
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Fig. 2 Bifurcation diagrams a, b of two sets of data (corre-
sponding to increasing (in red) and decreasing (in blue), respec-
tively, the control parameter) showing the local maxima of the
variable x2 and their corresponding Lyapunov exponent spec-
trums c, d when the control parameter is varying within the

range 0.8 ≤ α ≤ 2.0. A window of hysteresis can be noti-
fied when α ∈ [0.8; 1.037]. The rest of the system parameters
are ε1 = 3.228, ε2 = 15, γ = 4.8982907 × 10−5. (Color figure
online)

Table 1 Characteristics of
the various solutions of
system (3) while increasing
α

Solution Lyapunov exponents Range of the control parameter α

Periodic λ1 = 0 ; λ2,3,4 < 0 [0.8, 0.852]∪]1.069, 1.109]∪]1.884, 1.9]
Quasiperiodic (for 2D-torus) λ1,2 = 0 ; λ3,4 < 0 ]0.852, 0.8883]
Chaos λ1 > 0 ; λ2,3,4 < 0 ]0.9284, 1.069]∪]1.522, 1.884]∪]1.9, 2.0]
Hyperchaos λ1,2 > 0 ; λ3,4 < 0 ]1.153, 1.249]∪]1.262, 1.522]

corresponding Lyapunov exponent spectrums for dif-
ferent values of α ∈ [0.8; 2.0]. One can easily notice
that the Lyapunov exponent spectrum of Fig. 2c (resp.
Fig. 2d) well matches with the bifurcation diagram of
Fig. 2a (resp. Fig. 2b). In opposition to the bifurcation
diagram, the graph of Lyapunov exponent spectrum is
a powerful tool to quantify chaos/ hyperchaos and also
to distinguish chaos from quasiperiodic regions as it
can clarify the bifurcation diagram which is only for
qualitative characterization. More tools such as phase
portraits and Poincaré section are also useful in this
case. It can be seen that the bifurcation diagram well
matches with the spectrum of the LE. Regions with
single positive LE are simply chaotic, while those with
two positive LE are hyperchaotic. Also, fromFig. 2c, d,
parameter space for which the two largest LE equal to
zero are called 2D-torus while thosewith the largest LE
been equal to zero with all others negative are periodic
regions (see Table 1). Using the same values of param-
eters in Fig. 2 combined with the symmetry property of
the system, various phase portraits and corresponding
Poincaré sections were computed to confirm different
bifurcation sequences of Fig. 2a depicted previously

(see Fig. 3). Asymmetric pair of attractors are depicted
in Fig. 3a(1)–a(4), while double-band of strange hyper-
chaotic and chaotic attractors are observed inFig. 3a(5),
a(6), respectively. More information about the com-
plexity of the attractors is provided through the dou-
ble side 3D Poincaré sections [see Fig. 3b(1)–b(6)]
across the hyperplane x4 = 0. One can easily notice
that the Poincaré section of hyperchaos oscillations is
dense/disorder compared to those of chaotic oscilla-
tions. Also, torus is clearly represented with circle in
the Poincaré section, while periodic motions are rep-
resented by sample of points which correspond to tra-
jectories which are crossing the Poincaré hyperplane.
The phase portraits corresponding to the coexisting
region of the bifurcation diagram in Fig. 2a, b are well
described/studied in Sect. 4.

3.2 Two parameter Lyapunov exponents

This section presents a two parameter Lyapunov expo-
nents (LE) abacus for further application in engineer-
ing. As in the pioneering work of Tamasevicius et al.
[1], inductances (i.e., ε1) and capacitors (i.e., ε2) were
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Fig. 3 Numerical phase
portraits (left) of the
mTCMNL oscillator and
their corresponding 3D
Poincaré section (right) in
the hyperplane x4 = 0 when
varying α: a(1)–b(1)
asymmetric period-1 for
α = 0.85; a(2)–b(2)
asymmetric 2D torus for
α = 0.86; a(3)–b(3)
asymmetric period-7 for
α = 0.90; a(4)–b(4)
asymmetric single-band
chaos for α = 0.95;
a(5)–b(5) symmetric
double-band hyperchaos for
α = 1.30; a(6)–b(6)
symmetric double-band
chaos for α = 1.60. Pair of
asymmetric attractors are
obtained using the following
set of initial conditions (IC)
chosen within the basin of
attraction of IC :
(x1(0), x2(0), x3(0), x4(0)) =
(± 0.5,± 1.0,± 0.5,± 0.3)
while any combinations
lead to symmetric
double-band attractors
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modeled with gyrators; hence, it is advantageous to
consider either ε1 or ε2 (or both) as control parame-
ters. The analysis of systems using two parameter LE

through the construction of appropriate colorful dia-
grams by varying simultaneously two parameters of
the system with the color as the intensity of the cho-
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Fig. 3 continued
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Fig. 4 Two parameter Lyapunov exponent diagram showing the
largest (a) and the second largest (b) LE in the (α − ε1) space
helping to characterize hyperchaos, chaos, periodic solutions in

system (3). The control parameters are varied within the ranges
0.8 ≤ α ≤ 2.0, 2 ≤ ε1 ≤ 10 and the rest of system parameters
are fixed as: ε2 = 3.228 and γ = 4.8982907 × 10−5

sen LE is not new. Indeed, literature [43,44] (and ref-
erences therein) provides the analysis of largest LE
as a tool to analyze and describe system with higher
order. However, regarding four-dimensional systems,
few works reported their complex behaviors using the
LE spectrum to construct colorful two parameter LE
diagram based on the largest and second largest expo-
nents. Moreover, diagrams depicted here present the
general dynamic of the system/oscillator when varying

simultaneously two parameters. Henceforth, it is the
main motivation of this section.

Firstly, Figure 4 presents the two parameter LE dia-
grams for the largest exponent (Fig. 4a) and for the sec-
ond largest exponent (Fig. 4b), in the (α − ε1) param-
eter space. Secondly, Figure 5 presents the two param-
eter LE diagrams for the largest exponent (Fig. 5a)
and for the second largest exponent (Fig. 5b), in the
(α−ε2) parameter space. And finally, in Fig. 6 we have
plotted the two parameter LE diagrams for the largest
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Fig. 5 Two parameter Lyapunov exponent diagram showing the
largest (a) and the second largest (b) LE in the (α − ε2) space
helping to characterize hyperchaos, chaos, periodic solutions in

system (3). The control parameters are varied within the ranges
0.8 ≤ α ≤ 1.6, 10 ≤ ε2 ≤ 22 and the rest of system parameters
are fixed as: ε1 = 15 and γ = 4.8982907 × 10−5
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Fig. 6 Two parameter Lyapunov exponent diagram showing the
largest (a) and the second largest LE (b) in the (ε2 − ε1) space
helping to characterize hyperchaos, chaos, periodic solutions in

system (3). The control parameters are varied within the ranges
2 ≤ ε1 ≤ 10, 10 ≤ ε2 ≤ 22 and the rest of system parameters
are fixed as: α = 1.3 and γ = 4.8982907 × 10−5

exponent (Fig. 6a) and for the second largest exponent
(Fig. 6b), in the (ε1 −ε2) parameter space. In these fig-
ures (Figs. 4, 5, 6), the colorful diagrams are obtained
by numerically computing LE spectrum on a grid of
500×500 values of the chosen space parameters.More-
over, the system (3) was integrated with a fourth-order
Runge–Kutta algorithm with a fixed step size equal to
2 × 10−3, considering 1 × 106 steps to compute the
LE spectrum. Colors are associated with the magni-
tude of the LE as follows: White stands for the most
negative, black for zero, red for themost positive, while
positive exponent is indicated by a continuously chang-
ing yellow–red scale. In all these Lyapunov diagrams,
we observe an abundant presence of periodic struc-
tures spread in chaotic and hyperchaotic regions. These
periodic structures appear more clearly on the second
largest exponent diagrams, as white structures embed-

ded in black and yellow-reddish regions of Figs. 4b, 5
and 6b. Chaotic regions are characterized as a combina-
tion of yellow-reddish color on the largest LE diagram
(Figs. 4a, 5, 6a) and a white and black color on the sec-
ond largest LE diagram (Figs. 4b, 5, 6b), while hyper-
chaos is characterized by the combined yellow-reddish
color on both the largest LE diagrams (Figs. 4a, 5, 6a)
and second largest LE diagrams (Figs. 4b, 5, 6b). Some
tiny windows of fixed points are also observed and
are characterized with a white color on the largest LE
diagram. One can notice a wider range of hyperchaos
in the (ε1 − ε2) parameter space of Fig. 6 than those
of Figs. 4, 5. Indeed, a wider region of hyperchaos is
observed in the second largest Lyapunov exponents for
lower values of ε1 and higher values of ε2. Henceforth,
the abacus of Fig. 6 is more appropriate in engineer-
ing applications such as secure communications due
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to that broad band of hyperchaos. The two parameter
LE are also useful to observe the different transitions
which occur while scanning the two parameters space;
hyperchaos to chaos and chaos to periodic behaviors
are characterized, respectively, by yellow-reddish and
yellow-blackish color transitions on the second largest
LE diagram. This can be an alternative to recurrence
plot [45,46] methods when analyzing these transitions
for higher order (order ≥ 4) systems.

4 Coexistence of multiple attractors

With reference to the bifurcation diagram of Fig. 2 and
the corresponding zoom depicted in Fig. 7, a wide win-
dow of hysteresis dynamics (and thus multiple stabil-
ity) can be identified in the range 0.8 ≤ α ≤ 1.037.
The three maximum Lyapunov exponents for increas-
ing values of α are plotted in Fig. 7ii, while those corre-
sponding to decreasing values are depicted in Fig. 7iii.
A perfect correspondence can be noted between each
set of bifurcation diagrams and its corresponding Lya-
punov exponents diagram. From the bifurcation dia-
grams of Fig. 7i, two main routes (i.e., the formation
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Fig. 7 Enlarged bifurcation diagrams (i) and its corresponding
Lyapunov exponents (ii, iii) showing the phenomenon of hys-
teresis when decreasing (red color) and increasing (blue color)
the control parameter α in the interval [0.8 − 1.1]. It is worth
mentioning that attractors obtained from route I (red color bifur-
cation diagram) are symmetric with respect to the origin while
asymmetric pair of attractors are obtained from route II (blue
bifurcation diagram); see Table 2 for more (Color online)

and destruction of two-dimensional invariant tori) can
be identified while varying the control parameter α.
Route I (see Sect. 4.1) is the observed bifurcation sce-
nario while decreasing the control parameter (bifurca-
tion diagram of Fig. 7 in blue color), while route II (see
Sect. 4.2) is the bifurcation scenario when the control
parameter is increased (bifurcation diagram of Fig. 7 in
red color). Table 2 provides a summary of the related
coexisting attractors in each region of Fig. 7. The tran-
sition observed in route I is chaotic oscillations which
breakdown to quasiperiodic oscillations and then limit
cycle (see bifurcation diagramof Fig. 7iwith red color).
While in route II, the completely reverse previous tran-
sition is observed (bifurcation diagram of Fig. 7i in
blue color) [47]. Despite the fact that route I and II
depict each other reverse transitions, each route display
completely different properties (phase portraits, fre-
quency spectrum, Poincaré section just to name few).
The attractor obtained in each route depends on the set
of initial conditions leading to the long-time behavior
that approaches the given attractor. Table 2 summa-
rizes the overall attractors which are coexisting in each
region of Fig. 7. Mainly, three attractors are coexisting;
that is, one symmetric attractor obtained from route I
and pair of asymmetric attractors obtained from route
II. The corresponding phase portraits in each region of
Fig. 7 are obtained by fixing the system parameters and
then varying only the initial conditions (see Fig. 11).

4.1 Route I: transition from a stable cycle to
chaos through a torus break down

When decreasing the control parameter α from 1.1 to
0.8, the following symmetric attractors are captured in
the coexisting region of the control parameter (0.8 ≤
α ≤ 1.037): chaos −→ torus −→ limit cycle with a
tiny periodic windows as transition from chaos to torus.
These transitions arewell reported in the literature [49–
52] and known as transition from a stable cycle to chaos
through a torus break down [48]. The generic character
of these transitions has subsequently been confirmed
both numerically and experimentally for awide class of
flow [49,50] and discrete time [51,52] systems.Numer-
ical phase portraits and their correspondingpower spec-
tra are presented in Fig. 8 and thereby, confirming the
corresponding transitions. Each attractor (see Fig. 8)
reported here is symmetric with respect to the origin;
consequently, they are invariant during the integration
under the transformation (x1(0), x2(0), x3(0), x4(0))

123



662 T. Fozin Fonzin et al.

Table 2 Summary of the related coexisting attractors in each region of Fig. 7

Region Route I (magenta color) Route II (red and blue colors)

A Symmetric period-1 (Fig. 8e) Asymmetric pair of periodic attractors [Fig. 3a(1)]

B Symmetric period-1 (Fig. 8e) Asymmetric pair of 2D torus [Fig. 3a(2)]

C Symmetric period-1 (Fig. 8e) Asymmetric pair of multiperiodic attractors [Fig. 3a(3)]

E Symmetric period1 Asymmetric pair of periodic and chaotic attractors

F Symmetric torus attractor (Fig. 8c) Asymmetric pair of chaotic attractors [Fig. 3a(4)]

G Symmetric chaotic attractor (Fig. 8a) Asymmetric pair of chaotic attractors [Fig. 3a(4)]

Fig. 8 Numerical phase
portraits (left) of the
mTCMNL oscillator and
their corresponding power
spectrum (right) when
decreasing α (route I): a, b
Chaotic attractor for
α = 1.0; c, d Torus for
α = 0.94; e, f Limit cycle
for α = 0.82; Symmetric
attractors (of route I) are
obtained using the following
set of initial conditions (IC)
chosen within the basin of
attraction of Fig. 9 :
(x1(0), x2(0), x3(0), x4(0)) =
(8.75,− 8.75,− 5.3,− 10.1)
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Fig. 9 Basin of initial conditions in the plan (x1(0) − x2(0))
showing the coexistence of asymmetric pair of chaotic solu-
tions (cyan and magenta) with symmetric quasiperiodic (black)
oscillations when the control parameter α = 0.95 (region F of
Fig. 7); Red areas correspond to unbounded dynamics (color
figure online). The other initial conditions are (x3(0), x4(0)) =
(− 5.3,− 10.1) and the rest of parameters set are those of Fig. 2

⇐⇒ (− x1(0), − x2(0), − x3(0),− x4(0)). The scan
of initial conditions (− 25 ≤ x1(0) ≤ 15 and − 30 ≤
x2(0) ≤ 30) in the region F (i.e., for α = 0.95) is
depicted in Fig. 9. From Fig. 9, the black areas corre-
spond to the domain of initial conditions which lead to
quasiperiodic solutions of route I (see Fig. 8c), while
magenta and cyan zones (in Fig. 9) are domain of ini-
tial conditions associated to asymmetric pair of chaotic
attractors of route II [see Fig. 3a(4)] for fixed param-
eter sets. Statistical properties of various competing
attractors such as maximum Lyapunov exponent and
size of attractors were exploited during the computa-
tion of basin of attraction. The following set of ini-
tial conditions (8.75,− 5.3,− 8.75,− 10.1) has been
used to compute quasiperiodic attractor of Fig. 8c,
while when choosing (± 0.5,± 1.0,± 0.5,± 0.3), we
obtained Fig. 3a(4) for fixed parameter sets (i.e., α =
0.95). The maximal LE for the fixed control parame-
ter α = 0.95 when the system exhibits torus (route I)
mode is λmax = − 0.0245 and λmax = 0.0478 (route
II) for chaotic oscillations.

4.2 Route II: from limit cycle oscillation to chaos via
2D-torus

Different scenarios depicted in Fig. 3a(1)–a(4) are pre-
senting the asymmetric pair of attractors when increas-

Fig. 10 Cross section of the basin of attraction in the plan
(x1(0) − x2(0)) showing the coexisting region of asymmetric
pair of chaotic solutions (cyan and magenta areas) with symmet-
ric limit cycle (black zones) oscillations when the control param-
eter α = 0.932 (region E of Fig. 7). Red color corresponds to
unbounded dynamics (color figure online) and the other initial
conditions are (x3(0), x4(0)) = (0.3, 0.1)

ing the control parameter α from 0.8 to 0.95 with
the following initial conditions: (x1(0), x2(0), x3(0),
x4(0)) = (± 0.5,± 1.0,± 0.5,± 0.3). The system
undergoes transitions from limit cycle to chaos via
destruction of two-dimensional invariant torus. Indeed,
for smooth dynamical systems, the basic theorem for
the destruction of a two-dimensional torus was proved
and the possible ways for the appearance of chaotic
dynamics were described in the important work of
Afraimovich and Shilnikov [48]. As illustrated in Fig. 7
(see the blue branch of the bifurcation diagram denoted
as route II), the invariant torus is destroyed in accor-
dancewith the classicAfraimovich–Shilnikov scenario
[48] through a period doubling bifurcation (see the
periodic window C in Fig. 7 belonging to the Arnold
tongue): as the limit cycle on the 2D torus lost its sta-
bility and a period doubling of the resonance cycle
took place. Also, many periodic windows are observed
during the transition. The basin of initial condition of
Fig. 10 (i.e., region E of Fig. 7) presents the corre-
sponding state space of initial conditions magnetized
by each attractor for fix control parameter α = 0.932.
One can notice the perfect symmetry of initial con-
ditions in the plane (x1(0) − x2(0)). Statistical prop-
erties of various competing attractors such as maxi-
mum Lyapunov exponent and size of attractors were
exploited during the computation of basin of attrac-
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Fig. 11 Numerical phase portraits of asymmetric pair (route
II) of chaotic attractors a coexisting with period-1 (route I)
attractor b for α = 0.932; Initial conditions to obtain (a) are

(x1(0), x2(0), x3(0), x4(0)) = (± 0.5,± 1.0,± 0.3,± 0.1) and
(b) are: (x1(0), x2(0), x3(0), x4(0)) = (8.75,− 8.75, 0.3, 0.1)

Fig. 12 The experimental
mTCMNL circuit in
operation. The oscilloscope
displays the double-band
chaotic attractor captured
from the experimental
circuit mounted on a
breadboard. Discrete
components are chosen as :
C1 = 18.4nF , C2 = 5.7nF ,
L1 = 15mH , L2 = 1mH ,
D1 and D2 are of types
1N4148; ZNIC = −R is a
potentiometer and will
serves as control parameter

tion. Henceforth, magenta and cyan colors are asso-
ciated to asymmetric pair of chaotic attractors (route
II), while black areas represent the initial conditions
for symmetric limit cycle oscillations (route I). Red
zones correspond to unbounded dynamics (Fig. 10).
Initial conditions x1(0) and x2(0) are varied in the
intervals [− 20, 20] and [− 30, 30], respectively. Fig-
ure 11 presents the obtained (numerically) three coex-
isting attractors for α = 0.932 when varying the initial
conditions as in Fig. 10.

5 Experimental results

The implementation of the real-time experimental cir-
cuit is a convenient tool to scan the parameter range in

order to find the proper parameter values for a numer-
ical simulation [53–55]. Another advantage of such an
approach compared to numerical computation is that
there is no need to wait for long transient times. Hence,
the goal of this section is to implement the real-time
experimental circuit of the mTCMNL in order to sup-
port and validate numerical results. The schematic dia-
gram of the complete electronic circuit used to investi-
gate the complex dynamical behavior of mTCMNL is
shown in Fig. 12. The inductances L1 and L2 are simu-
lated here using gyrators [16,23]. It is worth mention-
ing that the use of gyrators instead of real inductors is
advantageous since it becomes possible to monitor the
values of inductances/capacitors over a wide range by
simply adjusting a resistor. Even though with gyrators
the real frequency of the system will be less compared
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Fig. 13 Experimental
phase portraits of the
mTCMNL (route II) for
real-time circuit
implementation obtained
using a dual trace
oscilloscope in the XY
mode. a, b asymmetric pair
of Period-1 attractors for
R = 1090�; c, d
asymmetric pair of
quasiperiodic attractor for
R = 1035�; e, f
asymmetric pair of period-2
attractors for R = 970�; g,
h asymmetric pair of
single-band chaotic
attractors for R = 930�; i,
j asymmetric pair of
single-band chaotic
attractors R = 880�; k
symmetric double-band
hyperchaos for R = 866� ;
l symmetric double-band
chaos for R = 800�
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Fig. 13 continued

to real inductors because of the narrow band frequency
of op. amplifiers, the overall qualitative dynamic of the
system will remain the same. The negative impedance
converter and the gyrators are built using TL084 and
TL082 op. amplifiers with symmetric ± 12V dc volt-
age supply. The values of the discrete electronic com-
ponents used for experiment are provided in Fig. 12.

The experimental results are obtained by slowly
monitoring thepotentiometer of the negative impedance
converter (ZNIC = − R, i.e., varying parameter α)
and plotting phase-space trajectories

(
VC1 , VC2

)
(i.e.,

(x1, x3)) using a PINTEK dual trace oscilloscope in
the XYmode.When slowly changing the control resis-
tor R, we found that the experimental mTCMNL cir-
cuit exhibits various types of bifurcations. For R =
1090�, a period-1 limit cycle is observed. When R is
gradually decreased, the complete sequence of bifur-
cation reported previously is observed. The system
evolves progressively from period-1 → torus state →
period-2 → single-band asymmetric chaotic attractor
→ double-band symmetric hyperchaotic attractor →
double-band symmetric chaotic attractor. Some win-
dows of periodic behaviors sandwiched within the
chaotic domains are also noted. This is clearly illus-

trated by the experimental pictures of Fig. 13 showing
the real time trace of the mTCMNL circuit under con-
sideration. In the light of the pictures in Fig. 13, it can be
seen that the real circuit demonstrates the same bifurca-
tion sequences of Fig. 3 as observed during the numer-
ical study (only the capture of route II, i.e., decreasing
R (increasing α)). One can notice in Fig. 13 the coexis-
tence of asymmetric pair of attractors for discrete set of
control parameters. Such a phenomenon was observed
by switching off and on the power supply and thereby
randomly selecting initials states.

The coexisting attractor of route I with route II was
observed this time by increasing the control parame-
ter R (i.e., decreasing α). During experiments, it was
sometimes necessary to heat the discrete components
with a hair dryer to randomly select the appropriate
initials conditions and thereby obtain the phase por-
traits of route I as depicted in Fig. 14. The mTCMNL
circuit undergoes from symmetric chaotic attractor
(Fig. 14a) to limit cycle (Fig. 14c) through torus oscil-
lation (Fig. 14b).

When the control parameter is fixed at R = 1090�,
we observe the coexistence of asymmetric pair of
period-1 attractor of Fig. 13a, b with period-1 of
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Fig. 14 Experimental phase portraits of the mTCMNL (route
I) when increasing the resistance R traced on a dual PINTEK
oscilloscope in XY mode. a Chaotic attractor for R = 880�; b
Torus for R = 930�; c Period-1 for R = 1090�

Fig. 14c. Torus of Fig. 14b also coexists with the asym-
metric pair of single-band chaotic attractor of Fig. 13g,
h for R = 930�, while chaotic attractor of Fig. 14a

coexists with the symmetric pair of chaotic attractor of
Fig. 13i, j for R = 880�. It should be mentioned that
chaotic attractors of Fig. 13,with relatively larger basin,
are more likely to appear (i.e., more frequent) than
those of Fig. 14. Moreover, as expected (owing to the
fractal structure of basin boundaries), jumps between
coexisting attractors are also observed in experiment.
Good agreement can be captured between numerical
and experimental results.However, a slight discrepancy
thatmay be attributed to precision on the values of elec-
tronic components as well as the simplifying assump-
tions considered during the modeling process can be
noted between numerical and experimental results.

6 Conclusion

This paper has considered the dynamics of the modi-
fied TCMNL oscillator by replacing the single diode
of the original circuit with two antiparallel ones. The
modification yields are relatively simple and provide
a nonlinearity capable of rich and interesting phenom-
ena such as torus, hyperchaos and coexistence of mul-
tiple attractors. Using standard nonlinear analysis tech-
niques such as bifurcation diagrams, Lyapunov expo-
nent spectrum, Poincaré sections and frequency spec-
tra, the dynamics of the mTCMNL has been charac-
terized in terms of its parameters. Two parameter Lya-
punov exponent diagramshavebeen introduced to char-
acterize chaos, hyperchaos and periodic oscillations as
well as their transitions. As a major result, it is found
that the mTCMNL exhibits the unusual and striking
phenomenon of multiple attractors (i.e., coexistence of
asymmetric pair of attractors with a symmetric one)
for a wide range of circuits parameters. By changing
the initial conditions, asymmetric pair of attractors are
coexisting with symmetric one for fix control parame-
ter. Basin of initial conditions of coexisting attractors
has been depicted in two different regions. Both hyper-
chaos and multistability phenomena reported in this
workmay serve as additional keys for applications such
as secure communication (i.e., chaosmasking). Results
of theoretical analysis are perfectly following labora-
tory experiments. This clearly shows that the smooth
mathematical model based on sine hyperbolic (I–V)
characteristic of the antiparallel diodes is appropriate
to capture detailed behaviors of the such semiconduc-
tor diode-based circuits in general. A detail analysis
of control and synchronization of each attractor in the
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coexisting regions of parameter sets may be carried out
in future works. Also, the study performed in this work
may easily be extended to similar chaotic and hyper-
chaotic generators.
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