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Abstract Forced vibration responses of integrally
shrouded group blades are investigated in this paper.
A lumped mass model of integrally shrouded group
blades considering centrifugal stiffening of the blade
and rubbing and impact between adjacent shrouds is
established. In the proposed model, collision force is
approximated by linear springs, and friction force is
approximated by an exponential-type velocity-depen-
dent model. Stick-slip-separation transition boundaries
are determined. Runge–Kutta algorithm is used to com-
pute vibration responses and study the effects of stiff-
ness ratio, rotating speed and aerodynamic excita-
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tion amplitude on the vibration responses of integrally
shrouded group blades. Vibration reduction effect of
the shroud on the reference blade at the first dynamic
resonance speed is illustrated. Numerical results indi-
cate that stiffness ratio, initial gap and contact angle
have agreat effect on thenormalised energydensity (the
value of which can represent vibration reduction effect
of the shroud), and the reference blade can experience
periodic, quasi-periodic and chaotic vibration due to
nonsmooth behaviour at the shroud contact interfaces.

Keywords Integrally shrouded blade · Rubbing-
impact · Friction · Nonlinear vibration · Nonsmooth ·
Energy dissipation

1 Introduction

Blades are major components in aeroengines. High-
cycle fatigue (HCF) failure due to high dynamic
stresses caused by blade vibration is one of the main
causes of aeroengine incidents [1–3]. A shroud device
of the blade is actually an effective dry friction damper
to reduce vibration amplitudes and high dynamic
stresses of turbine blades, thus, it is widely used as
a means of vibration suppression for turbine blades.
The contact interfaces of adjacent blade shrouds may
undergo stick and slip, and separation, and the con-
tact force may possess nonlinear characteristics. These
lead tomany difficulties to predict its dynamic response
accurately.
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Extensive research into nonlinear behaviour of the
integrally shrouded blade has been conducted. Nonlin-
ear dynamic model of shrouded group blades consid-
ering contact and impact based on Hertz contact force
theory was built in [4]. A three-dimensional finite ele-
ment model for vibration analysis of group blades was
presented in [5]. The model improved the accuracy for
calculating the natural frequencies and mode shapes
of group blades, and offered an effective way for cal-
culating vibratory modes of integral blades with com-
plex shapes. The influence on coupled vibrations of
shaft-torsion and blade-bending of a rotor system with
grouped blades was studied by Chiu et al. [6] analyti-
cally. The rotating vibration behaviour of a full circle
of the turbine blades with different groups of blades
was investigated in [7]. A macro-slip model of a sin-
gle point contact which assumes that all points on the
contact interface are sticking or slipping all at the same
time is widely used in many investigations [8–11]. The
famous bilinear hysteretic restoring force model was
put forward by Iwan [12]. Hao and Zhu [13] applied
the hysteresis spring model to a two-dimensional con-
tact friction analysis and introduced a dynamic compli-
ance method to resolve the response of complex struc-
tures with dry friction. Yang and Menq [14] developed
a three-dimensional friction contact model for the pre-
diction of the resonant response of structures having
three-dimensional frictional constraints. A numerical
method was introduced to calculate the nonlinear fric-
tion force by tracing the trajectory of the relativemotion
of the moving contact point when friction interface
was constrained to complex contact motions [15]. The
forced response of a blade with shrouds of a low pres-
sure steam turbine was computed and numerical results
were compared with the experimental results of Wheel
Box Tests performed at GE Oil & Gas [16]. A reduced
order model (ROM) was proposed based on an appro-
priate nonlinear modal basis, and the methodology was
applied to both a simplified and a large-scalemodel of a
bladed disc with shroud contact interfaces [17]. Exper-
imental modelling and numerical simulation of blade
interaction by means of a friction element placed in
the shroud between the blade heads were carried out
in [18]. By dividing a complete stick-slip cycle of the
damper into four intervals in succession,Ding andChen
[19] proposed an analytical method for determining the
steady-state response of a blade with dry friction. Sgn
contact model was used to study the dynamic response
of a two-degree of freedom lumped mass model of a

shrouded blade, and effects of some parameters on non-
linear dynamic characteristics of the system were anal-
ysed [20].

Iwan [21] presented a parallel-series model and a
series-parallel model based on the assumption that
there was partial sliding at the contact interface. A
continuous microslip model of friction which allowed
partial slipping at the friction interface in elastoplas-
tic shear layer theory was presented by Menq et al.
[22,23] a few years later. In some cases, when there
is coupling between motions of a structure in more
than one direction, a one-dimensional motion model
is not valid. A two-dimensional microslip friction
model was proposed in [24], then Cigeroglu et al.
[25] put forward a two-dimensional distributed param-
eter microslip friction model with normal load varia-
tion induced by normal motion which characterised the
stick-slip-separation of the contact interface.

For the study of the impact force, Freudenstein [26]
proposed an impact pair model. Chu et al. [27] approx-
imated collision force by linear springs in their inves-
tigation. Nan [28] established a shrouded blade model
composed of springs and a cantilever beam with a tip
mass, and the effects of the stiffness ratio, the mass
ratio and the amplitude of the excitation on vibration
of the systemwere analysed. How the number of blades
and distribution of cracks affected the mode localisa-
tion of a mistuned blade system was examined in [29].
Amodellingmethod for a flexible beamwith a tip mass
that experienced impact, while undergoing large over-
all motionwas presented in [30]. A recent experimental
technique and damping reduction method for isolating
the structural damping of rotating blades was demon-
strated by Jeffers et al. [31]. Ma et al. [32] established
a dynamic model of rotating shrouded blades consid-
ering the effects of the centrifugal stiffening, spin soft-
ening and Coriolis force. It was found in [27] that con-
tact stiffness had very important effects on the impact
force between adjacent shroudedblades.A friction con-
tact stiffness model of fractal geometry was proposed
to investigate the nonlinear vibration behaviour of a
shrouded blade [33]. Multi-harmonic balance method
(MHBM) was used to obtain the steady-state periodic
solutions of shrouded turbine blade systems [34,35].
The gap between adjacent shrouds and the rotating
speed of the blade disc were found to have significant
effects on the dynamical responses of the system [36].

Althoughmuchwork has been done on the vibration
analysis of integrally shrouded blades, most studies
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only consider impact between neighbouring shrouds,
and rubbing existing between adjacent shrouds has not
been included. A more realistic model which accom-
modates rubbing impact and can deal with stick-slip-
separation of the contact interfaces and thus possesses
nonlinear characteristics of the contact force is needed.
In this paper, a lumped mass model of integrally
shrouded group blades is established, and centrifu-
gal stiffening of the blades, and rubbing and impact
between adjacent shrouds are considered. Impact force
is modelled by linear springs. An exponential-type
velocity-dependent friction model which is commonly
used for contact between solid surfaces in dry condi-
tions is adopted to describe the friction force. Equa-
tions of motion of the integrally shrouded group blades
in different dynamic situations are derived, and stick-
slip-separation transition boundaries are determined. A
numerical approach for solving the forced vibration of
integrally shrouded group blades with impact and non-
smooth friction contact is presented.

2 Mechanical model and dynamics equations of
integrally shrouded group blades

The whole group of integrally shrouded blades forms
a circular structure. In order to study the influence of
collision force and friction force to the vibration char-
acteristics of shrouded blades, a set of three blades are
taken in this study. It is assumed that the disc is rigid,
while the blades are elastic in this investigation. The
schematic of integrally shrouded group blades of an
aeroengine is shown in Fig. 1, where the xyz coordi-
nate system (called the global cylindrical coordinate
system) is defined in accordance with the tangential
(x), radial (y), and axial (z) directions.

Actually, the contact-rubbing between the adjacent
shrouds takes place in three perpendicular directions.
However, the main direction of aerodynamic excitation
force is in the rotating tangential direction of bladed
disc (x), and the blades are easy to bend in this direc-
tion. In addition, the displacements in the y and z direc-
tions are very small in relation to the displacement in the
x direction, thus can be ignored. In this paper, centrifu-
gal stiffening is considered. ANSYS is used to get the
frequencies of the shrouded blade considering the pre-
stress effects (produced by the centrifugal force due to
rotation of the turbine disc in an aeroengine). First, the
pre-stress of the shrouded blade under rotating condi-

RightLeft
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ΩΩ

x

y

z

Fig. 1 The schematic of integrally shrouded group blades of an
aeroengine

Fig. 2 First dynamic frequency versus rotating speed curve and
its fitting curve

tion is acquired, and then, its frequencies including pre-
stress effects are obtained. The first natural frequency
fd1 at various rotating disc speeds is obtained from the
FEmodel and can be fitted into a curve shown in Fig. 2.
Then, its dynamic stiffness can be obtained.

The integrally shrouded group blades are simpli-
fied as a lumped mass model each, as shown in Fig. 3.
Accordingly, the equations of motion could be written
as

m1 ẍ1 + c1 ẋ1 + k1x1 = Q1 − F1 (t, x1 − x2, ẋ1 − ẋ2, Δ1)

m2 ẍ2 + c2 ẋ2 + k2x2 = Q2 + F1 (t, x1 − x2, ẋ1 − ẋ2, Δ1)

− F2 (t, x2 − x3, ẋ2 − ẋ3, Δ2)

m3 ẍ3 + c3 ẋ3 + k3x3 = Q3 + F2 (t, x2 − x3, ẋ2 − ẋ3, Δ2)

(1)

Q1, Q2 and Q3 are aerodynamic excitation forces act-
ing on the three masses, the frequency of the excita-
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Fig. 3 Mechanical model of integrally shrouded group blades

tion fe is l times of the rotating frequency fr of the
blade, where l is the number of obstacles in the front of
the rotor-blade [27]. Qi = q0 + q1 sin (lΩt + ϕi ) +
q2 sin (2lΩt + ϕi ) + · · · + qnsin(nlΩt + ϕi ), i =
1, 2, 3; q0 is a time-independent constant force, qn
is the amplitude of the n-th harmonic component,
(n = 1, 2, 3 . . .). F1 and F2 are the nonlinear forces
between integrally shrouded group blades with rub and
impact.Δ1 andΔ2 are the initial gaps between the adja-
cent blade shrouds when they are stationary. Ω is the
rotating angular velocity of the disc. In this paper, only
the first harmonic component of aerodynamic excita-
tion is adopted (namely, excitation terms above q1 are
excluded, as commonly done); it is taken that l = 2 and
fe = 2 fr. The phase difference between neighbouring
blades was found to play an important role, and the best
damping effectwas obtained in the case of an anti-phase
vibration mode [9]. Thus it is assumed that the phase
difference should be ϕ2 − ϕ1 = π , ϕ3 − ϕ2 = π .

During engine operation, rub-impact between adja-
cent blade shrouds is very complicated, normal motion

μs

μm

|vr|o

Fig. 5 An exponential-type friction coefficient versus relative
velocity curve

of the contact surfaces could bring about variation of
the collision force and separation of the contact sur-
faces, and the contact interface may experience stick
or slip motion due to the relative tangential motion of
the contact surfaces. The geometrical relations of the
displacements and forces on the contact interface is
displayed in Fig. 4.

Collision between adjacent shrouds is assumed to be
a single point elastic collision which should be com-
pleted in a certain period of time, the whole process
including four stages: contact, compression deforma-
tion, recovery and separation. The normal force N1 and
N2 imposed on the shroud of the blade are described
as [37]

N1 =
{
kc (x1 − x2 − Δ1) sin α x1 − x2 > Δ1

0 x1 − x2 ≤ Δ1
(2)

N2 =
{
kc (x2 − x3 − Δ2) sin α x2 − x3 > Δ2

0 x2 − x3 ≤ Δ2
(3)

where kc is the elastic coefficient between the contact
surfaces, α is the contact angle. An exponential-type
velocity-dependent friction model is considered in the
present study. Friction force asymptotically decreases
as the relative velocity increases (Fig. 5). This type of

αα

x

fτ1

N1

αfτ2

N2

Δ1 Δ2

Contact interface Contact interface

Fig. 4 The geometrical relations of the displacements and forces on the contact interface
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friction model is commonly used for contact between
solid surfaces in dry conditions, and its coefficient func-
tion (as introduced in [38]) can be expressed as

μ (vr) = μm + (μs − μm) e−β|vr | (4)

where μm is the minimum kinetic friction coefficient,
μs is the maximum static friction coefficient, β is a
tuning parameter used to control the negative slope of
the friction coefficient curve, vr is the relative velocity
between contact surfaces of adjacent shrouds: vr1 =
(ẋ1 − ẋ2) cosα, vr2 = (ẋ2 − ẋ3) cosα.

Friction forces fτ1 and fτ2 governed by the classical
Coulomb’s law of friction can be written as

fτ1 =
{

μ (vr1) N1sgn (vr1) vr1 �= 0
−μsN1 ≤ fτ1 ≤ μsN1 vr1 = 0

(5)

fτ2 =
{

μ (vr2) N2sgn (vr2) vr2 �= 0
−μsN2 ≤ fτ2 ≤ μsN2 vr2 = 0

(6)

According to Fig. 4 and Eqs. (2–6), Eq. (1) can be
rewritten as

m1 ẍ1 + c1 ẋ1 + k1x1 = Q1 − N1 sin α − fτ1 cosα

m2 ẍ2 + c2 ẋ2 + k2x2 = Q2 + N1 sin α

+ fτ1 cosα − N2 sin α − fτ2 cosα

m3 ẍ3 + c3 ẋ3 + k3x3 = Q3 + N2 sin α + fτ2 cosα

(7)

Select m1 = m2 = m3 = m, c1 = c2 = c3 = c and
k1 = k2 = k3 = k. Denote ω2 = k

m , ε = c
2mω

, η = Ω
ω
,

K = Δ2
Δ1

, X1 = x1
Δ1

, X2 = x2
Δ1

, X3 = x3
Δ1

, τ = ωt ,

(∗)′ = d∗
dτ

, γ1 = kc
k , Q̄1 = Q1

mΔ1ω2 , Q̄2 = Q2
mΔ1ω2 ,

Q̄3 = Q3
mΔ1ω2 , f̄τ1 = fτ1

mΔ1ω2 , f̄τ2 = fτ2
mΔ1ω2 , Xr1 =

X1 − X2 − 1, Xr2 = X2 − X3 − K , N̄1 = N1
mΔ1ω2 ,

N̄2 = N2
mΔ1ω2 , N̄ = N̄1 − N̄2, f̄τ = f̄τ1 − f̄τ2, v̄r1 =

X ′
r1 cosα,v̄r2 = X ′

r2 cosα. Doing these will simplify
the mathematical expressions of Eq. (7).

There are four kinds of contact states between the
reference shroud and its left- and right-side shrouds:

1. There is no contact between the reference shroud
and its left- and right-side shrouds, thus, Xr1 ≤ 0
and Xr2 ≤ 0, N̄1 = 0, N̄2 = 0, f̄τ1 = 0, f̄τ2 =
0, and Eq. (7) is simplified to the dimensionless
equation as

X ′′
1 + 2εX ′

1 + X1 = Q̄1

X ′′
2 + 2εX ′

2 + X2 = Q̄2

X ′′
3 + 2εX ′

3 + X3 = Q̄3 (8)

2. There is contact only between the reference shroud
and its left-side shroud, thus, Xr1 > 0 and Xr2 ≤ 0.
Three scenarios can happen as follows.

(a) If the reference shroud is slipping relatively to
the left shroud, X ′

r1 �= 0. f̄τ1 = μ (v̄r1) N̄1sgn
(v̄r1) is the dimensionless sliding friction force,
where N̄1 = γ1Xr1 sin α. Because there is no
contact between the reference shroud and the
right shroud, N̄2 = 0, f̄τ2 = 0. Therefore,
Eq. (7) is simplified to the dimensionless equa-
tion as

X ′′
1 + 2εX ′

1 + X1 = Q̄1

− N̄1
[
sin α + μ (v̄r1) cosαsgn (v̄r1)

]
X ′′
2 + 2εX ′

2 + X2 = Q̄2

+ N̄1
[
sin α + μ (v̄r1) cosαsgn (v̄r1)

]
X ′′
3 + 2εX ′

3 + X3 = Q̄3 (9)

(b) If the reference shroud is sticking relatively to
the left shroud, X ′

r1 = 0 and | f̄τ1| ≤ μs N̄1,
where f̄τ1 is the dimensionless static friction
force at this time; X1 − X2 = C1, X ′′

1 = X ′′
2 ,

where C1 is the horizontal displacement differ-
ence between the left shroud and the reference
shroud at the end of the previous slip phase;
Equation (7) is now simplified to the dimen-
sionless equation as

X ′′
1 + 2εX ′

1 + X1 = 1

2

(
Q̄1 + Q̄2 + C1

)

X ′′
2 + 2εX ′

2 + X2 = 1

2

(
Q̄1 + Q̄2 − C1

)
X ′′
3 + 2εX ′

3 + X3 = Q̄3 (10)

The first row of Eq. (7) minus the second row
of Eq. (7) can be simplified to a dimensionless
equation as X ′′

1 − X ′′
2 + 2εX ′

1 − 2εX ′
2 + X1 −

X2 = Q̄1 − Q̄2 − 2N̄1 sin α − 2 f̄τ1 cosα, due
to X1 − X2 = C1, X ′

1 = X ′
2, X

′′
1 = X ′′

2 , thus,
C1 = Q̄1 − Q̄2 − 2N̄1 sin α − 2 f̄τ1 cosα, so
the dimensionless static friction force f̄τ1 can
be written as

f̄τ1 = −1

2 cosα

(
Q̄2 − Q̄1 + 2N̄1 sin α + C1

)
(11)

(c) If X ′
r1 = 0 and | f̄τ1| > μs N̄1 ( f̄τ1 can be

obtained from Eq. (11)), friction force reverses
its direction, the reference shroud and the left-
side shroud is still in sliding state.
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3. If the reference shroud is in contact with the right-
side shroud but without contact with the left-side
shroud, therefore, Xr2 > 0 and Xr1 ≤ 0. Again
three scenarios can happen as follows.

(a) If the reference shroud is slipping relatively
to the right-side shroud, X ′

r2 �= 0, f̄τ2 =
μ (v̄r2) N̄2sgn (v̄r2) is the dimensionless slid-
ing friction force, where N̄2 = γ1Xr2 sin α.
As there is no contact between the reference
and the left-side shrouds, N̄1 = 0, f̄τ1 = 0.
Equation (7) is simplified to the dimensionless
equation as

X ′′
1 + 2εX ′

1 + X1 = Q̄1

X ′′
2 + 2εX ′

2 + X2 = Q̄2

− N̄2
[
sin α + μ (v̄r2) cosαsgn (v̄r2)

]
X ′′
3 + 2εX ′

3 + X3 = Q̄3

+ N̄2
[
sin α + μ (v̄r2) cosαsgn (v̄r2)

]
(12)

(b) If the reference shroud is sticking relatively to
the right-side shroud, X ′

r2 = 0 and | f̄τ2| ≤
μs N̄2, f̄τ2 is the dimensionless static friction
force, X2 − X3 = C2, X ′′

2 = X ′′
3 , C2 is the

horizontal displacement difference between the
reference shroud and the right shroud at the end
of the previous slip phase; Equation (7) is sim-
plified to the dimensionless equation as

X ′′
1 + 2εX ′

1 + X1 = Q̄1

X ′′
2 + 2εX ′

2 + X2 = 1

2

(
Q̄2 + Q̄3 + C2

)

X ′′
3 + 2εX ′

3 + X3 = 1

2

(
Q̄2 + Q̄3 − C2

)
(13)

The second row of Eq. (7) minus the third row
of Eq. (7) can be simplified to a dimensionless
equation as X ′′

2 − X ′′
3 + 2εX ′

2 − 2εX ′
3 + X2 −

X3 = Q̄2 − Q̄3 − 2N̄2 sin α − 2 f̄τ2 cosα, due
to X2 − X3 = C2, X ′

2 = X ′
3, X

′′
2 = X ′′

3 , thus,
C2 = Q̄2 − Q̄3 − 2N̄2 sin α − 2 f̄τ2 cosα, so
the dimensionless static friction force f̄τ2 can
be written as

f̄τ2 = −1

2 cosα

(
Q̄3 − Q̄2 + 2N̄2 sin α + C2

)
(14)

(c) If X ′
r2 = 0 and | f̄τ2| > μs N̄2 ( f̄τ2 can be

obtained from Eq. (14)), friction force reverses
its direction, and the reference shroud and the
right-side shroud is still in sliding state.

4. There are contacts between the reference shroud
and the left- and right-side shrouds, hence, Xr1 > 0
and Xr2 > 0, N̄1 = γ1Xr1 sin α, N̄2 = γ1Xr2 sin α.
There are four kinds of motion states in this situa-
tion.

(a) The reference shroud is slipping relatively to the
left- and right-side shrouds, andEq. (7) is simplified
to the dimensionless equation as

X ′′
1 + 2εX ′

1 + X1 = Q̄1

− N̄1
[
sin α + μ (v̄r1) cosαsgn (v̄r1)

]
X ′′
2 + 2εX ′

2 + X2 = Q̄2

+ N̄1
[
sin α + μ (v̄r1) cosαsgn (v̄r1)

]
− N̄2

[
sin α + μ (v̄r2) cosαsgn (v̄r2)

]
X ′′
3 + 2εX ′

3 + X3 = Q̄3

+ N̄2
[
sin α + μ (v̄r2) cosαsgn (v̄r2)

]
(15)

(b) The reference shroud is slipping relatively to the
left-side shroud but sticking relatively to the right-
side shroud, and Eq. (7) is simplified to the dimen-
sionless equation as

X ′′
1 + 2εX ′

1 + X1 = Q̄1

− N̄1
[
sin α + μ (v̄r1) cosαsgn (v̄r1)

]
X ′′
2 + 2εX ′

2 + X2 = 1

2

{
Q̄2 + N̄1 [sin α

+μ (v̄r1) cosαsgn (v̄r1)
] + Q̄3 + C2

}
X ′′
3 + 2εX ′

3 + X3 = 1

2

{
Q̄2 + N̄1 [sin α

+μ (v̄r1) cosαsgn (v̄r1)
] + Q̄3 − C2

}
(16)

At this moment, the dimensionless static friction
force can be written as

f̄τ2 = −1

2 cosα

{
Q̄3 − Q̄2 − N̄1 [sin α

+μ (v̄r1) cosαsgn (v̄r1)
] + 2N̄2 sin α + C2

}
(17)

(c) The reference shroud is slipping relative to the
right-side shroud but sticking relative to the left-
side shroud, and Eq. (6) is simplified to the dimen-
sionless equation as

X ′′
1 + 2εX ′

1 + X1 = 1

2

{
Q̄1 + Q̄2

− N̄2
[
sin α + μ (v̄r2) cosαsgn (v̄r2)

] + C1
}

X ′′
2 + 2εX ′

2 + X2 = 1

2

{
Q̄1
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Fig. 6 Bifurcation diagram of the reference blade versus stiff-
ness ratio γ1 (Ω = 6000 rev/min, q1 = 50N)

+ Q̄2− N̄2
[
sin α + μ (v̄r2) cosαsgn (v̄r2)

]−C1
}

X ′′
3 + 2εX ′

3 + X3 = Q̄3

+ N̄2
[
sin α + μ (v̄r2) cosαsgn (v̄r2)

]
(18)

At this time, the dimensionless static friction force
f̄τ1 can be written as

f̄τ1 = −1

2 cosα

(
Q̄2 − N̄2 [sin α + μ (v̄r2) cosα

×sgn (v̄r2)
] − Q̄1 + 2N̄1 sin α + C1

)
(19)

(d) The reference shroud is sticking relative to the left-
and right-side shrouds, and Eq. (7) is simplified to
the dimensionless equation as

X ′′
1 + 2εX ′

1 + X1 = 1

3

(
Q̄1 + Q̄2

+ Q̄3 + 2C1 + C2
)

X ′′
2 + 2εX ′

2 + X2 = 1

3

(
Q̄1 + Q̄2

+ Q̄3 − C1 + C2
)

X ′′
3 + 2εX ′

3 + X3 = 1

3

(
Q̄1 + Q̄2

+ Q̄3 − C1 − 2C2
)

(20)

The dimensionless static friction force f̄τ1 and f̄τ2
can be, respectively, described as

f̄τ1 = −1

3 cosα

(
Q̄ 2 + Q̄3 − 2Q̄1

+ 3N̄1 sin α + 2C1 + C2) (21)

Fig. 7 Vibration responses of the reference blade (γ1 = 1): a displacement, b impact force, c friction force
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Fig. 8 Vibration responses of the reference blade (γ1 = 3.5): a displacement, b impact force, c friction force

f̄τ2 = −1

3 cosα

(
Q̄ 1 + Q̄2 − 2Q̄3

+ 3N̄2 sin α − C1 − 2 C2) (22)

In Eqs. (15–22), C1 is the horizontal displacement
difference between the left shroud and the reference
shroud at the end of the previous slip phase and C2

is the horizontal displacement difference between
the reference shroud and the right shroud at the end
of the previous slip phase.

It should now be clear that during vibration the sur-
faces in contact stick or slip between each other and
separate from each other. This is a very complicated
nonsmooth dynamic process.

Anumerical integration scheme implementingRunge–
Kutta algorithm appropriate for the second-order dif-
ferential equations coded in MATLAB and capable of
dealing with nonsmooth friction and contact behaviour
is developed to solve the equations of motion of the
shrouded blades in differentmotion stages in this paper.
The precise time instants when stick regime switches
to slip regime and the precise time instants of separa-
tion and reconnectionmust be captured, and vice versa;

the bisection method is used to find the critical points
where the dynamics switches fromone phase to another
phase.

3 Numerical simulation

As an example, the material constants and geometric
parameters of the blades are taken as: Young modulus
E = 2.1 × 1011 Pa, mass density ρ = 7800 kg/m3,
length of the blade L = 0.15m, width of the blade
b = 0.05m, thickness of the blade h = 0.007m, vis-
cous damping coefficient c = 4Ns/m, and mass of
the blade shroud m = 0.082 kg, the dynamic stiffness
k = m (2π fd1)2, μs = 0.5, μm = 0.3, β = 5 s/m.

3.1 Vibration response analysis of shrouded blade
with rubbing-impact

In this section, the effects of stiffness ratio, rotating
speed and aerodynamic excitation amplitude on the
vibration responses of integrally shrouded group blades
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Fig. 9 Vibration responses of the reference blade (γ1 = 5.31): a displacement, b impact force, c friction force

are discussed. Δ1 = Δ2 = 0.02mm, α = π
3 are taken

for this study.

3.1.1 The effect of stiffness ratio γ1 on vibration
responses

The effect of stiffness ratio on the vibration responses
of integrally shrouded group blades is investigated.
The bifurcation diagram of the reference blade ver-
sus stiffness ratio γ1 is shown in Fig. 6. Chaos occurs
in certain stiffness ratio bands which are separated by
bands with p-periodic motions of order p = 1, 3, 5, 9.
Vibration responses of the reference blade at γ1 =
1, 3.5, 5.31, 6, 8.8 are given in Figs. 7, 8, 9, 10 and
11, respectively. Period-one (p1) motion of the refer-
ence blade appears at γ1 = 1 (see Fig. 7). It can be
seen from Fig. 7 that the forced vibration of the ref-
erence blade is periodic and has the same frequency
as the excitation frequency and odd-order superhar-
monic frequencies of the driving frequency can be
observed. Period-three (p3) motion, period-nine (p9)
motion and period-five (p5) motion of the reference

blade appear at γ1 = 3.5, 5.31, 8.8 are illustrated in
Figs. 8, 9 and 11, respectively. Some fractional fre-
quencies and some odd multiple frequencies 3 fe and
5 fe can be found from Figs. 8, 9 and 11. The reason
for p3 motion at γ1 = 3.5 is that there exists a rubbing-
impact period which is three times of the excitation
period, and the reasons for p5 motion and p9 motion
are similar to p3 motion. Figure 10 displays the chaotic
motion of the reference blade, where continuous spec-
trums appear.

3.1.2 The effect of rotating speed Ω on vibration
responses

The effect of rotating speed on the vibration responses
of integrally shrouded group blades is studied. Fig-
ure 12 shows bifurcation diagram of the reference
blade versus rotating speedΩ . Period-one (p1)motion,
period-three (p3) motion and quasi-periodic motion of
the reference blade canbe found fromFig. 12.Vibration
responses of the reference blade at different rotating
speeds are provided in Figs. 13, 14 and 15. Figure 13
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Fig. 10 Vibration responses of the reference blade (γ1 = 6): a displacement, b impact force, c friction force

illustrates the period-one (p1) motion which appears at
Ω = 5030 rev/min of the reference blade. Excitation
frequency fe and only some odd multiple frequencies
3 fe and 5 fe can be observed, thus vibration response
of the reference blade is periodic whose period is the
period of excitation. Period-three (p3) motion of the
reference blade appears at Ω = 5790 rev/min and is
shown in Fig. 14. Some fractional frequencies fe/3,
5 fe/3 and 7 fe/3 and some odd multiple frequencies
3 fe and 5 fe can be found (see Fig. 14). Figure 15 dis-
plays the quasi-periodic motion of the reference blade
which appears at Ω = 5990 rev/min. The Poincarè
map of the reference blade is now a closed curve and
there are several peaks in the frequency spectrums (see
Fig. 15).

3.1.3 The effect of aerodynamic excitation amplitude
q1 on vibration responses

This subsection investigates the effect of aerodynamic
excitation amplitude on the vibration responses of

integrally shrouded group blades. Bifurcation diagram
of the reference blade versus aerodynamic excitation
amplitude q1 is given in Fig. 16. With the increase
in q1, the motion of the reference blade changes from
period-one motion to period-three (p3) motion at first,
then changes to quasi-periodic motion, at last changes
to period-three (p3) motion. Vibration responses of the
reference blade at q1 = 5N, 20N, 50N are given in
Figs. 17, 18 and 19, respectively. Figure 17 shows the
period-one (p1) motion of the reference blade which
appears at q1 = 5N. Phase diagram of the refer-
ence blade is a closed curve, and there is only one
point on the Poincarè map of the reference blade (see
Fig. 17a). Excitation frequency fe and only some odd
multiple frequencies 3 fe and 5 fe can be observed as
well. Period-three (p3) motion of the reference blade
appears at q1 = 20N and is illustrated in Fig. 18. Some
fractional frequencies fe/3, 5 fe/3 and 7 fe/3 and some
odd multiple frequencies 3 fe and 5 fe can be found and
the point number of the Poincarè map of the reference
blade is now changed to three in comparison with the
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Fig. 11 Vibration responses of the reference blade (γ1 = 8.8): a displacement, b impact force, c friction force

Fig. 12 Bifurcation diagram of the reference blade versus rotat-
ing speed Ω (γ1 = 2.2, q1 = 50N)

p1 motion (see Fig. 18). The quasi-periodic motion of
the reference blade appears at q1 = 50N. The Poincarè
map of the reference blade is now a closed curve and
the phase diagram is a closed ring, more peaks in the
frequency spectrums can be found.

3.2 Energy dissipation study

In order to predict the effect of some key parameters
on the blade vibration reduction, a normalised energy
density (Eρ) is defined below as a measure of vibra-
tion response so that the vibration reduction effect of
the shroud in various conditions can be assessed. The
smallest Eρ is considered to indicate the best vibration
reduction. Eρ = (∫t2t1 x2 (t)2 dt)/ (t2 − t1). The inter-
val (t1, t2) should be chosen after the response becomes
“steady” and the value of (t2−t1) should be greater than
the “steady” response period. In this section, the reso-
nance frequency is selected, which corresponds to the
crossing point between the first flexural dynamic fre-
quency fd1 and aerodynamic excitation frequency fe
(see Fig. 20). The numerical simulation parameters are
selected as q1 = 25N, K = 1, Ω = 6847.5 rev/min,
fe = 216.25Hz, η = 0.5. The effects of stiffness ratio,
initial gap, contact angle for vibration reduction are
investigated.

The normalised energy density versus stiffness ratio
curves at different initial gaps are illustrated in Fig. 21.
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Fig. 13 Vibration responses of the reference blade (Ω = 5030 rev/min): a displacement, b impact force, c friction force

Fig. 14 Vibration responses of the reference blade (Ω = 5790 rev/min): a displacement, b impact force, c friction force
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Fig. 15 Vibration responses of the reference blade (Ω = 5990 rev/min): a displacement, b impact force, c friction force

Fig. 16 Bifurcation diagram of the reference blade versus aero-
dynamic excitation amplitude q1 (γ1 = 2.2,Ω = 6000 rev/min)

With the increase in stiffness ratio γ1, the normalised
energy density (Eρ) decreases continuously at first,
then stays the same. When the initial gap Δ1 is rel-
atively large, the stiffness ratio has a great effect on
the normalised energy density; however, when Δ1 <

0.02mm, the stiffness ratio has almost no influence

on the normalised energy density. Figure 22 shows
the normalised energy density versus the initial gap
curves. It can be seen from Fig. 22 that when Δ1 <

0.0074m impact between adjacent shrouded blades
appears, and the normalised energy density increases
with the increase in the initial gap; thus the smaller
the initial gap, the better the damping effect. The nor-
malised energy density versus the contact angle curves
at Δ1 = 0.02mm are given in Fig. 23. The normalised
energy density Eρ decreases continuously at first, then
increases (see Fig. 23), so there is an intermediate range
of the contact angle α which can make the best vibra-
tion reduction at Δ1 = 0.02mm. This finding can be
exploited to design shrouds that give the best vibration
effect.

4 Conclusions

This paper presents a study on the forced vibration
responses of integrally shrouded group blades with
rubbing and impact. A lumped mass model of inte-
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Fig. 17 Vibration responses of the reference blade (q1 = 5N): a displacement, b impact force, c friction force

Fig. 18 Vibration responses of the reference blade (q1 = 20N): a displacement, b impact force, c friction force
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Fig. 19 Vibration responses of the reference blade (q1 = 50N): a displacement, b impact force, c friction force

Fig. 20 Campbell diagram of the rotating shrouded blade

grally shrouded group blades is established. Thismodel
displays nonsmooth and nonlinear dynamic behaviour
and there are several distinct dynamic regimes, which
present numerical difficulties. Using this model, the
effects of stiffness ratio, rotating speed and excita-
tion amplitude on the vibration characteristics of inte-
grally shrouded group blades are analysed, and vibra-

Fig. 21 Normalised energy density versus stiffness ratio γ1
curve (α = π

3 )

tion reduction effect of the shroud at first dynamic res-
onance speed of the reference blade is demonstrated.
The following conclusions can be drawn:

1. The reference blade could experience period-one
motion, period-three motion, period-five motion,
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Fig. 22 Normalised energy density versus initial gap Δ1 curve
(α = π

3 )

Fig. 23 Normalised energy density versus contact angle α

curves (Δ1 = 0.02mm)

period-nine motion and chaotic motion with the
variation of the stiffness ratio γ1.

2. Period-one motion, period-three motion and quasi-
periodicmotion of the reference blade can be found
as the rotating speed Ω increases.

3. With the increase in excitation amplitude q1, the
motion of the reference blade changes from period-
one motion to period-three motion at first, then
changes to quasi-periodic motion, at last changes
to period-three motion again.

4. With the increase in stiffness ratio γ1, the nor-
malised energy density (Eρ) decreases continu-
ously at first, then stays the same. When the ini-
tial gap Δ1 is relatively large, the stiffness ratio
has a great effect on the normalised energy den-
sity, however, when Δ1 is less than a certain value
(for instance, 0.02mm in this investigation), the

stiffness ratio has almost no influence on the nor-
malised energy density. Contact between adjacent
shrouded blades appears when Δ1 is less than a
certain value (for example, 0.0074m in this inves-
tigation). When Δ1 is less than a certain value (for
example, 0.0074m in this investigation), the nor-
malised energy density increases with the increase
in the initial gap. The normalised energy density Eρ

decreases continuously at first, and then increases
as contact angle α increases.
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