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Abstract Periodicity of motion around the collinear
libration point associated with the Elliptic Restricted
Three-Body Problem is studied. A survey of peri-
odic solutions in the Circular Restricted Three-Body
Problem is presented considering both Sun–Earth and
Earth–Moon systems. Halo, Lyapunov and Vertical
families around L1, L2 and L3 points are investigated,
and their orbital period ranges through the entire family
are reported. Resonant motions within the orbit fami-
lies in the circular problemare identified and selected as
suitable initial guess tofindperiodic orbits in the elliptic
problem, which are targeted using a differential correc-
tion algorithm. Periodic solutions found are cataloged
depending on the number of revolutions around libra-
tion points.Geometry, dynamical behavior and stability
properties of single-revolution orbits are shown, aswell
as double-, triple- and quadruple-revolution solutions.
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1 Introduction

The search for periodic solutions in complex non-
Keplerian systems represents one of the most promis-
ing and challenging problems in modern astrodynam-
ics.Although this problemhas been extensively studied
in the past decades, still the full comprehension of its
dynamics is far to be reached. Simplified models of the
motion of a particle under the gravitational attraction of
celestial bodies are usually studied. Among them, the
Restricted Three-Body Problem (R3BP) gained a lot of
popularity in the last few decades and, in some cases,
replaces or complements the simpler but less accurate
Restricted Two-Body Problem (R2BP) within specific
and peculiar applications.

Analytical studies by Farquhar [4] on three-
dimensional periodic solutions about libration points
in the Earth–Moon three-body system started a new
era. Farquhar found three-dimensional periodic orbits
in the proximity of libration points and named them
‘Halo’ orbits. Following his work on Halo orbits, Far-
quhar and Kamel [5] found Lissajous trajectories near
the translunar libration point. Later, Howell [9] devel-
oped a numerical algorithm to precisely compute them.
After them, different families of periodic orbits have
been found and computed in the frame of the Circular
Restricted Three-Body Problem (CR3BP).

TheEllipticRestrictedThree-BodyProblem (ER3BP)
represents a better approximation, compared to the
CR3BP, of the dynamics of a small body in the prox-
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imity of two attractors, whose two-body motion is not
circular. The nonzero eccentricity of the orbits of pri-
maries is themost notable perturbation leading the orbit
not to be periodic [20]. Compared to the widely stud-
ied CR3BP, periodic motion in the ER3BP remains
still to be explored. Different kinds of orbits have
been targeted in the past, with the main focus being
either on systematic analysis of the elliptical prob-
lem (e, μ) space dependency [2,12,13,18,25] or on
finding multi-revolution orbits about collinear libra-
tion points [3,14,21,22]. Relevant studies on periodic
motion under ER3BP include also the work by Gurfil
and Kasdin [7], Palacian et al. [19] and Nayfeh [16].
The study of periodic motion in the ER3BP is tightly
correlated with the study of the resonant motion near
libration points. Reference works in this field include
studies on the investigation of the dynamics related to
the resonance problem [23,28] and their classification
[11,17].

The present work aims at finding periodic orbits
about collinear points in the ER3BP. Section 2 presents
the dynamics of the problem and sets the mathemati-
cal background in use throughout the paper. Section 3
discusses the numerical method in use and the strategy
implemented to find solutions in the elliptic problem.
Due to their peculiar nature, such solutions possess
natural resonance with the motion of primaries. Sec-
tion 4 presents a survey of families of periodic orbits in
the CR3BP and identifies suitable resonant solutions,
which are used as initial guess to compute orbits in the
elliptic problem, as shown in Sect. 5. Stability prop-
erties of periodic orbits are reported for families of
solutions found and their dependency on eccentricity
is discussed.

2 Dynamics

The present study is performed under the assumptions
related to the Restricted Three-Body Problem (R3BP),
which describes the dynamics of a small body (third
body) that moves under the gravitational attraction of
two massive bodies, called primaries, without influ-
encing their motion. The R3BP is a suitable model of
the reality when the mass of the third body is negli-
gible with respect to the mass of the primaries. The
motion of the primaries is then influenced only by their
mutual attraction: accordingly, their relative trajectory
is a conic section, being solution of theTwo-BodyProb-

lem. The elliptic problem (ER3BP) considers the pri-
maries moving on ellipses around the barycenter of the
system, and it represents a generalization (for e �= 0)
of the simpler circular problem (CR3BP), where the
primaries are constrained to move on circular paths
(e = 0).

2.1 Equations of motion

In analogy to the classical formulation of the circular
problem [26], the equations of motion of the ER3BP
are commonly expressed in the synodic reference frame
[27]. Unlike the CR3BP, the position of the primaries
is not fixed in the rotating frame as they move along
elliptical orbits: their relative distance ρ is not constant
in time

ρ = p

1 + e cos f
(1)

where p is the semi-latus rectum, f is the true anomaly,
and e is the eccentricity of the two-body orbit of the pri-
maries. As a result, when seen from the rotating frame
(x̂, ŷ, ẑ), which rotates with angular velocity equal to
that of the primaries (two-body motion), the position
of m1 and m2 pulsates along the x̂ axis.

System 2 shows the equations of motion in nondi-
mensional form
⎧
⎪⎨

⎪⎩

x ′′ − 2y′ = Ux

y′′ + 2x ′ = Uy

z′′ = Uz

(2)

where (·)′ and (·)′′ indicate first and second derivative
with respect to the true anomaly f , while the nota-
tion U(·) indicates the partial derivative of the pseudo-
potential with respect to the variable (·). The pseudo-
potential function U associated with the problem is
defined as

U = 1

1 + e cos f

[
1

2

(
x2 + y2 − z2e cos f

)

+ 1 − μ

r1
+ μ

r2

]

(3)

where r1 and r2 represent the distance of the particle
from the primaries (m1 and m2), while μ is the mass
ratio of the planetary system

μ = m2

m1 + m2
(4)

The system 2 is non-autonomous, since the motion
of the third body explicitly depends on the position of
the primaries, through the true anomaly f .
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2.2 State Transition Matrix

The state transition matrix (STM) associated with sys-
tem 2 is used in the differential correction algorithm
to compute periodic orbits. Given the state vector
X = [x, y, z, x ′, y′, z′]T, variational equations asso-
ciated with the problem can be written as

δX ′ = A( f )δX (5)

where A( f ) is the Jacobian of system 2

A( f ) =
[

0 I
UXX 2�

]

(6)

A( f ) is a 6 × 6 matrix and its four 3 × 3 submatrices
are

0 = zero matrix

I = identity matrix

UXX = matrix of second partial derivatives of U

� =
⎡

⎣
0 1 0

−1 0 0
0 0 0

⎤

⎦

Being the STM �( f, f0) solution of Eq. 5, its com-
ponents can be computed numerically by solving the
system
{

�′( f, f0) = A( f )�( f, f0)

�′( f0, f0) = I
(7)

2.3 Periodicity in the elliptic problem

For an orbit to be periodic in the CR3BP, it is suffi-
cient to replicate its six-dimensional state, after a cer-
tain time (period of the orbit). The circular problem
is known to have an infinite number of periodic solu-
tions which can be collected into families of orbits with
continuously varying period. This is not true for the
elliptic problem. Due to its explicit time dependency,
it is not sufficient for an orbit in the ER3BP to repli-
cate its six-dimensional state: thewhole dynamics shall
be replicated, including the time-dependent position
of primaries. For this reason the ER3BP admits only
isolated periodic orbits, with well-determined periods.
Since the time dependency of the problem is due to the
motion of the primaries, orbits in the ER3BP must be
periodic with a period commensurable to that of the
primaries. When considering nondimensional Eq. 2,

primaries move with normalized period of 2π : accord-
ingly, periodic solutions of the ER3BP must have
period of T = 2πN , with N ∈ N

+. Being the orbit
periodic with period equal or multiple to that of the
rotating frame, it is periodic both in the rotating and in
the inertial frame.

The criterion for an orbit to be periodic in the
ER3BP was firstly given by Moulton [15], after merg-
ing together the aforementioned period constraint and
his considerations on the symmetry of the problem

if the infinitesimal body crosses the x-axis per-
pendicularly when the finite bodies are at an apse,
its motion is symmetric with respect to the x-axis.

The formalization of the periodicity condition is due
to Roy and Ovenden [24], who generalized it for the
motion of n point-masses in the so-called mirror theo-
rem:

if n point-masses are acted upon by their mutual
gravitational forces only, and at a certain epoch
each radius vector from the (assumed stationary)
center of mass of the system is perpendicular to
every velocity vector, then the orbit of each mass
after that epoch is a mirror image of its orbit prior
to that epoch

According to Moulton [15] and Roy and Oven-
den [24], a sufficient condition for the motion in the
ER3BP to be periodic is that it has two perpendicular
crossings with the (x̂, ẑ) plane, which shall occur when
the primaries are at an apse.

2.4 Stability of periodic orbits

The stability of periodic orbits is assessed by studying
the properties of the STMover one orbital period (mon-
odromy matrix). The eigenvalues of the monodromy
matrix and their evolution as a function of the eccen-
tricity are studied for each family reported in this paper.
The monodromy matrix is a 6 × 6 matrix and has six
eigenvalueswhich come in complex conjugate or recip-
rocal pairs [2]. Figure 1 shows possible distribution of
eigenvalues. These include cases with (a) three recip-
rocal real pairs, (b) two real and one complex con-
jugate pair (on the unit circle), (c) one real and two
complex conjugate pairs (on the unit circle), (d) one
real and two complex conjugate pairs (not on the unit
circle), (e) three complex conjugate pairs (only one on
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Fig. 1 Distribution of eigenvalues on the complex plane repre-
sentative of the families of orbits studied in the paper

the unit circle), (f) three complex conjugate pairs (on
the unit circle). All cases (a–e) are representative of
unstable orbits, except for case (f), which indicates a
stable orbit. Stability properties of periodic orbits stud-
ied are reported in Sect. 5, with reference to types of
eigenvalue distributions defined in Fig. 1.

3 Numerical method

In this work, periodic orbits in the ER3BP have been
generated starting from orbits in the CR3BP with same
period, throughdifferential corrections and eccentricity
continuation techniques.

In agreement with the mirror theorem [24], the dif-
ferential correction algorithm is implemented to tar-
get two perpendicular crossings with the (x̂, ẑ) plane.
More in detail, a fixed-time single-shooting algorithm
is implemented, based on the algorithm proposed by
Howell [9] and adapted for the case of ER3BP.

The initial guess is taken on the (x̂, ẑ) plane; at a time
the primaries are at an apse. The correction algorithm
targets the second perpendicular crossing that occurs
after π or multiples of π , i.e., when the primaries hap-
pen to be at an apse again. The time between the two
perpendicular crossings is half of the orbital period of
the periodic solution. In this case, it is sufficient to find
half of the orbit and to propagate it forward for the
remaining half period to have the full periodic solu-
tion.

With reference to Howell [9], the vector of free vari-
ables is written as

χ = [
x0 z0 y′

0

]T
(8)

where the subscript 0 indicates conditions at initial
time, corresponding to initial true anomaly f0 that
equals either 0 (periapsis) or π (apoapsis). At the end
of the trajectory (half orbit), the state must satisfy the
following constraint condition, defined such to have
perpendicular crossing on the (x̂, ẑ) plane

F(χ) = [
yh x ′

h z′h
]T = 0 (9)

with subscript h indicating the state after half period
of the orbit, corresponding to true anomaly fh = f0 +
Nπ . The goal is to compute a solution for the free
variable vector χ that satisfies the constraint condition
F(χ) = 0. The result is found iteratively through a
multi-variable Newton’s method:

χk+1 = χk − J(χk)
−1F(χk) (10)

where subscript k indicates the current iteration and
k + 1 the next iteration. The Jacobian matrix J(χ) of
the problem is found by computing the derivatives of
the constraint with respect to the free variables

J(χ) = ∂F(χ)

∂χ
=

⎡

⎢
⎢
⎢
⎣

∂yh
∂x0

∂yh
∂z0

∂yh
∂y′

0
∂x ′

h
∂x0

∂x ′
h

∂z0

∂x ′
h

∂y′
0

∂z′h
∂x0

∂z′h
∂z0

∂z′h
∂y′

0

⎤

⎥
⎥
⎥
⎦

=
⎡

⎣
Φ21 Φ23 Φ25

Φ41 Φ43 Φ45

Φ61 Φ63 Φ65

⎤

⎦ (11)

withΦi j being the element (i, j) of the STM�( fh, f0).

4 Families in the circular problem

Several studies exist on the characterization of peri-
odic motion near equilibrium points in the CR3BP.
Relevant contributions include the work by Breakwell
and Brown [1], who computed families of orbits in
the Earth–Moon system. Later, their work has been
extended to compute families for different systems and
study their properties depending on the mass ratio μ

between primaries [9,10]. More recent works include
a comprehensive survey of orbit families in the Earth–
Moon system [6,8] and their classification [29].

This section reports and discusses orbital period
ranges within Halo, planar and vertical Lyapunov fam-
ilies around collinear libration points, in the case of
Earth–Moon and Sun–Earth three-body systems. Res-
onant motion in the CR3BP is identified to be used as
initial guess to compute periodic orbits in the ER3BP.

123



Periodic motion around libration points 457

Table 1 Orbital period of
common resonant orbits

T [nondim] M:N

1.26 5:1

1.40 9:2

1.57 4:1

1.79 7:2

2.09 3:1

2.51 5:2

3.14 2:1

4.19 3:2

6.28 1:1

Table 2 Orbital period for Halo families in the CR3BP

Libration point T [nondim]

Earth–Moon Sun–Earth

L1 1.84–2.78 1.52–3.06

L2 1.77–3.41 1.87–3.10

L3 6.15–6.23 6.28–6.28

Table 1 shows periods of common resonant orbits, cho-
sen in the interval betweenπ/5 andπ , with amaximum
of N = 2, with M, N ∈ N

+ indicating, respectively,
the number of revolution on the orbit and the number
of revolution of primaries.

4.1 Halo family

Table 2 shows orbital period ranges for Halo families
around L1, L2 and L3 in both Earth–Moon and Sun–
Earth system.

Orbital period of L1 and L2 families is shown to be
significantly lower than L3 family. Existence of reso-
nant motion in the Halo families can be established by
comparing Tables 2 with 1. Resonant 3:1 and 5:2 Halo
orbits exist aroundL1 andL2, in the case of both Earth–
Moon and Sun–Earth systems. In the Earth–Moon sys-
tem, the L2 family has a slightly wider period range
with respect to the L1 family and includes 7:2 and 2:1
resonant orbits as well. In the Sun–Earth system, Halo
orbits with lower periods exist in the L1 family and
4:1 resonance is found. A significantly larger period
is observed for Halo orbits about the L3 point. In this
case the period is on the order of 2π and a 1:1 resonant
behavior is observed for orbits of the L3 Halo families
in the Sun–Earth system.

4.2 Planar and vertical Lyapunov families

Similar trends are found for planar and vertical Lya-
punov families, with the difference that Lyapunov
orbits have in general higher periodwith respect toHalo
as they can became very large. For the case of L1 and
L2 families, orbital periods ranges between approxi-
mately 3 nondimensional units, up to 5–7 nondimen-
sional units. More in detail, 3:2 resonance is found in
all planar and vertical Lyapunov families around L1
and L2, in both Earth–Moon and Sun–Earth systems,
and 2:1 resonance is found in most of them. Families
of Lyapunov about L3 have period of approximately
2π , as in the case of Halo orbit families, leading to 1:1
resonant motion with primaries.

5 Periodic orbits in the elliptic problem

A survey of periodic motion in the ER3BP is pre-
sented in this section. The orbits are classified depend-
ing on the number of revolutions they perform around
collinear points. Stability properties are also reported
and classified with reference to Sect. 2.4 and Fig. 1.
Examples from both Earth–Moon (e = 0.0554) and
Sun–Earth (e = 0.0167) systems are shown.

5.1 Single-revolution orbits

Single-revolution orbits in the ER3BP are associated
with 1:1 resonancewith themotion of the primaries: the
spacecraft completes one orbit as the primaries do the
same around the barycenter of the system. Suitable ini-
tial guess for periodicmotion in ER3BP typically refers
to 1:1 resonant orbits in the circular problem. In partic-
ular, as discussed in Sect. 4, solutions around L3 are of
interest, as well as large Lyapunov orbits, with period
of 2π . An example, referring to a planar Lyapunov
orbit about L2 in the Earth–Moon system, is shown
in Fig. 2a. The picture shows the initial guess given to
the correction algorithm in red (the 1:1 Lyapunov reso-
nant orbit in the CR3BP) and the periodic solution after
correction in the Earth–Moon ER3BP in blue, as seen
from the nondimensional rotating-pulsating frame. The
eccentricity of the problem is shown to have an effect
on the orbit, as it shrinks the amplitude of the orbit
along the x axis. However, apart from this small effect,
no significant deviation from the circular case is found.
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Fig. 2 Single-revolution orbits: planar Lyapunov in CR3BP
(red) and ER3BP (blue). a L2 orbit in the Earth–Moon system
(1:1 in the CR3BP). b L1 orbit in the Sun–Earth system (5:2 in
the CR3BP). (Color figure online)

This kind of behavior is observed for many 1:1 orbits,
including those around L3, which are then not very
much affected by the eccentricity of the system. Con-
cerning stability, the planar L2 Lyapunov exhibits a
bifurcation at e = 0 where the two unitary eigenvalues
of the CR3BP orbit bifurcate to a complex conjugate
pair on the unit circle. There are no further bifurcations
observed in the range e = [0, 0.0554] and all orbits
in this range are unstable, with two real (one positive
and one negative) and one complex conjugate (on the
unitary circle) pairs of eigenvalues [type (b)].

A further example of single-revolution motion is
shown in Fig. 2b, with the case of a periodic orbit
in the ER3BP generated from a 5:2 planar Lyapunov
orbit about L1 in the CR3BP. The corrector converges
to a single-revolution orbit, of period 2π despite the
different resonance properties of the same orbit in
the CR3BP, which completes 5 revolutions every two
revolutions of primaries. With a different period, the
geometry of the solution changes and a greater devia-
tion is observed with respect to the previous case. As
for the previous case, the orbits are unstable and no
bifurcations are observed in the range of eccentricities
explored. The distribution of eigenvalues is of type (b)
for all orbits, with two negative real and one unitary
complex conjugate pair of eigenvalues.

Single-revolution orbits appear to be the only possi-
ble periodic motion around L3: no multiple-revolution
orbits are observed about L3. The reason is found in
typical orbital periods of L3 orbits, which are in the
order of 2π . Only 1:1 resonance motion is observed
in this particular location. These orbits are stable in the
CR3BP and mostly keep their properties in the ER3BP.
A bifurcation occurs when e = 0, with the eigenvalues
moving from (1, 0) point to the unitary circle and on
the real axis. However, the motion is very small along
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Fig. 3 Double-revolution orbits (Earth–Moon system) shown
in nondimensional rotating-pulsating frame (left) and Moon-
centered inertial frame (right). Solutions generated from 2:1 res-
onant orbits in CR3BP: a, b planar Lyapunov about L1, c, d
Halo about L2, e, f vertical Lyapunov about L1. Projections of
3D ER3BP orbits on x−y, x−z and y−z planes are shown in
gray

the range of eccentricities studied and all eigenvalues
remains very close to the unitary point.

5.2 Double-revolution orbits

Double-revolution orbits are observed to generate from
2:1 resonance in the circular problem. Since such peri-
odic motion exists in Halo and Lyapunov families
around L1 and L2 points, double-revolution orbits are
found to be quite common solutions in the ER3BP.
Examples related toHalo, vertical and planar Lyapunov
are shown here.

Figure 3 shows examples of double-revolution orbits
in the Earth–Moon system. Periodic motion is depicted
both in the nondimensional rotating-pulsating frame
(figures on the left side) and in theMoon-centered iner-
tial frame (figures on the right side). Figure 3a, b refers
to a planar solution that generates from a Lyapunov
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orbit about L1. As any other orbit shown in this work,
the orbit is symmetric with respect to the x−z plane.
Due to its symmetry, the time between two consecutive
perpendicular crossings with the x−z plane is π . This
result is in agreement with the aforementioned mir-
ror theorem, since every perpendicular crossing occurs
when the primaries are at an apse (every π ). The orbit
is made of two loops, and a half (symmetric) orbit
includes the two halves of each loop. Each loop has a
period of approximately π , as the initial guess orbit in
the CR3BP. In particular, the smaller loop has a period
slightly larger than π , while the bigger loop is flown in
a shorter time. Figure 3c, d shows a three-dimensional
periodic solution, which generates from a Halo orbit
around L2 in the CR3BP. The three-dimensional view
is shown together with the projection of the ER3BP
orbit on the x−y, x−z and y−z planes. The same is
shown for the periodic orbit in Fig. 3e, f, which refer
to a solution generating from a vertical Lyapunov near
the L1 point. For the case of double-revolution orbits
shown in thiswork, all periodic solutions appear to have
similar properties in terms of geometry and period with
respect to their correspondingCR3BPorbit. BothHalo,
planar and vertical Lyapunov orbits in the CR3BP have
period of π (they replicate their initial state after 2π
as well) and they split into two geometrically similar
orbits in the ER3BP. The nonzero eccentricity has the
effect of duplicating the single orbit into two semi-
orbits, which does not replicate itself after π as in
the CR3BP, but becomes periodic of period 2π in the
ER3BP. More into detail, the two semi-orbits appear to
be symmetric along the x axis, with a contact point
shared with their CR3BP reference orbit. The pres-
ence of the contact point between ER3BP and CR3BP
solutions is enforced by the single-shooting numerical
correction algorithm in use, to find a periodic solution
in the ER3BP associated with the specific (resonant)
solution in the CR3BP. Trajectories as seen from the
Moon-centered inertial frame are also of interest. Since
the motion is in resonance with primaries, it results to
be periodic in the inertial frame as well. Interesting
behavior appears both for the planar case (Fig. 3b) and
for the three-dimensional cases (Fig. 3d, f), where the
orbits are shown to surround the Moon with very pecu-
liar oscillating paths. Double-revolution orbits shown
here share similar stability properties and behavior. All
orbits are unstable and exhibit a bifurcation at e = 0,
when a pair of eigenvalues departs from point (1, 0).
Planar orbits show a type (a) instability (three pairs

of positive real eigenvalues), while three-dimensional
orbits show a type (b) instability (two positive real
and one complex conjugate pair). Results on stabil-
ity properties and e = 0 bifurcation are confirmed by
results in [3] on double-revolution three-dimensional
Halo orbits.

5.3 Triple-revolution orbits

As for the case of double-revolution orbits, the exis-
tence of 3:1 resonance in all families of Halo and Lya-
punov orbits about L1 and L2 makes triple-revolution
orbits quite common solutions in the ER3BP.
Figure 4 shows some examples of triple-revolution
orbits, obtained from corresponding periodic motion
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ẑ
[n
on

di
m
]

0.9

0.2

x̂ [nondim]

1

0.3

-0.21.1
1.2

CR3BP
ER3BP

(a)

Moon

5

0

-5

×104

5
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ŷ [nondim]

0

-0.2

0.6

0

0.8

x̂ [nondim]

ẑ
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ŷ [km]x̂ [km]
×105 00

1 -1

(f)

Fig. 4 Triple-revolution orbits (Earth–Moon system) shown
in nondimensional rotating-pulsating frame (left) and Moon-
centered inertial frame (right). Solution generated from 3:1 res-
onant Halo about L2 in CR3BP (a, b). Solutions generated from
3:2 resonant orbits in CR3BP: (c, d) vertical Lyapunov about L1,
(e, f) vertical Lyapunov about L2. Projections of ER3BP orbits
on x−y, x−z and y−z planes are shown in gray
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in the CR3BP. In this case, periodicity in the state is
reached after three orbital loops. With analogy to what
observed within the double-revolution cases, a similar
orbit to that of CR3BP is replicated three times. In the
case of Fig. 4a, b, the periodic motion in the ER3BP
is generated starting from a 3:1 resonant Halo orbit
about L2 in the CR3BP. Such orbit possesses orbital
period of 2/3π . This example is in analogy with the
case shown in Fig. 3c, d: both cases refer to a Halo
orbit about L2, but with different orbital period. Fig-
ure 4c, d shows an ER3BP solution associated with a
3:2 vertical Lyapunov about L1 in the CR3BP. In this
case, the CR3BP guess has an orbital period of 4/3π ,
since it completes three orbital loops as the primaries
revolve two times around the barycenter of the system.
The orbital period is doubled with respect to the case
shown in Fig. 4a, b. Accordingly, the resulting trajec-
tory in the ER3BP is periodic with period 4π . Geomet-
rically, the outcome is similar to those observed so far:
the orbit makes three loops and is periodic both in the
synodic and in the inertial frame. Same considerations
apply for the case of Fig. 4e, f, which refer to a periodic
ER3BP solution generated from a 3:2 resonant vertical
Lyapunov about L2 in the CR3BP. Periodicity is also
observed after two revolutions of primaries (4π ). Very
interesting behavior are observed for triple-revolution
orbits, as seen from the Moon-centered inertial point
of view. As for the case of double-revolution orbits, the
trajectory path surrounds the Moon with oscillations
associated with the three orbital loops that characterize
triple-revolution motion.

A very interesting solution is obtained when provid-
ing a 3:1 resonant Halo orbit about L1 in the CR3BP
as initial guess. In this case the starting point is a orbit
with period 2/3π and three loops are obtained in the
ER3BP, in order to match the period of 2π . The correc-
tion algorithm converges into a peculiar solution that
connects motion between the neighborhoods of L1 and
L2points. Such solution is in fact a heteroclinic connec-
tion between a solution aroundL1and a solution around
L2 (Fig. 5). This periodic orbit might be of great inter-
est for space applications, since it provides free motion
between L1 and L2 and considers the higher fidelity
dynamics associated with ER3BP.

Vertical Lyapunov orbits are unstable with eigen-
value distribution of type (a) (L1 orbit) and of type (b)
(L2 orbit). In both cases, their real eigenvalues are pos-
itive and no bifurcations occur in the range of eccen-
tricities studied. On the contrary, triple-revolution Halo
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Fig. 5 Triple-revolution orbit (Sun–Earth system) shown in a
nondimensional rotating-pulsating frame and b Earth-centered
inertial frame. Solution generated from 3:1 resonant Halo about
L1 in CR3BP. Projections of ER3BP orbit on x−y, x−z and y−z
planes are shown in gray

orbits show a more complicated behavior. Figure 6
shows the evolution of the eigenvalue distribution for
the case of 3:1 Halo as function of the eccentricity. Sev-
eral collisions and bifurcations are observed. Figure 6a
refers to the Sun–Earth L1 3:1 Halo. In this case, after
a bifurcation at e = 0, the distribution evolves from
type (b) (two real and one complex conjugate pair on
unitary circle) to type (a) (three real pairs) after a col-
lision in (− 1, 0) when e = 0.0085. A double collision
occurs for e = 0.0092, when two pairs of complex
conjugates appears [not on the unitary circle, type (d)].
Figure 6b refers to the triple-revolution Earth–Moon
L2 Halo. In this case, the distribution of eigenvalues
evolves from type (c) (one negative real and two com-
plex conjugate pairs on the unitary circle) to type (f)
(three complex conjugate pairs on the unitary circle)
after a collision at (−1, 0) when e = 0.0454. It is worth
noting that type (f) orbits are stable. A stability region
is then identified for this family of orbits in the inter-
val e = [0.0454, 0.0468]. At e = 0.0468 a double
collision occurs on the unitary circle and two complex
pairs are created inside and outside the unitary circle
[type (e)].

5.4 Quadruple-revolution orbits

The last class of periodic motion reported here is
quadruple-revolution motion. The resonance of 4:1 is
not very common in the families of vertical and planar
Lyapunov. Also, no 4:1 resonance orbit can be found in
theHalo families about L1, L2 or L3 in theEarth–Moon
system. As for the case under study in this work, such
resonance is observed only in the family of Halo orbits
aroundL1, in the Sun–Earth system. Figure 7a, b shows
an example of four-revolution solution obtained from
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Fig. 6 Distribution of eigenvalues as function of the eccentricity
for the case of triple-revolution families of orbits generated from
3:1 resonant Halo around a Sun–Earth L1 and b Earth–Moon L2
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ŷ [nondim]

00.98

ẑ
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ŷ [km]

×1060

0

1

×106

0

2

×106

x̂ [km]

3

-22
4

(b)

Fig. 7 Quadruple-revolution orbit (Sun–Earth system) shown in
a nondimensional rotating-pulsating frame and b Earth-centered
inertial frame. Solution generated from 4:1 resonant Halo orbit
about L1 in the CR3BP. Projections of ER3BP orbit on x−y,
x−z and y−z planes are shown in gray

the 4:1 Halo about L1 in the Sun–Earth CR3BP. As for
the last case of triple-revolution orbits shown, the cor-
rector converges to a heteroclinic connection between
L1 and L2 solutions. In this case, the initial guess orbit
possesses period of 1/2π and then, the ER3BP orbit is
periodic after looping four times between L1 and L2.
The looping behavior is clearly seen when looking at
the projection of the motion in the synodic frame on
the y−z axis. The quadruple-revolution orbit exhibits
a type (b) instability, with two positive real and one
complex conjugate pair (on the unitary circle) of eigen-
values. No bifurcations are observed in the range of
eccentricities observed.

6 Conclusions

The work presents a survey of periodic solutions about
collinear libration points in the ER3BP. Results asso-
ciated with Earth–Moon and Sun–Earth systems are
shown. Periodic motion is classified depending on
dynamical behavior and geometry,with the focus on the
number of revolutions the trajectory does before repli-
cating its initial state. Stability properties are assessed
for each orbit found and discussed as function of the
eccentricity.

The resonance properties of Halo, planar and verti-
cal Lyapunov families are reported and the existence
of corresponding ER3BP solutions in discussed. More
in detail, the analysis shows that planar orbits are com-
monly found as single-revolution orbits in the ER3BP.
Also, single-revolution solutions are found to be the
only existing solutions in the proximity of the third
Lagrangian point, where resonant three-dimensional
motion has not been observed. The most common
three-dimensional solutions found around L1 and L2
points are double- and triple-revolution orbits. Such
solutions are associated with the 2:1, 3:1 or 3:2 reso-
nance motion, which is very common in all families of
Halo and vertical Lyapunov orbits. Finally, interesting
heteroclinic connections between L1 and L2 solutions
have been found associated with 3:1 and 4:1 resonance
in the Halo family around L1 point of the Sun–Earth
system.
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